[1] |
CRUZ I, TURPIN F T. Yield impact of larval infestations of the fall armyworm (Lepidoptera: Noctuidae) to midwhorl growth stage of corn[J]. J Econ Entomol, 1983, 76(5): 1052-1054. doi: 10.1093/jee/76.5.1052
|
[2] |
SPARKS A N. A review of the biology of the fall armyworm[J]. Fla Entomol, 1979, 62(2): 82-87. doi: 10.2307/3494083
|
[3] |
CRUZ I, DE LOURDES CORRÊA FIGUEIREDO M, DA SILVA R B, et al. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize[J]. Int J Pest Manage, 2012, 58(1): 83-90. doi: 10.1080/09670874.2012.655702
|
[4] |
PROWELL D P, MCMICHAEL M, SILVAIN J F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 2004, 97(5): 1034-1044. doi: 10.1603/0013-8746(2004)097[1034:MGAOHU]2.0.CO;2
|
[5] |
PASHLEY D P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex?[J]. Ann Entomol Soc Am, 1986, 79(6): 898-904. doi: 10.1093/aesa/79.6.898
|
[6] |
PASHLEY D P. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm[J]. Evolution, 1988, 42(1): 93-102.
|
[7] |
SALDAMANDO C I, VELEZ-ARANGO A M. Host plant association and genetic differentiation of corn and rice strains of Spodoptera frugiperda smith (Lepidoptera: Noctuidae) in Colombia[J]. Neotrop Entomol, 2010, 39(6): 921-929. doi: 10.1590/S1519-566X2010000600012
|
[8] |
PASHLEY D P, HAMMOND A M, HARDY T N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 1992, 85(4): 400-405. doi: 10.1093/aesa/85.4.400
|
[9] |
ADAMCZYK JR J J, HOLLOWAY J W, LEONARD B R, et al. Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton[J]. J Cotton Sci, 1997, 1(1): 21-28.
|
[10] |
INGBER D A, MASON C E, FLEXNER L. Cry1 Bt susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains[J]. J Econ Entomol, 2018, 111(1): 361-368. doi: 10.1093/jee/tox311
|
[11] |
JAMES C. Global status of commercialized biotech/GM crops. 2015[EB/OL]. [2019-06-20]. http://www.isaaa.org/resources/publications/briefs/51/default.asp.
|
[12] |
TABASHNIK B E, BRÉVAUL T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nat Biotechnol, 2013, 31(6): 510-521. doi: 10.1038/nbt.2597
|
[13] |
CARRIÈRE Y, CRICKMORE N, TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nat Biotechnol, 2015, 33(2): 161-168. doi: 10.1038/nbt.3099
|
[14] |
STORER N P, BABCOCK J M, SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico[J]. J Econ Entomol, 2010, 103(4): 1031-1038. doi: 10.1603/EC10040
|
[15] |
OMOTO C, BERNARDI O, SALMERON E, et al. Field‐evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil[J]. Pest Manag Sci, 2016, 72(9): 1727-1736. doi: 10.1002/ps.2016.72.issue-9
|
[16] |
FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil[J]. Crop Prot, 2014, 64: 150-158. doi: 10.1016/j.cropro.2014.06.019
|
[17] |
HUANG F N, QURESHI J A, MEAGHER JR R L, et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize[J]. PLoS One, 2014, 9(11): e112958. doi: 10.1371/journal.pone.0112958
|
[18] |
LI G P, REISIG D, MIAO J, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. PLoS One, 2016, 11(4): e0154492. doi: 10.1371/journal.pone.0154492
|
[19] |
HUANG F N, QURESHI J A, HEAD G P, et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Prot, 2016, 83: 83-89. doi: 10.1016/j.cropro.2016.01.019
|
[20] |
YANG F, KERNS D L, HEAD G P, et al. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda[J]. Pest Manag Sci, 2017, 73(12): 2495-2503. doi: 10.1002/ps.2017.73.issue-12
|
[21] |
赵胜园, 孙小旭, 张浩文, 等. 常用化学杀虫剂对草地贪夜蛾防效的室内测定[J]. 植物保护, 2019, 45(3): 10-14.ZHAO S Y, SUN X X, ZHANG H W, et al. Laboratory test on the control efficacy of common chemical insecticides against Spodoptera frugiperda[J]. Plant Protection, 2019, 45(3): 10-14.
|
[22] |
张磊, 靳明辉, 张丹丹, 等. 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2): 19-24.ZHANG L, JIN M H, ZHANG D D, et al. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province[J]. Plant Protection, 2019, 45(2): 19-24.
|
[23] |
李永平, 张帅, 王晓军, 等. 草地贪夜蛾抗药性现状及化学防治策略[J]. 植物保护, 2019, 45(4): 14-19.LI Y P, ZHANG S, WANG X J, et al. Current status of insecticide resistance in Spodoptera frugiperda and strategies for its chemical control[J]. Plant Protection, 2019, 45(4): 14-19.
