• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致病杆菌属细菌代谢物抑菌活性研究进展

韩云飞 他永全 王勇 冯俊涛 王永红

韩云飞, 他永全, 王勇, 冯俊涛, 王永红. 致病杆菌属细菌代谢物抑菌活性研究进展[J]. 农药学学报, 2022, 24(2): 217-231. doi: 10.16801/j.issn.1008-7303.2021.0192
引用本文: 韩云飞, 他永全, 王勇, 冯俊涛, 王永红. 致病杆菌属细菌代谢物抑菌活性研究进展[J]. 农药学学报, 2022, 24(2): 217-231. doi: 10.16801/j.issn.1008-7303.2021.0192
HAN Yunfei, TA Yongquan, WANG Yong, FENG Juntao, WANG Yonghong. Advances in antimicrobial substances from genus Xenorhabdus[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 217-231. doi: 10.16801/j.issn.1008-7303.2021.0192
Citation: HAN Yunfei, TA Yongquan, WANG Yong, FENG Juntao, WANG Yonghong. Advances in antimicrobial substances from genus Xenorhabdus[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 217-231. doi: 10.16801/j.issn.1008-7303.2021.0192

致病杆菌属细菌代谢物抑菌活性研究进展

doi: 10.16801/j.issn.1008-7303.2021.0192
基金项目: 国家自然科学基金(32072474);国家重点研发计划(2017YFD0201203).
详细信息
    作者简介:

    韩云飞,hanyunfei@nwafu.edu.cn

    通讯作者:

    王永红,yhwang@nwafu.edu.cn.

  • 中图分类号: S476.1;S482.292

Advances in antimicrobial substances from genus Xenorhabdus

Funds: the National Natural Science Foundation of China (32072474), the National Key Research and Development Program of China (2017YFD0201203).
  • 摘要: 致病杆菌属 (Xenorhabdus) 细菌是一类存在于昆虫病原线虫肠道内的共生菌,能够产生多种具有不同生物活性的次级代谢产物,其中一些化合物具有开发成为新农药的潜力。本文综述了致病杆菌属细菌中可产生抑菌活性物质的代表性菌株,较为全面地总结了近几十年来在致病杆菌属细菌代谢物中发现的抑菌活性化合物;对致病杆菌属细菌产生的部分抑菌活性化合物的抑菌作用机理进行了讨论,认为影响蛋白质合成是某些化合物发挥抑菌作用的重要途径。基于抑菌活性化合物的生物合成途径及相关调控因子,总结了从致病杆菌属细菌代谢物中发掘新化合物和提高特定活性化合物产量的方法。针对现阶段致病杆菌属细菌及其次级代谢产物研究应用中存在的问题提出了相应的对策,并简要概述了未来致病杆菌属细菌的研究发展方向。本文可为如何合理有效利用致病杆菌属细菌活性代谢物提供参考,对于促进致病杆菌属细菌及其次级代谢产物的应用具有重要意义。
  • 图  1  嗜线虫致病杆菌YL001初生型菌株在NBTA培养基上的形态特征

    Figure  1.  Characteristics of primary phenotypic X. nematophila YL001 on NBTA medium

    图  2  致病杆菌属细菌产生的抑菌活性化合物 (1~25)

    Figure  2.  Antimicrobial compounds (1-25) produced by genus Xenorhabdus

    图  3  致病杆菌属细菌产生的多肽类抑菌活性化合物 (26~54)

    Figure  3.  Polypeptide antimicrobial compounds (26-54) produced by genus Xenorhabdus

    图  4  致病杆菌属细菌产生的酰胺类及其他抑菌活性化合物 (55~64)

    Figure  4.  Amides and others antimicrobial compounds (55-64) produced by genus Xenorhabdus

    表  1  致病杆菌属细菌发酵液的抑菌活性

    Table  1.   Antimicrobial activities of the fermentation liquid of genus Xenorhabdus

