• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草地贪夜蛾对杀虫剂的抗性研究进展

王芹芹 崔丽 王立 梁沛 袁会珠 芮昌辉

王芹芹, 崔丽, 王立, 梁沛, 袁会珠, 芮昌辉. 草地贪夜蛾对杀虫剂的抗性研究进展[J]. 农药学学报, 2019, 21(4): 401-408. doi: 10.16801/j.issn.1008-7303.2019.0072
引用本文: 王芹芹, 崔丽, 王立, 梁沛, 袁会珠, 芮昌辉. 草地贪夜蛾对杀虫剂的抗性研究进展[J]. 农药学学报, 2019, 21(4): 401-408. doi: 10.16801/j.issn.1008-7303.2019.0072
WANG Qinqin, CUI Li, WANG Li, LIANG Pei, YUAN Huizhu, RUI Changhui. Research progress on insecticides resistance in fall armyworm, Spodoptera frugiperda[J]. Chinese Journal of Pesticide Science, 2019, 21(4): 401-408. doi: 10.16801/j.issn.1008-7303.2019.0072
Citation: WANG Qinqin, CUI Li, WANG Li, LIANG Pei, YUAN Huizhu, RUI Changhui. Research progress on insecticides resistance in fall armyworm, Spodoptera frugiperda[J]. Chinese Journal of Pesticide Science, 2019, 21(4): 401-408. doi: 10.16801/j.issn.1008-7303.2019.0072

草地贪夜蛾对杀虫剂的抗性研究进展

doi: 10.16801/j.issn.1008-7303.2019.0072
基金项目: 中国农业科学院草地贪夜蛾联合攻关重大科技任务 (Y2019YJ06);国家重点研发计划 (2016YFD0200504)
详细信息
    作者简介:

    王芹芹,女,博士研究生,E-mail:13552316561@163.com

    通讯作者:

    袁会珠,共同通信作者 (Co-author for correspondence),男,博士,研究员,长期从事农药使用技术研究,E-mail:hzhyuan@ippcaas.cn

    芮昌辉,通信作者 (Author for correspondence),男,博士,研究员,主要从事害虫抗药性研究,E-mail:chrui@ippcaas.cn

  • 中图分类号: S481.4; S482.3

Research progress on insecticides resistance in fall armyworm, Spodoptera frugiperda

  • 摘要: 草地贪夜蛾Spodoptera frugiperda (J. E. Smith) 是一种杂食性害虫,原产于美洲热带和亚热带地区,于2019年1月在中国云南省首次被发现后,已迅速向广西、贵州、广东及湖南等地蔓延。草地贪夜蛾寄主广泛,常用化学防治药剂为有机磷类、氨基甲酸酯类和拟除虫菊酯类,田间抗性监测数据显示,其对上述 3 类常用药剂已达中至高等抗性水平。此外,已有研究证明氯菊酯抗性草地贪夜蛾对二嗪类杀虫剂茚虫威无交互抗性;同时已有关于草地贪夜蛾对氟苯虫酰胺和氯虫苯甲酰胺田间和室内抗性的报道,表明其对上述 2 种药剂存在极高的交互抗性风险。草地贪夜蛾的抗药性机理主要涉及表皮穿透性降低、解毒作用增强和靶标敏感性下降等几方面,其中代谢解毒作用增强和靶标敏感性下降是导致草地贪夜蛾对杀虫剂产生抗性的主要机制。文章综述了草地贪夜蛾对传统杀虫剂和新型作用机制杀虫剂的抗性现状及抗性机理等方面的研究进展,以期对当前中国的草地贪夜蛾田间防治及抗性研究和防控提供参考。
  • 图  1  1975—2016年PubMed收录的报道草地贪夜蛾抗药性的文章

    Figure  1.  Literatures indexed by PubMed on insecticide resistance of S. frugiperda between 1975 and 2016

