• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效叶面沉积的功能化农药递送体系研究进展

赵克非 吴天岳 马悦 李子璐 高玉霞 杜凤沛

赵克非, 吴天岳, 马悦, 李子璐, 高玉霞, 杜凤沛. 高效叶面沉积的功能化农药递送体系研究进展[J]. 农药学学报, 2022, 24(5): 1049-1064. doi: 10.16801/j.issn.1008-7303.2022.0061
引用本文: 赵克非, 吴天岳, 马悦, 李子璐, 高玉霞, 杜凤沛. 高效叶面沉积的功能化农药递送体系研究进展[J]. 农药学学报, 2022, 24(5): 1049-1064. doi: 10.16801/j.issn.1008-7303.2022.0061
ZHAO Kefei, WU Tianyue, MA Yue, LI Zilu, GAO Yuxia, DU Fengpei. Research progress of functionalized carriers in improving the pesticide retention on crop leaves[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1049-1064. doi: 10.16801/j.issn.1008-7303.2022.0061
Citation: ZHAO Kefei, WU Tianyue, MA Yue, LI Zilu, GAO Yuxia, DU Fengpei. Research progress of functionalized carriers in improving the pesticide retention on crop leaves[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1049-1064. doi: 10.16801/j.issn.1008-7303.2022.0061

高效叶面沉积的功能化农药递送体系研究进展

doi: 10.16801/j.issn.1008-7303.2022.0061
基金项目: 科技部重点研发计划(2021YFA0716700);国家自然科学基金(31972315).
详细信息
    作者简介:

    赵克非,zhaokefei@cau.edu.cn

    通讯作者:

    高玉霞,gaoyuxia@cau.edu.cn

    杜凤沛,dufp@cau.edu.cn

  • 中图分类号: TQ450.6

Research progress of functionalized carriers in improving the pesticide retention on crop leaves

Funds: the Ministry of Science and Technology of China (2021YFA0716700); the National Natural Science Foundation of China (31972315).
  • 摘要: 农药在靶标表面的持留与沉积是剂量传递中的重要过程,直接关系到农药剂量传递效率和生态环境安全。目前我国农药在施用过程中界面传递环节损失较大,导致农药利用率低下,因此,如何通过合理的科学手段增加农药的叶面沉积效率,对改善农药流失具有重要的意义,也是当前我国农业发展的重大科技问题之一。近年来,根据有害生物的发生规律、作用特点及环境条件,应运而生了多种高效、安全、经济的功能化药物递送体系,不仅可以通过调控农药的持续释放来延长持效期,又可以提高农药在靶标表面上的沉积与持留,是提高农药有效性与安全性的重要途径。基于此,本文分别从靶标作物表面化学成分与微纳结构两个关键因素出发,综述了功能化载体在改善农药叶面沉积性能方面的研究概况及其发展趋势,并针对功能化载体的制备工艺、拓扑形貌、释放性能、叶面沉积与持留及其靶标生物防效等方面进行了归纳。内容主要包括利用功能分子 (多巴胺、单宁酸、聚乙烯醇、聚乳酸等) 对载体表面进行修饰改性,增加载体与靶标之间的非共价键作用,或者构建具有特殊拓扑形貌的载体 (纤维状、网络状、帽子形等),以此来增加界面传递过程中载体与靶标之间的尺寸效应,减少损失,最终提高农药的叶面沉积性能与剂量释放调控。此外,文章还分析了当前高效叶面沉积功能化载体应用中存在的问题与未来的研究方向,以期为进一步提高农药剂量传递效率开拓新的方向。
  • 图  1  (A) 拟南芥叶表皮横截面扫描电子显微镜图[20];(B) 植物角质层主要结构特征示意图[20];(C~F) 典型靶标作物叶面的宏观与微观图,其中(C, C′)为黄瓜叶片[23]、(D, D′)为玉米叶片、(E, E′)为小麦叶片和(F, F′)为水稻叶片

    Figure  1.  (A) Scanning electron micrograph image of Arabidopsis leaf epidermis[20]; (B) Schematic diagram of the major structural features of the plant cuticle[20]; (C-F) Macroscopic and microcosmic images of typical target crops: (C, C′) cucumber leaf[23], (D, D′) corn leaf, (E, E′) wheat leaf, and (F, F′) rice leaf

    图  2  聚多巴胺包覆阿维菌素微胶囊的形成机理及其茎叶喷雾处理示意图[33]