    菌株     
    Strains     
    菌株发现地  
    Places of Xenorhabdus discovered  
    抑菌谱 
    Bacteriostatic spectrum 
    文献
    References
    伯氏致病杆菌 YL002
    Xenorhabdus bovienii YL002
    中国杨凌
    Yangling, China
    真菌、细菌、卵菌
    Fungi, bacteria, oomycetes
    [11]
    Xenorhabdus budapestensis C72 中国北京
    Beijing, China
    真菌
    Fungi
    [27]
    Xenorhabdus cabanillasii 土耳其
    Turkey
    真菌
    Fungi
    [28]
    Xenorhabdus doucetiae IBSC n15 巴西
    Brazil
    真菌
    Fungi
    [29]
    Xenorhabdus khoisanae J194 南非
    South Africa
    细菌
    Bacteria
    [30]
    Xenorhabdus khoisanae SB10 南非
    South Africa
    真菌、细菌
    Fungi, bacteria
    [31]
    嗜线虫致病杆菌 CB6
    Xenorhabdus nematophila CB6
    中国北京
    Beijing, China
    真菌、细菌、卵菌
    Fungi, bacteria, oomycetes
    [14, 32]
    嗜线虫致病杆菌 YL001
    Xenorhabdus nematophila YL001
    中国杨凌
    Yangling, China
    真菌、细菌、卵菌
    Fungi, bacteria, oomycetes
    [11, 17]
    Xenorhabdus romanii CER129 巴西
    Brazil
    真菌
    Fungi
    [29]
    Xenorhabdus sp. strain Q1 澳大利亚
    Australia
    真菌、细菌
    Fungi, bacteria
    [4]
    Xenorhabdus szentirmaii DSM 16338 阿根廷
    Argentina
    真菌
    Fungi
    [33]
    下载: 导出CSV
  • [1] BOOYSEN E, DICKS L M T. Does the future of antibiotics lie in secondary metabolites produced by Xenorhabdus spp. ? A review[J]. Probiotics Antimicro, 2020, 12(4): 1310-1320. doi: 10.1007/s12602-020-09688-x
    [2] 张兴, 马志卿, 冯俊涛, 等. 中国生物农药70年发展历程与展望[J]. 中国农药, 2019(10): 73-83.

    ZHANG X, MA Z Q, FENG J T, et al. Review and prospect of biopesticides in China in the past 70 years[J]. J China Agrochem, 2019(10): 73-83.
    [3] 刘刚, 杨传新, 刘子昂, 等. 生物农药在我国小麦病虫害防治中的登记情况、研究现状及发展建议[J]. 农药科学与管理, 2020, 41(2): 15-20. doi: 10.3969/j.issn.1002-5480.2020.02.005

    LIU G, YANG C X, LIU Z A, et al. Registration, research status and development suggestions of biopesticides in control of wheat diseases and insect pests in China[J]. Pestic Sci Adm, 2020, 41(2): 15-20. doi: 10.3969/j.issn.1002-5480.2020.02.005
    [4] MCINERNEY B V, TAYLOR W C, LACEY M J, et al. Biologically active metabolites from Xenorhabdus spp., part 2. benzopyran-1-one derivatives with gastroprotective activity[J]. J Nat Prod, 1991, 54(3): 785-795. doi: 10.1021/np50075a006
    [5] MOLLAH M M I, ROY M C, CHOI D Y, et al. Variations of indole metabolites and NRPS-PKS loci in two different virulent strains of Xenorhabdus hominickii[J]. Front Microbiol, 2020, 11: 583594. doi: 10.3389/fmicb.2020.583594
    [6] CEVIZCI D, ULUG D, CIMEN H R, et al. Mode of entry of secondary metabolites of the bacteria Xenorhabdus szentirmaii and X. nematophila into Tetranychus urticae, and their toxicity to the predatory mites Phytoseiulus persimilis and Neoseiulus californicus[J]. J Invertebr Pathol, 2020, 174: 107418. doi: 10.1016/j.jip.2020.107418
    [7] INCEDAYI G, CIMEN H R, ULUG D, et al. Relative potency of a novel acaricidal compound from Xenorhabdus, a bacterial genus mutualistically associated with entomopathogenic nematodes[J]. Sci Rep, 2021, 11(1): 11253. doi: 10.1038/s41598-021-90726-1
    [8] BI Y H, GAO C Z, YU Z G. Rhabdopeptides from Xenorhabdus budapestensis SN84 and their nematicidal activities against Meloidogyne incognita[J]. J Agric Food Chem, 2018, 66(15): 3833-3839. doi: 10.1021/acs.jafc.8b00253
    [9] ERKOC P, SCHMITT M, INGELFINGER R, et al. Xenocoumacin 2 reduces protein biosynthesis and inhibits inflammatory and angiogenesis-related processes in endothelial cells[J]. Biomed Pharmacother, 2021, 140: 111765. doi: 10.1016/j.biopha.2021.111765
    [10] 庞在堂, 杨怀文. 昆虫病原线虫共生菌的分类[J]. 微生物学报, 2003, 43(4): 527-533. doi: 10.3321/j.issn:0001-6209.2003.04.022

    PANG Z T, YANG H W. Taxonomy of entomopathogenic nematophilic bacteria[J]. Acta Microbiol Sin, 2003, 43(4): 527-533. doi: 10.3321/j.issn:0001-6209.2003.04.022
    [11] 王永宏. 昆虫病原线虫共生菌培养与活性研究[D]. 杨凌: 西北农林科技大学, 2004.