  • [1] CRUZ I, TURPIN F T. Yield impact of larval infestations of the fall armyworm (Lepidoptera: Noctuidae) to midwhorl growth stage of corn[J]. J Econ Entomol, 1983, 76(5): 1052-1054. doi: 10.1093/jee/76.5.1052
    [2] SPARKS A N. A review of the biology of the fall armyworm[J]. Fla Entomol, 1979, 62(2): 82-87. doi: 10.2307/3494083
    [3] CRUZ I, DE LOURDES CORRÊA FIGUEIREDO M, DA SILVA R B, et al. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize[J]. Int J Pest Manage, 2012, 58(1): 83-90. doi: 10.1080/09670874.2012.655702
    [4] PROWELL D P, MCMICHAEL M, SILVAIN J F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 2004, 97(5): 1034-1044. doi: 10.1603/0013-8746(2004)097[1034:MGAOHU]2.0.CO;2
    [5] PASHLEY D P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex?[J]. Ann Entomol Soc Am, 1986, 79(6): 898-904. doi: 10.1093/aesa/79.6.898
    [6] PASHLEY D P. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm[J]. Evolution, 1988, 42(1): 93-102.
    [7] SALDAMANDO C I, VELEZ-ARANGO A M. Host plant association and genetic differentiation of corn and rice strains of Spodoptera frugiperda smith (Lepidoptera: Noctuidae) in Colombia[J]. Neotrop Entomol, 2010, 39(6): 921-929. doi: 10.1590/S1519-566X2010000600012
    [8] PASHLEY D P, HAMMOND A M, HARDY T N. Reproductive isolating mechanisms in fall armyworm host strains (Lepidoptera: Noctuidae)[J]. Ann Entomol Soc Am, 1992, 85(4): 400-405. doi: 10.1093/aesa/85.4.400
    [9] ADAMCZYK JR J J, HOLLOWAY J W, LEONARD B R, et al. Susceptibility of fall armyworm collected from different plant hosts to selected insecticides and transgenic Bt cotton[J]. J Cotton Sci, 1997, 1(1): 21-28.
    [10] INGBER D A, MASON C E, FLEXNER L. Cry1 Bt susceptibilities of fall armyworm (Lepidoptera: Noctuidae) host strains[J]. J Econ Entomol, 2018, 111(1): 361-368. doi: 10.1093/jee/tox311
    [11] JAMES C. Global status of commercialized biotech/GM crops. 2015[EB/OL]. [2019-06-20]. http://www.isaaa.org/resources/publications/briefs/51/default.asp.
    [12] TABASHNIK B E, BRÉVAUL T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nat Biotechnol, 2013, 31(6): 510-521. doi: 10.1038/nbt.2597
    [13] CARRIÈRE Y, CRICKMORE N, TABASHNIK B E. Optimizing pyramided transgenic Bt crops for sustainable pest management[J]. Nat Biotechnol, 2015, 33(2): 161-168. doi: 10.1038/nbt.3099
    [14] STORER N P, BABCOCK J M, SCHLENZ M, et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico[J]. J Econ Entomol, 2010, 103(4): 1031-1038. doi: 10.1603/EC10040
    [15] OMOTO C, BERNARDI O, SALMERON E, et al. Field‐evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil[J]. Pest Manag Sci, 2016, 72(9): 1727-1736. doi: 10.1002/ps.2016.72.issue-9
    [16] FARIAS J R, ANDOW D A, HORIKOSHI R J, et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil[J]. Crop Prot, 2014, 64: 150-158. doi: 10.1016/j.cropro.2014.06.019
    [17] HUANG F N, QURESHI J A, MEAGHER JR R L, et al. Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize[J]. PLoS One, 2014, 9(11): e112958. doi: 10.1371/journal.pone.0112958
    [18] LI G P, REISIG D, MIAO J, et al. Frequency of Cry1F non-recessive resistance alleles in North Carolina field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae)[J]. PLoS One, 2016, 11(4): e0154492. doi: 10.1371/journal.pone.0154492
    [19] HUANG F N, QURESHI J A, HEAD G P, et al. Frequency of Bacillus thuringiensis Cry1A.105 resistance alleles in field populations of the fall armyworm, Spodoptera frugiperda, in Louisiana and Florida[J]. Crop Prot, 2016, 83: 83-89. doi: 10.1016/j.cropro.2016.01.019
    [20] YANG F, KERNS D L, HEAD G P, et al. Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda[J]. Pest Manag Sci, 2017, 73(12): 2495-2503. doi: 10.1002/ps.2017.73.issue-12
    [21] 赵胜园, 孙小旭, 张浩文, 等. 常用化学杀虫剂对草地贪夜蛾防效的室内测定[J]. 植物保护, 2019, 45(3): 10-14.