    Figure  2.  Schematic diagram of formation mechanism and leaf spray treatment for polydopamine coated abamectin microcapsules[33]

    图  3  铜离子配位聚多巴胺改性的介孔二氧化硅纳米载体用于调控农药在靶标叶面的沉积与释放行为[35]

    Figure  3.  Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding[35]

    图  4  (A) 邻苯二酚-聚乙烯醇接枝的阿维菌素叶面高亲和微球P(St-MAA)-Av-Cat的合成路线;(B) 模拟雨水冲刷后阿维菌素微球在黄瓜和西蓝花叶面的持留量[44]

    Figure  4.  (A) Synthesis route of the catechol-g-polyvinyl alcohol grafted avermectin nanoparticles with high foliar affinity; (B) Retention rates of P(St-MAA)-Av, P(St-MAA)-Av-Cat, and commercially available formulations (EW and EC) on the cucumber and broccoli foliage surfaces[44]

    图  5  软凝聚态聚合物纤维素纳米纤维(CNFs)用于农药递送的循环生物经济概念示意图[48]

    Figure  5.  Engineered soft condensed matter polymer cellulose nanofibers (CNFs) for pesticide delivery as a circular bioeconomy concept[48]

    图  6  乙二胺交联的羧甲基纤维素功能化氟虫腈载体ACMCF的制备与作用方式示意图[51]

    Figure  6.  Schematic illustration of the preparation and action mode for the ethanediamine-linked carboxymethylcellulose fipronil carriers ACMCF[51]

    图  7  (A) 磷酸化玉米醇溶蛋白包裹阿维菌素示意图[53];(B) 静电自组装制备阿维菌素功能化载体示意图[54]

    Figure  7.  (A) Illustration of abamectin encapsulated in phosphorylated zein[53]; (B) Schematic illustration of the preparation for abamectin-loaded carriers through electrostatic self-assembly[54]

    图  8  聚甲基丙烯酸缩水甘油酯-丙烯酸共聚物修饰的二氧化硅阿维菌素功能化农药载体的制备与杀虫机理示意图[59]

    Figure  8.  Schematic illustration of the preparation and insecticidal mechanism for the poly (glycidyl methacrylate-co-acrylic acid) grafted mesoporous silica abamectin carriers[59]

    图  9  三种不同官能团修饰的阿维菌素载体与黄瓜叶面之间的相互作用示意图[61]

    Figure  9.  Schematic illustration of the interactions between three functional group modified abamectin carriers and the cucumber foliage[61]

    图  10  (A, B) 红桎木叶面微观结构图[68];(C) 毒死蜱-秸秆灰复合物扫描电子显微镜图[68];(D) 毒死蜱-秸秆灰复合物沉积红桎木叶表面的扫描电子显微镜图[68];(E) 毒死蜱-凹凸棒土复合物LCC的制备过程及其在花生叶表面的黏附示意图[69]

    Figure  10.  (A, B) The microstructures of red flowered loropetalum leaf[68]; (C) SEM image of the BCS-CPF[68]; (D) SEM image of the retention of BCS-CPF on the red flowered loropetalum leaf surface[68]; (E) Schematic diagram of the preparation of loss control chlorpyrifos (LCC) and its adhesion on peanut leaves[69]

    图  11  “挂钩-帽子”拓扑诱导效应用于调控帽子形农药功能化载体(HJCs)与靶标叶面微纳米结构相互作用示意图[74]

    Figure  11.  Schematic of the hanger-hat topology regulation between pesticide-loaded hat-shape carriers (HJCs) and target leaf micro/nano-structures[74]

    图  12  复合功能化农药载体与靶标作物叶面间的多重相互作用示意图[75]

    Figure  12.  Schematic of pesticide-loaded Cat-HSCs formation and retention mechanism on plant leaves[75]

    图  13  高效叶面沉积的功能化农药递送体系汇总示意图

    Figure  13.  Schematic of functionalized carriers in improving the pesticide retention on crop leaves

  • [1] RIZZATI V, BRIAND O, GUILLOU H, et al. Effects of pesticide mixtures in human and animal models: an update of the recent literature[J]. Chem Biol Interact, 2016, 254: 231-246. doi: 10.1016/j.cbi.2016.06.003
    [2] LAMBERTH C, JEANMART S, LUKSCH T, et al. Current challenges and trends in the discovery of agrochemicals[J]. Science, 2013, 341(6147): 742-746. doi: 10.1126/science.1237227
    [3] 中华人民共和国农业农村部. 中国农业年鉴2020[M]. 北京: 中国农业出版社, 2022: 17-20.