    WANG Y H. Studies on the bioactivity and culture of bacterial symbiont of entomopathogenic nematodes[D]. Yangling: Northwest A&F University, 2004.
    [12] 黄武仁, 朱昌雄, 杨秀芬, 等. 嗜线虫致病杆菌代谢产物 CB6-1 的分离、纯化与结构鉴定[J]. 中国抗生素杂志, 2005, 30(9): 513-515. doi: 10.3969/j.issn.1001-8689.2005.09.001

    HUANG W R, ZHU C X, YANG X F, et al. Isolation and structural identification of main component CB6-1 produced by Xenorhabdus nematophilus var. Pekingensis[J]. Chin J Antibiot, 2005, 30(9): 513-515. doi: 10.3969/j.issn.1001-8689.2005.09.001
    [13] 庞在堂. 致病杆菌属 CB6 菌株的鉴定及菌株选育的初探[D]. 北京: 中国农业科学院, 2002.

    PANG Z T. Identification of Xenorhabdus sp. CB6 and preliminary study on the strain improvement[D]. Beijing: Chinese Academy of Agricultural Sciences, 2002.
    [14] ZHOU T, ZENG H, QIU D, et al. Global transcriptional responses of Bacillus subtilis to xenocoumacin 1[J]. J Appl Microbiol, 2011, 111(3): 652-662. doi: 10.1111/j.1365-2672.2011.05086.x
    [15] GUO S Q, ZHANG S J, FANG X L, et al. Regulation of antimicrobial activity and xenocoumacins biosynthesis by pH in Xenorhabdus nematophila[J]. Microb Cell Fact, 2017, 16(1): 203. doi: 10.1186/s12934-017-0813-7
    [16] GUO S Q, WANG Z Y, LIU B L, et al. Effects of cpxR on the growth characteristics and antibiotic production of Xenorhabdus nematophila[J]. Microb Biotechnol, 2019, 12(3): 447-458. doi: 10.1111/1751-7915.13362
    [17] ZHANG S J, LIU Q, HAN Y F, et al. Nematophin, an antimicrobial dipeptide compound from Xenorhabdus nematophila YL001 as a potent biopesticide for Rhizoctonia solani control[J]. Front Microbiol, 2019, 10: 1765. doi: 10.3389/fmicb.2019.01765
    [18] ZHANG S J, FANG X L, TANG Q, et al. CpxR negatively regulates the production of Xenocoumacin 1, a dihydroisocoumarin derivative produced by Xenorhabdus nematophila[J]. MicrobiologyOpen, 2019, 8(2): e00674. doi: 10.1002/mbo3.674
    [19] 高江涛. 异香豆素类抗生素 Xenocoumacin 1 发酵工艺及制剂研究[D]. 杨凌: 西北农林科技大学, 2019.

    GAO J T. Studies on fermentation process and preparation technique of isocoumarin antibiotic Xenocoumacin 1[D]. Yangling: Northwest A&F University, 2019.
    [20] 于峰. 昆虫病原线虫共生菌的分离鉴定及次生代谢产物的研究[D]. 沈阳: 沈阳农业大学, 2018.

    YU F. Isolation, identification and the secondary metabolites of the symbiotic bacteria from entomopathogenic nematodes[D]. Shenyang: Shenyang Agricultural University, 2018.
    [21] 王大业. 嗜线虫致病杆菌 SN313 次生代谢产物及其生物活性研究[D]. 沈阳: 沈阳农业大学, 2020.

    WANG D Y. The research on the secondary metabolites from Xenorhabdus nematophila SN313 and their biological activity[D]. Shenyang: Shenyang Agricultural University, 2020.
    [22] 张文波, 王宁, 姜义仁, 等. 伯氏致病杆菌 SN52 中的二硫吡咯类物质及其生物活性[J]. 天然产物研究与开发, 2017, 29(7): 1091-1095, 1203.