|
[24] |
崔丽, 芮昌辉, 李永平, 等. 国外草地贪夜蛾化学防治技术的研究与应用[J]. 植物保护, 2019, 45(4): 7-13.CUI L, RUI C H, LI Y P, et al. Research and application of chemical control technology against Spodoptera frugiperda (Lepidoptera: Noctuidae) in foreign countries[J]. Plant Protection, 2019, 45(4): 7-13.
|
[25] |
WOOD K A, WILSON B H, GRAVES J B. Influence of host plant on the susceptibility of the fall armyworm to insecticides[J]. J Econ Entomol, 1981, 74(1): 96-98. doi: 10.1093/jee/74.1.96
|
[26] |
YU S J. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 1991, 39(1): 84-91. doi: 10.1016/0048-3575(91)90216-9
|
[27] |
YU S J, NGUYEN S N, ABO-ELGHAR G E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 2003, 77(1): 1-11. doi: 10.1016/S0048-3575(03)00079-8
|
[28] |
YU S J, MCCORD JR E. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidae)[J]. Pest Manag Sci, 2007, 63(1): 63-67. doi: 10.1002/(ISSN)1526-4998
|
[29] |
GUTIÉRREZ-MORENO R, MOTA-SANCHEZ D, BLANCO C A, et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico[J]. J Econ Entomol, 2019, 112(2): 792-802. doi: 10.1093/jee/toy372
|
[30] |
YOUNG J R, MCMILLIAN W W. Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces[J]. J Econ Entomol, 1979, 72(2): 202-203. doi: 10.1093/jee/72.2.202
|
[31] |
CARPENTER J E, YOUNG J R. Interaction of inherited sterility and insecticide resistance in the fall armyworm (Lepidoptera: Noctuidae)[J]. J Econ Entomol, 1991, 84(1): 25-27. doi: 10.1093/jee/84.1.25
|
[32] |
MCCAFFERY A R, KING A B S, WALKER A J, et al. Resistance to synthetic pyrethroids in the bollworm, Heliothis armigera from Andhra Pradesh, India[J]. Pest Manag Sci, 1989, 27(1): 65-76. doi: 10.1002/ps.v27:1
|
[33] |
WHALON M E, MOTA-SANCHEZ D, HOLLINGWORTH R M. The arthropod pesticide resistance database[DB/OL]. Michigan State University, [2019-06-25]. https://www.pesticideresistance.org/search.php.
|
[34] |
HUANG F N, ANDOW D A, BUSCHMAN L L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America[J]. Entomol Exp Appl, 2011, 140(1): 1-16. doi: 10.1111/eea.2011.140.issue-1
|
[35] |
ZHU Y C, BLANCO C A, PORTILLA M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda[J]. Pestic Biochem Physiol, 2015, 122: 15-21. doi: 10.1016/j.pestbp.2015.01.007
|
[36] |
BELAY D K, HUCKABA R M, FOSTER J E. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at santa isabel, Puerto Rico, to different insecticides[J]. Fla Entomol, 2012, 95(2): 476-478. doi: 10.1653/024.095.0232
|
[37] |
LI Y X, MAO M Z, LI Y M, et al. Modulations of high-voltage activated Ca2+ channels in the central neurones of Spodoptera exigua by chlorantraniliprole[J]. Physiol Entomol, 2011, 36(3): 230-234. doi: 10.1111/pen.2011.36.issue-3
|
[38] |
BOLZAN A, PADOVEZ F E, NASCIMENTO A R, et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides[J/OL]. Pest Manag Sci, (2019-03-25)[2019-06-20]. https://www.x-mol.com/paper/5384943.
|
[39] |
COLES W. CABI warns of rapid spread of crop-devastating fall armyworm across Asia, 2018[DB/OL]. [2019-06-25]. https://www.freshplaza.com/article/198827/CABI-warns-of-rapid-spread-of-crop-devastating-fall-armyworm-across-Asia.
|
[40] |
SISAY B, TEFERA T, WAKGARI M, et al. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize[J]. Insects, 2019, 10(2): 45. doi: 10.3390/insects10020045
|
[41] |
王建军, 董红刚, 袁林泽. 斜纹夜蛾对茚虫威的抗药性汰选及交互抗性测定[J]. 植物保护学报, 2008, 35(6): 525-529. doi: 10.3321/j.issn:0577-7518.2008.06.009WANG J J, DONG H G, YUAN L Z. Selection for indoxacarb resistance in Spodoptera litura and investigation on cross-resistance in the selected population[J]. Acta Phytophylacica Sinica, 2008, 35(6): 525-529. doi: 10.3321/j.issn:0577-7518.2008.06.009
|
[42] |
王伟. 甜菜夜蛾对茚虫威的抗性风险评估及抗性机理研究[D]. 泰安: 山东农业大学, 2011.WANG W. Risk assessment and resistance mechanism to indoxacarb in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)[D]. Taian: Shandong Agricultural University, 2011.