    MINISTRY OF AGRICULTURE AND RURAL AFFAIRS OF CHINA. China Agricultural Yearbook 2020[M]. Beijing: China Agriculture Press, 2022: 17-20.
    [4] ROHR J R, BARRETT C B, CIVITELLO D J, et al. Emerging human infectious diseases and the links to global food production[J]. Nat Sustain, 2019, 2(6): 445-456. doi: 10.1038/s41893-019-0293-3
    [5] CRIST E, MORA C, ENGELMAN R. The interaction of human population, food production, and biodiversity protection[J]. Science, 2017, 356(6335): 260-264. doi: 10.1126/science.aal2011
    [6] 张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100

    ZHANG C H, MA Y, DU F P. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chin J Pestic Sci, 2019, 21(5-6): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100
    [7] TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898): 671-677. doi: 10.1038/nature01014
    [8] HUNSCHE M, BRINGE K, SCHMITZ-EIBERGER M, et al. Leaf surface characteristics of apple seedlings, bean seedlings and kohlrabi plants and their impact on the retention and rainfastness of mancozeb[J]. Pest Manag Sci, 2006, 62(9): 839-847. doi: 10.1002/ps.1242
    [9] MOHAMMADINEJAD R, KARIMI S, IRAVANI S, et al. Plant-derived nanostructures: types and applications[J]. Green Chem, 2016, 18(1): 20-52. doi: 10.1039/C5GC01403D
    [10] 张晨辉, 赵欣, 雷津美, 等. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051

    ZHANG C H, ZHAO X, LEI J M, et al. Wettability of Triton X-100 on wheat(Triticum aestivum) leaf surfaces with respect to developmental changes[J]. Acta Phys Chimica Sin, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051
    [11] 徐广春, 顾中言, 徐德进, 等. 稻叶表面特性及雾滴在倾角稻叶上的沉积行为[J]. 中国农业科学, 2014, 47(21): 4280-4290. doi: 10.3864/j.issn.0578-1752.2014.21.013

    XU G C, GU Z Y, XU D J, et al. Characteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination angles[J]. Sci Agric Sin, 2014, 47(21): 4280-4290. doi: 10.3864/j.issn.0578-1752.2014.21.013
    [12] MA Y, GAO Y X, ZHAO K F, et al. Simple, effective, and ecofriendly strategy to inhibit droplet bouncing on hydrophobic weed leaves[J]. ACS Appl Mater Interfaces, 2020, 12(44): 50126-50134. doi: 10.1021/acsami.0c13066
    [13] 孙长娇, 王琰, 赵翔, 等. 纳米农药剂型与其减施增效机理研究进展[J]. 农药学学报, 2020, 22(2): 205-213. doi: 10.16801/j.issn.1008-7303.2020.0058

    SUN C J, WANG Y, ZHAO X, et al. Progress on categories and synergistic mechanism of nanopesticides[J]. Chin J Pestic Sci, 2020, 22(2): 205-213. doi: 10.16801/j.issn.1008-7303.2020.0058
    [14] 陈歌, 许春丽, 徐博, 等. 聚羟基脂肪酸酯作为农药载体的研究进展[J]. 农药学学报, 2019, 21(5-6): 871-882. doi: 10.16801/j.issn.1008-7303.2019.0109