    ZHANG W B, WANG N, JIANG Y R, et al. Dithiolopyrrolone derivatives from Xenorhabdus bovienii SN52 and their antibacterial activity[J]. Nat Prod Res Dev, 2017, 29(7): 1091-1095, 1203.
    [23] 张春珍, 石丹姝, 张文波, 等. 伯氏致病杆菌 SN269 发酵液中 Madumycin Ⅱ 的分离与纯化[J]. 农药学学报, 2016, 18(6): 783-786.

    ZHANG C Z, SHI D S, ZHANG W B, et al. Isolation and purification of Madumycin Ⅱ from fermented broth of Xenorhabdus bovienii SN269[J]. Chin J Pestic Sci, 2016, 18(6): 783-786.
    [24] 文旭, 南宫自艳, 张园, 等. 2 种昆虫病原线虫共生菌的代谢产物对苹果病原菌真菌的抑菌作用[J]. 中国植保导刊, 2012, 32(1): 13-16. doi: 10.3969/j.issn.1672-6820.2012.01.003

    WEN X, NANGONG Z Y, ZHANG Y, et al. Antifungal activity of metabolites from Xenorhabdus nematophila and Photorhabdus luminescens against apple pathogenic fungi[J]. China Plant Prot, 2012, 32(1): 13-16. doi: 10.3969/j.issn.1672-6820.2012.01.003
    [25] 王勤英. 嗜线虫致病杆菌杀虫蛋白的分离纯化及杀虫蛋白基因克隆[D]. 保定: 河北农业大学, 2004.

    WANG Q Y. Purification and gene clone of insecticidal proteins from Xenorhabdus nematophila HB310[D]. Baoding: Hebei Agricultural University, 2004.
    [26] SHAN S J, MA H K, LI Y, et al. Metabolites from symbiotic bacteria of entomopathogenic nematodes have antimicrobial effects against Pythium myriotylum[J]. Eur J Plant Pathol, 2020, 158: 35-44. doi: 10.1007/s10658-020-02053-2
    [27] LI B, KONG L X, QIU D W, et al. Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis[J]. Biol Control, 2021, 158: 104605. doi: 10.1016/j.biocontrol.2021.104605
    [28] HAZIR S, SHAPIRO-ILAN D I, BOCK C H, et al. Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens[J]. Eur J Plant Pathol, 2016, 146(2): 369-381. doi: 10.1007/s10658-016-0923-9
    [29] CHACÓN-OROZCO J G, BUENO C J, SHAPIRO-ILAN D I, et al. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum[J]. Sci Rep, 2020, 10(1): 20649. doi: 10.1038/s41598-020-77472-6
    [30] BOOYSEN E, RAUTENBACH M, STANDER M A, et al. Profiling the production of antimicrobial secondary metabolites by Xenorhabdus khoisanae J194 under different culturing conditions[J]. Front Chem, 2021, 9: 626653. doi: 10.3389/fchem.2021.626653
    [31] DREYER J, RAUTENBACH M, BOOYSEN E, et al. Xenorhabdus khoisanae SB10 produces Lys-rich PAX lipopeptides and a Xenocoumacin in its antimicrobial complex[J]. BMC Microbiol, 2019, 19: 132. doi: 10.1186/s12866-019-1503-x
    [32] DONG Y J, LI X H, DUAN J Q, et al. Improving the yield of Xenocoumacin 1 enabled by in situ product removal[J]. ACS Omega, 2020, 5(32): 20391-20398. doi: 10.1021/acsomega.0c02357
    [33] CIMEN H R, TOURAY M, GULSEN S H, et al. Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii[J]. Appl Microbiol Biotechnol, 2021, 105: 5517-5528. doi: 10.1007/s00253-021-11435-3
    [34] REIMER D, LUXENBURGER E, BRACHMANN A O, et al. A new type of pyrrolidine biosynthesis is involved in the late steps of xenocoumacin production in Xenorhabdus nematophila[J]. Chembiochem, 2009, 10(12): 1997-2001. doi: 10.1002/cbic.200900187
    [35] YANG X F, QIU D W, YANG H W, et al. Antifungal activity of Xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans[J]. World J Microbiol Biotechnol, 2011, 27: 523-528. doi: 10.1007/s11274-010-0485-5
    [36] 张淑静. 基因组分析指导的 Xenorhabdus nematophila YL001 代谢产物 Xenocoumacin 1 的分离、抑菌活性及机理研究[D]. 杨凌: 西北农林科技大学, 2019.