    ZHAO S Y, SUN X X, ZHANG H W, et al. Laboratory test on the control efficacy of common chemical insecticides against Spodoptera frugiperda[J]. Plant Protection, 2019, 45(3): 10-14.
    [22] 张磊, 靳明辉, 张丹丹, 等. 入侵云南草地贪夜蛾的分子鉴定[J]. 植物保护, 2019, 45(2): 19-24.

    ZHANG L, JIN M H, ZHANG D D, et al. Molecular identification of invasive fall armyworm Spodoptera frugiperda in Yunnan Province[J]. Plant Protection, 2019, 45(2): 19-24.
    [23] 李永平, 张帅, 王晓军, 等. 草地贪夜蛾抗药性现状及化学防治策略[J]. 植物保护, 2019, 45(4): 14-19.

    LI Y P, ZHANG S, WANG X J, et al. Current status of insecticide resistance in Spodoptera frugiperda and strategies for its chemical control[J]. Plant Protection, 2019, 45(4): 14-19.
    [24] 崔丽, 芮昌辉, 李永平, 等. 国外草地贪夜蛾化学防治技术的研究与应用[J]. 植物保护, 2019, 45(4): 7-13.

    CUI L, RUI C H, LI Y P, et al. Research and application of chemical control technology against Spodoptera frugiperda (Lepidoptera: Noctuidae) in foreign countries[J]. Plant Protection, 2019, 45(4): 7-13.
    [25] WOOD K A, WILSON B H, GRAVES J B. Influence of host plant on the susceptibility of the fall armyworm to insecticides[J]. J Econ Entomol, 1981, 74(1): 96-98. doi: 10.1093/jee/74.1.96
    [26] YU S J. Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 1991, 39(1): 84-91. doi: 10.1016/0048-3575(91)90216-9
    [27] YU S J, NGUYEN S N, ABO-ELGHAR G E. Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 2003, 77(1): 1-11. doi: 10.1016/S0048-3575(03)00079-8
    [28] YU S J, MCCORD JR E. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidae)[J]. Pest Manag Sci, 2007, 63(1): 63-67. doi: 10.1002/(ISSN)1526-4998
    [29] GUTIÉRREZ-MORENO R, MOTA-SANCHEZ D, BLANCO C A, et al. Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico[J]. J Econ Entomol, 2019, 112(2): 792-802. doi: 10.1093/jee/toy372
    [30] YOUNG J R, MCMILLIAN W W. Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces[J]. J Econ Entomol, 1979, 72(2): 202-203. doi: 10.1093/jee/72.2.202
    [31] CARPENTER J E, YOUNG J R. Interaction of inherited sterility and insecticide resistance in the fall armyworm (Lepidoptera: Noctuidae)[J]. J Econ Entomol, 1991, 84(1): 25-27. doi: 10.1093/jee/84.1.25
    [32] MCCAFFERY A R, KING A B S, WALKER A J, et al. Resistance to synthetic pyrethroids in the bollworm, Heliothis armigera from Andhra Pradesh, India[J]. Pest Manag Sci, 1989, 27(1): 65-76. doi: 10.1002/ps.v27:1