|
[43] |
王芹芹, 崔丽, 王奇渊, 等. 棉铃虫对茚虫威的抗性机理: PBO, DEF 和 DEM 的增效作用及解毒酶活性[J]. 昆虫学报, 2017, 60(8): 912-919.WANG Q Q, CUI L, WANG Q Y, et al. Mechanisms of resistance to indoxacarb in Helicoverpa armigera (Lepidoptera: Noctuidae): the synergistic effects of PBO, DEF and DEM and the activities of detoxification enzymes[J]. Acta Entomologica Sinica, 2017, 60(8): 912-919.
|
[44] |
TEIXEIRA L A, ANDALORO J T. Diamide insecticides: global efforts to address insect resistance stewardship challenges[J]. Pestic Biochem Physiol, 2013, 106(3): 76-78. doi: 10.1016/j.pestbp.2013.01.010
|
[45] |
MCCORD JR E, YU S J. The mechanisms of carbaryl resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 1987, 27(1): 114-122. doi: 10.1016/0048-3575(87)90103-9
|
[46] |
DUMAS D P, WILD J R, RAUSHEL F M. Expression of Pseudomonas phosphotriesterase activity in the fall armyworm confers resistance to insecticides[J]. Experientia, 1990, 46(7): 729-731. doi: 10.1007/BF01939948
|
[47] |
YU S J. Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae)[J]. J Econ Entomol, 1992, 85(3): 675-682. doi: 10.1093/jee/85.3.675
|
[48] |
HANNA M A, ATALLAH Y H. Penetration and biodegradation of carbaryl in susceptible and resistant strains of the Egyptian cotton leafworm[J]. J Econ Entomol, 1971, 64(6): 1391-1394. doi: 10.1093/jee/64.6.1391
|
[49] |
IWATA T, HAMA H. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides[J]. J Econ Entomol, 1972, 65(3): 643-644. doi: 10.1093/jee/65.3.643
|
[50] |
VOSS G. Cholinesterase autoanalysis: a rapid method for biochemical studies on susceptible and resistant insects[J]. J Econ Entomol, 1980, 73(2): 189-192. doi: 10.1093/jee/73.2.189
|
[51] |
CORDÓN-ROSALES C, BEACH R F, BROGDON W G. Field evaluation of methods for estimating carbamate resistance in Anopheles albimanus mosquitos from a microplate assay for insensitive acetylcholinesterase[J]. Bull World Health Organ, 1990, 68(3): 323-329.
|
[52] |
YANG M L, ZHANG J Z, ZHU K Y, et al. Increased activity and reduced sensitivity of acetylcholinesterase associated with malathion resistance in a field population of the oriental migratory locust, Locusta migratoria manilensis (Meyen)[J]. Pestic Biochem Physiol, 2008, 91(1): 32-38. doi: 10.1016/j.pestbp.2007.12.004
|
[53] |
QI S Z, CASIDA J E. Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor[J]. Pestic Biochem Physiol, 2013, 107(3): 321-326. doi: 10.1016/j.pestbp.2013.09.004
|
[54] |
QI S Z, LÜMMEN P, NAUEN R, et al. Diamide insecticide target site specificity in the heliothis and musca ryanodine receptors relative to toxicity[J]. J Agric Food Chem, 2014, 62(18): 4077-4082. doi: 10.1021/jf501236h
|
[55] |
BOAVENTURA D, BOLZAN A, PADOVEZ F E, et al. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda[J/OL]. Pest Manag Sci,(2019-07-08)[2019-07-10]. https://www.x-mol.com/paper/5711146.
|
[56] |
ZUO Y Y, WANG H, XU Y J, et al. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides[J]. Insect Biochem Mol Biol, 2017, 89: 79-85. doi: 10.1016/j.ibmb.2017.09.005
|
[57] |
李富根, 艾国民, 李友顺, 等. 茚虫威的作用机制与抗性研究进展[J]. 农药, 2013, 52(8): 558-560.LI F G, AI G M, LI Y S, et al. Progress on mechanism of action and insecticide resistance of the oxadiazine indoxacarb in insects[J]. Agrochemicals, 2013, 52(8): 558-560.
|
[58] |
王建军, 董红刚. 新型高效杀虫剂茚虫威毒理学研究进展[J]. 植物保护, 2009, 35(3): 20-22. doi: 10.3969/j.issn.0529-1542.2009.03.005WANG J J, DONG H G. Advances in toxicology of the novel insecticide indoxacarb[J]. Plant Protection, 2009, 35(3): 20-22. doi: 10.3969/j.issn.0529-1542.2009.03.005
|