    ZHANG S J. Genomics-guided isolation, bioactivity and mechanism of Xenocoumacin 1, a secondary metabolites from Xenorhabdus nematophila YL001[D]. Yangling: Northwest A&F University, 2019.
    [37] LI J X, CHEN G H, WEBSTER J M, et al. Antimicrobial metabolites from a bacterial symbiont[J]. J Nat Prod, 1995, 58(7): 1081-1086. doi: 10.1021/np50121a016
    [38] 李凤麟, 刘焕赠, 席雪冬, 等. 嗜线虫致病杆菌 SN313 的次生代谢产物及其抑制植物病原真菌活性研究[J]. 农药学学报, 2018, 20(2): 163-168.

    LI F L, LIU H Z, XI X D, et al. Secondary metabolites of Xenorhabdus nematophila SN313 and their inhibitory activities against plant pathogenic fungi[J]. Chin J Pestic Sci, 2018, 20(2): 163-168.
    [39] LI J X, CHEN G H, WEBSTER J M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae)[J]. Can J Microbiol, 1997, 43(8): 770-773. doi: 10.1139/m97-110
    [40] MCINERNEY B V, GREGSON R P, LACEY M J, et al. Biologically active metabolites from Xenorhabdus spp., part 1. dithiolopyrrolone derivatives with antibiotic activity[J]. J Nat Prod, 1991, 54(3): 774-784. doi: 10.1021/np50075a005
    [41] CHEN G H. Antimicrobial activity of the nematode symbionts, Xenorhabdus and Photorhabdus (Enterobacteriaceae), and the discovery of two groups of antimicrobial substances, nematophin and xenorxides[D]. Vancouver: Simon Fraser University, 1996.
    [42] 王菲, 冯爱平. 烟曲霉致病因子的研究进展[J]. 华中医学杂志, 2007, 31(5): 357-359.

    WANG F, FENG A P. Advances in pathogenic factors of Aspergillus fumigatus[J]. Cent China Med J, 2007, 31(5): 357-359.
    [43] LANG G, KALVELAGE T, PETERS A, et al. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus[J]. J Nat Prod, 2008, 71(6): 1074-1077. doi: 10.1021/np800053n
    [44] REIMER D, NOLLMANN F I, SCHULTZ K, et al. Xenortide biosynthesis by entomopathogenic Xenorhabdus nematophila[J]. J Nat Prod, 2014, 77(8): 1976-1980. doi: 10.1021/np500390b
    [45] BÖSZÖRMÉNYI E, ÉRSEK T, FODOR A, et al. Isolation and activity of Xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and Phytophthora nicotianae[J]. J Appl Microbiol, 2009, 107(3): 746-759. doi: 10.1111/j.1365-2672.2009.04249.x
    [46] GUALTIERI M, AUMELAS A, THALER J O. Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila[J]. J Antibiot (Tokyo), 2009, 62: 295-302. doi: 10.1038/ja.2009.31
    [47] FUCHS S W, PROSCHAK A, JASKOLLA T W, et al. Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila[J]. Org Biomol Chem, 2011(9): 3130-3132.
    [48] CRAWFORD J M, KONTNIK R, CLARDY J. Regulating alternative lifestyles in entomopathogenic bacteria[J]. Curr Biol, 2010, 20(1): 69-74. doi: 10.1016/j.cub.2009.10.059
    [49] CRAWFORD J M, PORTMANN C, KONTNIK R, et al. NRPS substrate promiscuity diversifies the xenematides[J]. Org Lett, 2011, 13(19): 5144-5147. doi: 10.1021/ol2020237
    [50] 卢星忠, 石丹姝, 高淳之, 等. 线虫共生菌Xenorhabdus budapestensis SN19 次生代谢产物的分离纯化与结构鉴定[J]. 天然产物研究与开发, 2016, 28(6): 828-832.

    LU X Z, SHI D S, GAO C Z, et al. Isolation and identification of secondary metabolites from Xenorhabdus budapestensis SN19[J]. Nat Prod Res Dev, 2016, 28(6): 828-832.
    [51] XI X D, LU X Z, ZHANG X D, et al. Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium[J]. J Antibiot, 2019, 72: 736-743. doi: 10.1038/s41429-019-0203-y
    [52] PANTEL L, FLORIN T, DOBOSZ-BARTOSZEK M, et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site[J]. Mol Cell, 2018, 70(1): 83-94. doi: 10.1016/j.molcel.2018.03.001
    [53] 刘霞. 昆虫病原线虫共生菌 YL001 菌株的代谢产物及其抑菌活性研究[D]. 杨凌: 西北农林科技大学, 2006.