    CHEN G, XU C L, XU B, et al. Research progress of polyhydroxyalkylates as pesticide carriers[J]. Chin J Pestic Sci, 2019, 21(5-6): 871-882. doi: 10.16801/j.issn.1008-7303.2019.0109
    [15] KAMALY N, YAMEEN B, WU J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chem Rev, 2016, 116(4): 2602-2663. doi: 10.1021/acs.chemrev.5b00346
    [16] CAMPOS E V R, DE OLIVEIRA J L, FRACETO L F, et al. Polysaccharides as safer release systems for agrochemicals[J]. Agron Sustain Dev, 2015, 35(1): 47-66. doi: 10.1007/s13593-014-0263-0
    [17] YUSOFF S N M, KAMARI A, ALJAFREE N F A. A review of materials used as carrier agents in pesticide formulations[J]. Int J Environ Sci Technol, 2016, 13(12): 2977-2994. doi: 10.1007/s13762-016-1096-y
    [18] FERNÁNDEZ V, BAHAMONDE H A, JAVIER PEGUERO-PINA J, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance[J]. J Exp Bot, 2017, 68(19): 5293-5306. doi: 10.1093/jxb/erx302
    [19] SERRANO M, COLUCCIA F, TORRES M, et al. The cuticle and plant defense to pathogens[J]. Front Plant Sci, 2014, 5: 274.
    [20] YEATS T H, ROSE J K C. The formation and function of plant cuticles[J]. Plant Physiol, 2013, 163(1): 5-20. doi: 10.1104/pp.113.222737
    [21] 曾琼, 刘德春, 刘勇. 植物角质层蜡质的化学组成研究综述[J]. 生态学报, 2013, 33(17): 5133-5140. doi: 10.5846/stxb201205260781

    ZENG Q, LIU D C, LIU Y. The overview and prospect of chemical composition of plant cuticular wax[J]. Acta Ecol Sin, 2013, 33(17): 5133-5140. doi: 10.5846/stxb201205260781
    [22] HEREDIA-GUERRERO J A, BENÍTEZ J J, DOMÍNGUEZ E, et al. Infrared and Raman spectroscopic features of plant cuticles: a review[J]. Front Plant Sci, 2014, 5: 305.
    [23] WANG Y, WANG A Q, WANG C X, et al. Synthesis and characterization of emamectin-benzoate slow-release microspheres with different surfactants[J]. Sci Rep, 2017, 7: 12761. doi: 10.1038/s41598-017-12724-6
    [24] WU D, WANG J N, WU S Z, et al. Three-level biomimetic rice-leaf surfaces with controllable anisotropic sliding[J]. Adv Funct Mater, 2011, 21(15): 2927-2932. doi: 10.1002/adfm.201002733
    [25] LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems[J]. Nat Rev Mater, 2017, 2: 17036. doi: 10.1038/natrevmats.2017.36
    [26] FENG L, ZHANG Y N, XI J M, et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119. doi: 10.1021/la703821h
    [27] CHEN Y P, MENG J X, GU Z, et al. Bioinspired multiscale wet adhesive surfaces: structures and controlled adhesion[J]. Adv Funct Mater, 2020, 30(5): 1905287. doi: 10.1002/adfm.201905287
    [28] KORD FOROOSHANI P, LEE B P. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein[J]. J Polym Sci Part A Polym Chem, 2017, 55(1): 9-33. doi: 10.1002/pola.28368
    [29] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241
    [30] DENG Z W, SHANG B, PENG B. Polydopamine based colloidal materials: synthesis and applications[J]. Chem Rec, 2018, 18(4): 410-432. doi: 10.1002/tcr.201700051
    [31] XU X H, BAI B, WANG H L, et al. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Appl Mater Interfaces, 2017, 9(7): 6424-6432. doi: 10.1021/acsami.6b15393
    [32] SHENG W B, LI W, LI B, et al. Mussel-inspired photografting on colloidal spheres: a generalized self-template route to stimuli-responsive hollow spheres for controlled pesticide release[J]. Macromol Rapid Commun, 2015, 36(18): 1640-1645. doi: 10.1002/marc.201500239