    [33] WHALON M E, MOTA-SANCHEZ D, HOLLINGWORTH R M. The arthropod pesticide resistance database[DB/OL]. Michigan State University, [2019-06-25]. https://www.pesticideresistance.org/search.php.
    [34] HUANG F N, ANDOW D A, BUSCHMAN L L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America[J]. Entomol Exp Appl, 2011, 140(1): 1-16. doi: 10.1111/eea.2011.140.issue-1
    [35] ZHU Y C, BLANCO C A, PORTILLA M, et al. Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda[J]. Pestic Biochem Physiol, 2015, 122: 15-21. doi: 10.1016/j.pestbp.2015.01.007
    [36] BELAY D K, HUCKABA R M, FOSTER J E. Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at santa isabel, Puerto Rico, to different insecticides[J]. Fla Entomol, 2012, 95(2): 476-478. doi: 10.1653/024.095.0232
    [37] LI Y X, MAO M Z, LI Y M, et al. Modulations of high-voltage activated Ca2+ channels in the central neurones of Spodoptera exigua by chlorantraniliprole[J]. Physiol Entomol, 2011, 36(3): 230-234. doi: 10.1111/pen.2011.36.issue-3
    [38] BOLZAN A, PADOVEZ F E, NASCIMENTO A R, et al. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides[J/OL]. Pest Manag Sci, (2019-03-25)[2019-06-20]. https://www.x-mol.com/paper/5384943.
    [39] COLES W. CABI warns of rapid spread of crop-devastating fall armyworm across Asia, 2018[DB/OL]. [2019-06-25]. https://www.freshplaza.com/article/198827/CABI-warns-of-rapid-spread-of-crop-devastating-fall-armyworm-across-Asia.
    [40] SISAY B, TEFERA T, WAKGARI M, et al. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize[J]. Insects, 2019, 10(2): 45. doi: 10.3390/insects10020045
    [41] 王建军, 董红刚, 袁林泽. 斜纹夜蛾对茚虫威的抗药性汰选及交互抗性测定[J]. 植物保护学报, 2008, 35(6): 525-529. doi: 10.3321/j.issn:0577-7518.2008.06.009

    WANG J J, DONG H G, YUAN L Z. Selection for indoxacarb resistance in Spodoptera litura and investigation on cross-resistance in the selected population[J]. Acta Phytophylacica Sinica, 2008, 35(6): 525-529. doi: 10.3321/j.issn:0577-7518.2008.06.009
    [42] 王伟. 甜菜夜蛾对茚虫威的抗性风险评估及抗性机理研究[D]. 泰安: 山东农业大学, 2011.

    WANG W. Risk assessment and resistance mechanism to indoxacarb in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)[D]. Taian: Shandong Agricultural University, 2011.
    [43] 王芹芹, 崔丽, 王奇渊, 等. 棉铃虫对茚虫威的抗性机理: PBO, DEF 和 DEM 的增效作用及解毒酶活性[J]. 昆虫学报, 2017, 60(8): 912-919.