    LIU X. Studies on the metabolite and antifungal activity of Xenorhabdus nematophila YL001 from entomopathogenic nematodes[D]. Yangling: Northwest A&F University, 2006.
    [54] JI D J, YI Y, KANG G H, et al. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria[J]. FEMS Microbiol Lett, 2004, 239(2): 241-248. doi: 10.1016/j.femsle.2004.08.041
    [55] BRACHMANN A O, FORST S, FURGANI G M, et al. Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii[J]. J Nat Prod, 2006, 69(12): 1830-1832. doi: 10.1021/np060409n
    [56] XU Z Y, XIONG B X, XU J. Chemical investigation of secondary metabolites produced by mangrove endophytic fungus Phyllosticta Capitalensis[J]. Nat Prod Res, 2021, 35(9): 1561-1565. doi: 10.1080/14786419.2019.1656624
    [57] YANG H G, LI J J, CHEN S M, et al. Phenylisotertronic acids from the TCM endophytic fungus Phyllosticta sp[J]. Fitoterapia, 2018, 124: 86-91. doi: 10.1016/j.fitote.2017.10.016
    [58] 刘启. 嗜线虫致病杆菌 YL001 次生代谢产物抑菌活性的分离鉴定及活性评价[D]. 杨凌: 西北农林科技大学, 2018.

    LIU Q. Isolation and identification of antimicrobial ingredients from Xenorhabdus nematophila YL001 secondary metabolites and its biological activities[D]. Yangling: Northwest A&F University, 2018.
    [59] HU Hongbo, XU Yuquan, CHEN Feng, et al. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1-carboxylic acid and pyoluteorin[J]. J Microbiol Biotech, 2005, 15(1): 86-90.
    [60] ZHOU T T, YANG X F, QIU D W, et al. Inhibitory effects of Xenocoumacin 1 on the different stages of Phytophthora capsici and its control effect on Phytophthora blight of pepper[J]. BioControl, 2017, 62(2): 151-160. doi: 10.1007/s10526-016-9779-3
    [61] SVIDRITSKIY E, LING C, ERMOLENKO D N, et al. Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome[J]. Proc Natl Acad Sci USA, 2013, 110(30): 12283-12288. doi: 10.1073/pnas.1304922110
    [62] SVIDRITSKIY E, KOROSTELEV A A. Mechanism of inhibition of translation termination by Blasticidin S[J]. J Mol Biol, 2018, 430(5): 591-593. doi: 10.1016/j.jmb.2018.01.007
    [63] POLIKANOV Y S, OSTERMAN I A, SZAL T, et al. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome[J]. Mol Cell, 2014, 56(4): 531-540. doi: 10.1016/j.molcel.2014.09.020
    [64] ZUMBRUNN C, KRÜSI D, STAMM C, et al. Synthesis and structure-activity relationship of Xenocoumacin 1 and analogues as inhibitors of ribosomal protein synthesis[J]. ChemMedChem, 2021, 16(5): 891-897. doi: 10.1002/cmdc.202000793
    [65] OSTERMAN I A, KHABIBULLINA N F, KOMAROVA E S, et al. Madumycin II inhibits peptide bond formation by forcing the peptidyl transferase center into an inactive state[J]. Nucleic Acids Res, 2017, 45(12): 7507-7514. doi: 10.1093/nar/gkx413
    [66] NEUBACHER N, TOBIAS N J, HUBER M, et al. Symbiosis, virulence and natural-product biosynthesis in entomopathogenic bacteria are regulated by a small RNA[J]. Nat Microbiol, 2020, 5(12): 1481-1489. doi: 10.1038/s41564-020-00797-5
    [67] PARK D, CIEZKI K, HOEVEN R, et al. Genetic analysis of xenocoumacin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila[J]. Mol Microbiol, 2009, 73(5): 938-949. doi: 10.1111/j.1365-2958.2009.06817.x
    [68] 李广悦, 杨秀芬. 嗜线虫致病杆菌抗菌代谢产物Xcn1的研究进展[J]. 中国生物防治学报, 2020, 36(1): 1-8.