    [33] JIA X, SHENG W B, LI W, et al. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention[J]. ACS Appl Mater Interfaces, 2014, 6(22): 19552-19558. doi: 10.1021/am506458t
    [34] WEN H J, ZHOU H J, HAO L, et al. Enzyme cum pH dual-responsive controlled release of avermectin from functional polydopamine microcapsules[J]. Colloids Surf B Biointerfaces, 2020, 186: 110699. doi: 10.1016/j.colsurfb.2019.110699
    [35] XU C L, SHAN Y P, BILAL M, et al. Copper ions chelated mesoporous silica nanoparticles via dopamine chemistry for controlled pesticide release regulated by coordination bonding[J]. Chem Eng J, 2020, 395: 125093. doi: 10.1016/j.cej.2020.125093
    [36] ZHANG W B, TANG G, DONG H Q, et al. Targeted release mechanism of λ-cyhalothrin nanocapsules using dopamine-conjugated silica as carrier materials[J]. Colloids Surf B Biointerfaces, 2019, 178: 153-162. doi: 10.1016/j.colsurfb.2019.03.009
    [37] SINGH B, SINGH J P, KAUR A, et al. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: a review[J]. Food Chem, 2018, 261: 75-86. doi: 10.1016/j.foodchem.2018.04.039
    [38] BARTZOKA E D, LANGE H, MOSESSO P, et al. Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery[J]. Green Chem, 2017, 19(21): 5074-5091. doi: 10.1039/C7GC02009K
    [39] LIU Z Q, FAN H Y, LI W, et al. Competitive self-assembly driven as a route to control the morphology of poly(tannic acid) assemblies[J]. Nanoscale, 2019, 11(11): 4751-4758. doi: 10.1039/C8NR07236A
    [40] LI B X, WANG W C, ZHANG X P, et al. Using coordination assembly as the microencapsulation strategy to promote the efficacy and environmental safety of pyraclostrobin[J]. Adv Funct Mater, 2017, 27(29): 1701841. doi: 10.1002/adfm.201701841
    [41] KIM K, SHIN M, KOH M Y, et al. TAPE: a medical adhesive inspired by a ubiquitous compound in plants[J]. Adv Funct Mater, 2015, 25(16): 2402-2410. doi: 10.1002/adfm.201500034
    [42] YU M L, SUN C J, XUE Y M, et al. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Adv, 2019, 9(46): 27096-27104. doi: 10.1039/C9RA05843E
    [43] WANG Y, ZHANG Y J, HAN J M, et al. Improve plant photosynthesis by a new slow-release carbon dioxide gas fertilizer[J]. ACS Omega, 2019, 4(6): 10354-10361. doi: 10.1021/acsomega.8b03086
    [44] LIANG J, YU M L, GUO L Y, et al. Bioinspired development of P(St-MAA)-avermectin nanoparticles with high affinity for foliage to enhance folia retention[J]. J Agric Food Chem, 2018, 66(26): 6578-6584. doi: 10.1021/acs.jafc.7b01998
    [45] CAI J M, HE Y F, YU X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass[J]. Renew Sustain Energy Rev, 2017, 76: 309-322. doi: 10.1016/j.rser.2017.03.072
    [46] YAASHIKAA P R, SENTHIL KUMAR P, VARJANI S J, et al. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants[J]. Bioresour Technol, 2019, 292: 122030. doi: 10.1016/j.biortech.2019.122030
    [47] BECKERS S J, STAAL A H J, ROSENAUER C, et al. Targeted drug delivery for sustainable crop protection: transport and stability of polymeric nanocarriers in plants[J]. Adv Sci (Weinh), 2021, 8(11): e2100067. doi: 10.1002/advs.202100067
    [48] ZHANG C Y, YANG X P, YANG S, et al. Eco-friendly and multifunctional lignocellulosic nanofibre additives for enhancing pesticide deposition and retention[J]. Chem Eng J, 2022, 430: 133011. doi: 10.1016/j.cej.2021.133011
    [49] 张逸婧, 陈海娟, 吕奕, 等. 羧甲基纤维素钠对大豆分离蛋白骨粘合性能的影响[J]. 中国农业科学, 2016, 49(8): 1550-1558. doi: 10.3864/j.issn.0578-1752.2016.08.012