    WANG Q Q, CUI L, WANG Q Y, et al. Mechanisms of resistance to indoxacarb in Helicoverpa armigera (Lepidoptera: Noctuidae): the synergistic effects of PBO, DEF and DEM and the activities of detoxification enzymes[J]. Acta Entomologica Sinica, 2017, 60(8): 912-919.
    [44] TEIXEIRA L A, ANDALORO J T. Diamide insecticides: global efforts to address insect resistance stewardship challenges[J]. Pestic Biochem Physiol, 2013, 106(3): 76-78. doi: 10.1016/j.pestbp.2013.01.010
    [45] MCCORD JR E, YU S J. The mechanisms of carbaryl resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)[J]. Pestic Biochem Physiol, 1987, 27(1): 114-122. doi: 10.1016/0048-3575(87)90103-9
    [46] DUMAS D P, WILD J R, RAUSHEL F M. Expression of Pseudomonas phosphotriesterase activity in the fall armyworm confers resistance to insecticides[J]. Experientia, 1990, 46(7): 729-731. doi: 10.1007/BF01939948
    [47] YU S J. Detection and biochemical characterization of insecticide resistance in fall armyworm (Lepidoptera: Noctuidae)[J]. J Econ Entomol, 1992, 85(3): 675-682. doi: 10.1093/jee/85.3.675
    [48] HANNA M A, ATALLAH Y H. Penetration and biodegradation of carbaryl in susceptible and resistant strains of the Egyptian cotton leafworm[J]. J Econ Entomol, 1971, 64(6): 1391-1394. doi: 10.1093/jee/64.6.1391
    [49] IWATA T, HAMA H. Insensitivity of cholinesterase in Nephotettix cincticeps resistant to carbamate and organophosphorus insecticides[J]. J Econ Entomol, 1972, 65(3): 643-644. doi: 10.1093/jee/65.3.643
    [50] VOSS G. Cholinesterase autoanalysis: a rapid method for biochemical studies on susceptible and resistant insects[J]. J Econ Entomol, 1980, 73(2): 189-192. doi: 10.1093/jee/73.2.189
    [51] CORDÓN-ROSALES C, BEACH R F, BROGDON W G. Field evaluation of methods for estimating carbamate resistance in Anopheles albimanus mosquitos from a microplate assay for insensitive acetylcholinesterase[J]. Bull World Health Organ, 1990, 68(3): 323-329.
    [52] YANG M L, ZHANG J Z, ZHU K Y, et al. Increased activity and reduced sensitivity of acetylcholinesterase associated with malathion resistance in a field population of the oriental migratory locust, Locusta migratoria manilensis (Meyen)[J]. Pestic Biochem Physiol, 2008, 91(1): 32-38. doi: 10.1016/j.pestbp.2007.12.004
    [53] QI S Z, CASIDA J E. Species differences in chlorantraniliprole and flubendiamide insecticide binding sites in the ryanodine receptor[J]. Pestic Biochem Physiol, 2013, 107(3): 321-326. doi: 10.1016/j.pestbp.2013.09.004
    [54] QI S Z, LÜMMEN P, NAUEN R, et al. Diamide insecticide target site specificity in the heliothis and musca ryanodine receptors relative to toxicity[J]. J Agric Food Chem, 2014, 62(18): 4077-4082. doi: 10.1021/jf501236h
    [55] BOAVENTURA D, BOLZAN A, PADOVEZ F E, et al. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda[J/OL]. Pest Manag Sci,(2019-07-08)[2019-07-10]. https://www.x-mol.com/paper/5711146.
    [56] ZUO Y Y, WANG H, XU Y J, et al. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides[J]. Insect Biochem Mol Biol, 2017, 89: 79-85. doi: 10.1016/j.ibmb.2017.09.005
    [57] 李富根, 艾国民, 李友顺, 等. 茚虫威的作用机制与抗性研究进展[J]. 农药, 2013, 52(8): 558-560.

    LI F G, AI G M, LI Y S, et al. Progress on mechanism of action and insecticide resistance of the oxadiazine indoxacarb in insects[J]. Agrochemicals, 2013, 52(8): 558-560.
    [58] 王建军, 董红刚. 新型高效杀虫剂茚虫威毒理学研究进展[J]. 植物保护, 2009, 35(3): 20-22. doi: 10.3969/j.issn.0529-1542.2009.03.005

    WANG J J, DONG H G. Advances in toxicology of the novel insecticide indoxacarb[J]. Plant Protection, 2009, 35(3): 20-22. doi: 10.3969/j.issn.0529-1542.2009.03.005
  • 加载中
图(1)
计量
  • 文章访问数:  5478
  • HTML全文浏览量:  2195
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 录用日期:  2019-07-31
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回