    LI G Y, YANG X F. The research progress of secondary metabolite Xcn1 in Xenorhabdus nematophila[J]. Chin J Biol Control, 2020, 36(1): 1-8.
    [69] REIMER D, POS K M, THINES M, et al. A natural prodrug activation mechanism in nonribosomal peptide synthesis[J]. Nat Chem Biol, 2011, 7(12): 888-890. doi: 10.1038/nchembio.688
    [70] WANG Y H, FANG X L, CHENG Y P, et al. Manipulation of pH shift to enhance the growth and antibiotic activity of Xenorhabdus nematophila[J]. J Biomed Biotechnol, 2011, 2011: 672369.
    [71] 李忝珍, 张淑静, 刘启, 等. 渗透压对嗜线虫致病杆菌 YL001 生长及抑菌活性的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(11): 46-54,62.

    LI T Z, ZHANG S J, LIU Q, et al. Effect of osmotic stress on in vitro growth and antimicrobial active constituents of Xenorhabdus nematophila YL001[J]. J Northwest A F Univ (Nat Sci Ed), 2018, 46(11): 46-54,62.
    [72] ENGEL Y, WINDHORST C, LU X J, et al. The global regulators Lrp, LeuO, and HexA control secondary metabolism in entomopathogenic bacteria[J]. Front Microbiol, 2017, 8: 209.
    [73] JUBELIN G, LANOIS A, SEVERAC D, et al. FliZ is a global regulatory protein affecting the expression of flagellar and virulence genes in individual Xenorhabdus nematophila bacterial cells[J]. PLoS Genet, 2013, 9(10): e1003915. doi: 10.1371/journal.pgen.1003915
    [74] CAI X F, CHALLINOR V L, ZHAO L, et al. Biosynthesis of the antibiotic nematophin and its elongated derivatives in entomopathogenic bacteria[J]. Org Lett, 2017, 19(4): 806-809. doi: 10.1021/acs.orglett.6b03796
    [75] WESCHE F, ADIHOU H, WICHELHAUS T A, et al. Synthesis and SAR of the antistaphylococcal natural product nematophin from Xenorhabdus nematophila[J]. Beilstein J Org Chem, 2019, 15: 535-541. doi: 10.3762/bjoc.15.47
    [76] 朱祥, 吴清来, 李俊凯. 吩嗪-1-羧酸及其类似物研究进展[J]. 有机化学, 2019, 39(10): 2744-2758. doi: 10.6023/cjoc201904023

    ZHU X, WU Q L, LI J K. Research progress of phenazine-1-carboxylic acid and its analogue[J]. Chin J Org Chem, 2019, 39(10): 2744-2758. doi: 10.6023/cjoc201904023
    [77] 张易, 李佳, 钟娟, 等. 96 孔板高通量选育嗜线虫致病杆菌高产帕克素菌株[J]. 中国生物防治学报, 2013, 29(3): 437-442.

    ZHANG Y, LI J, ZHONG J, et al. Screening of high yield Pekingmycin-producing strains of Xenorhabdus nematophila var. pekinense by cultivation in 96-well microtiter plates[J]. Chin J Biol Control, 2013, 29(3): 437-442.
    [78] 魏明敏. 抗生素帕克素发酵条件的优化和合成相关基因的初步研究[D]. 西安: 西北大学, 2009.

    WEI M M. Optimization of fermentation conditions and preliminary study on synthesis related genes of antibiotic Pekingmycin[D]. Xi'an: Northwest University, 2009.
    [79] WANG Y H, FANG X L, LI Y P, et al. Effects of constant and shifting dissolved oxygen concentration on the growth and antibiotic activity of Xenorhabdus nematophila[J]. Bioresour Technol, 2010, 101(19): 7529-7536. doi: 10.1016/j.biortech.2010.04.070
    [80] WANG Y H, FENG J T, ZHANG Q, et al. Optimization of fermentation condition for antibiotic production by Xenorhabdus nematophila with response surface methodology[J]. J Appl Microbiol, 2008, 104(3): 735-744. doi: 10.1111/j.1365-2672.2007.03599.x
    [81] WANG Y H, LI Y P, ZHANG Q, et al. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization[J]. Bioresour Technol, 2008, 99(6): 1708-1715. doi: 10.1016/j.biortech.2007.03.053
    [82] LIU J Q, ZHOU H B, YANG Z Y, et al. Rational construction of genome-reduced Burkholderiales chassis facilitates efficient heterologous production of natural products from proteobacteria[J]. Nat Commun, 2021, 12(1): 4347. doi: 10.1038/s41467-021-24645-0
    [83] BODE E, HEINRICH A K, HIRSCHMANN M, et al. Promoter activation in Δhfq mutants as an efficient tool for specialized metabolite production enabling direct bioactivity testing[J]. Angew Chem Int Ed Engl, 2019, 58(52): 18957-18963. doi: 10.1002/anie.201910563
    [84] BOZHÜYÜK K A J, LINCK A, TIETZE A, et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains[J]. Nat Chem, 2019, 11(7): 653-661. doi: 10.1038/s41557-019-0276-z
    [85] ZHUANG L, ZHANG H R. Utilizing cross-species co-cultures for discovery of novel natural products[J]. Curr Opin Biotechnol, 2021, 69: 252-262. doi: 10.1016/j.copbio.2021.01.023
    [86] CHEN J W, ZHANG P Q, YE X Y, et al. The structural diversity of marine microbial secondary metabolites based on co-culture strategy: 2009-2019[J]. Mar Drugs, 2020, 18(9): 449. doi: 10.3390/md18090449
    [87] CHEN T T, ZHOU Y Y, LU Y H, et al. Advances in heterologous biosynthesis of plant and fungal natural products by modular co-culture engineering[J]. Biotechnol Lett, 2019, 41(1): 27-34. doi: 10.1007/s10529-018-2619-z
    [88] SUN Y, LIU W C, SHI X, et al. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis[J]. Microb Cell Fact, 2021, 20: 42. doi: 10.1186/s12934-021-01527-0
    [89] ZHAO L, KAISER M, BODE H B. Rhabdopeptide/Xenortide-like peptides from Xenorhabdus innexi with terminal amines showing potent antiprotozoal activity[J]. Org Lett, 2018, 20(17): 5116-5120. doi: 10.1021/acs.orglett.8b01975
    [90] ZHAO L, CAI X F, KAISER M, et al. Methionine-containing Rhabdopeptide/Xenortide-like peptides from heterologous expression of the biosynthetic gene cluster kj12ABC in Escherichia coli[J]. J Nat Prod, 2018, 81(10): 2292-2295. doi: 10.1021/acs.jnatprod.8b00425
    [91] CRAWFORD J M, PORTMANN C, ZHANG X, et al. Small molecule perimeter defense in entomopathogenic bacteria[J]. Proc Natl Acad Sci USA, 2012, 109(27): 10821-10826. doi: 10.1073/pnas.1201160109
    [92] LIU Y, ZHOU H B, SHEN Q Y, et al. Discovery of polycyclic macrolide Shuangdaolides by heterologous expression of a cryptic trans-AT PKS gene cluster[J]. Org Lett, 2021, 23(17): 6967-6971. doi: 10.1021/acs.orglett.1c02589
    [93] LIN H Z, LYU H N, ZHOU S, et al. Deletion of a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans[J]. Org Biomol Chem, 2018, 16(27): 4973-4976. doi: 10.1039/C8OB01326H
    [94] CHEN H N, SUN T, BAI X P, et al. Genomics-driven activation of silent biosynthetic gene clusters in Burkholderia gladioli by screening recombineering system[J]. Molecules, 2021, 26(3): 700. doi: 10.3390/molecules26030700
    [95] BOZHÜYÜK K A J, FLEISCHHACKER F, LINCK A, et al. De novo design and engineering of non-ribosomal peptide synthetases[J]. Nat Chem, 2018, 10(3): 275-281. doi: 10.1038/nchem.2890
    [96] ZHONG L, DIAO X T, ZHANG N, et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis[J]. Nat Commun, 2021, 12(1): 296. doi: 10.1038/s41467-020-20548-8
    [97] 石延霞, 李宝聚, 杨秀芬, 等. 0.25%帕克素水剂防治黄瓜白粉病的研究[J]. 植物保护, 2004, 30(1): 79-81. doi: 10.3969/j.issn.0529-1542.2004.01.027

    SHI Y X, LI B J, YANG X F, et al. Studies on 0.25% Pekingmycin aqueous solution against cucumber powdery mildew[J]. Plant Prot, 2004, 30(1): 79-81. doi: 10.3969/j.issn.0529-1542.2004.01.027
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  81
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 录用日期:  2021-11-04
  • 网络出版日期:  2021-12-24
  • 刊出日期:  2022-04-10

目录

    /

    返回文章
    返回