    ZHANG Y J, CHEN H J, LÜ Y, et al. Effects of sodium carboxymethyl cellulose on adhesion properties of soybean protein isolate onto Porcine bones[J]. Sci Agric Sin, 2016, 49(8): 1550-1558. doi: 10.3864/j.issn.0578-1752.2016.08.012
    [50] ALI A, AHMED S. A review on chitosan and its nanocomposites in drug delivery[J]. Int J Biol Macromol, 2018, 109: 273-286. doi: 10.1016/j.ijbiomac.2017.12.078
    [51] XIAO D X, LIANG W L, LI Z S, et al. High foliar affinity cellulose for the preparation of efficient and safe fipronil formulation[J]. J Hazard Mater, 2020, 384: 121408. doi: 10.1016/j.jhazmat.2019.121408
    [52] PALIWAL R, PALAKURTHI S. Zein in controlled drug delivery and tissue engineering[J]. J Control Release, 2014, 189: 108-122. doi: 10.1016/j.jconrel.2014.06.036
    [53] HAO L, LIN G Q, CHEN C Y, et al. Phosphorylated zein as biodegradable and aqueous nanocarriers for pesticides with sustained-release and anti-UV properties[J]. J Agric Food Chem, 2019, 67(36): 9989-9999. doi: 10.1021/acs.jafc.9b03060
    [54] HAO L, LIN G Q, LIAN J J, et al. Carboxymethyl cellulose capsulated zein as pesticide nano-delivery system for improving adhesion and anti-UV properties[J]. Carbohydr Polym, 2020, 231: 115725. doi: 10.1016/j.carbpol.2019.115725
    [55] LIN N, HUANG J, DUFRESNE A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review[J]. Nanoscale, 2012, 4(11): 3274-3294. doi: 10.1039/c2nr30260h
    [56] LIU Y, LU K Y, HU X T, et al. Structure, properties and potential applications of phytoglycogen and waxy starch subjected to carboxymethylation[J]. Carbohydr Polym, 2020, 234: 115908. doi: 10.1016/j.carbpol.2020.115908
    [57] XIANG Y B, HAN J, ZHANG G L, et al. Efficient synthesis of starch-regulated porous calcium carbonate microspheres as a carrier for slow-release herbicide[J]. ACS Sustain Chem Eng, 2018, 6(3): 3649-3658. doi: 10.1021/acssuschemeng.7b03973
    [58] GAO Y H, KAZIEM A E, ZHANG Y H, et al. A hollow mesoporous silica and poly(diacetone acrylamide) composite with sustained-release and adhesion properties[J]. Microporous Mesoporous Mater, 2018, 255: 15-22. doi: 10.1016/j.micromeso.2017.07.025
    [59] GAO Y H, ZHANG Y H, HE S, et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide[J]. Chem Eng J, 2019, 364: 361-369. doi: 10.1016/j.cej.2019.01.105
    [60] GAO Y H, XIAO Y N, MAO K K, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chem Eng J, 2020, 383: 123169. doi: 10.1016/j.cej.2019.123169
    [61] YU M L, YAO J W, LIANG J, et al. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention[J]. RSC Adv, 2017, 7(19): 11271-11280. doi: 10.1039/C6RA27345A
    [62] REN J M, MCKENZIE T G, FU Q, et al. Star polymers[J]. Chem Rev, 2016, 116(12): 6743-6836. doi: 10.1021/acs.chemrev.6b00008
    [63] LI J H, QIAN J, XU Y Y, et al. A facile-synthesized star polycation constructed as a highly efficient gene vector in pest management[J]. ACS Sustain Chem Eng, 2019, 7(6): 6316-6322. doi: 10.1021/acssuschemeng.9b00004
    [64] WU W, WANG W G, LI J S. Star polymers: advances in biomedical applications[J]. Prog Polym Sci, 2015, 46: 55-85. doi: 10.1016/j.progpolymsci.2015.02.002
    [65] YAN S, HU Q, LI J H, et al. A star polycation acts as a drug nanocarrier to improve the toxicity and persistence of botanical pesticides[J]. ACS Sustain Chem Eng, 2019, 7(20): 17406-17413. doi: 10.1021/acssuschemeng.9b04567
    [66] 张伟明, 陈温福, 孟军, 等. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究[J]. 中国农业科学, 2019, 52(14): 2406-2424. doi: 10.3864/j.issn.0578-1752.2019.14.003

    ZHANG W M, CHEN W F, MENG J, et al. Study of straw-biochar on utilization potential, industry model and developing strategy in northeast China[J]. Sci Agric Sin, 2019, 52(14): 2406-2424. doi: 10.3864/j.issn.0578-1752.2019.14.003
    [67] BINOD P, SINDHU R, SINGHANIA R R, et al. Bioethanol production from rice straw: an overview[J]. Bioresour Technol, 2010, 101(13): 4767-4774. doi: 10.1016/j.biortech.2009.10.079
    [68] CAI D Q, WANG L H, ZHANG G L, et al. Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica[J]. ACS Appl Mater Interfaces, 2013, 5(18): 9212-9216. doi: 10.1021/am402864r
    [69] XIANG Y B, WANG M, SUN X, et al. Controlling pesticide loss through nanonetworks[J]. ACS Sustain Chem Eng, 2014, 2(4): 918-924. doi: 10.1021/sc400513p
    [70] WANG M, ZHANG G L, ZHOU L L, et al. Fabrication of pH-controlled-release ferrous foliar fertilizer with high adhesion capacity based on nanobiomaterial[J]. ACS Sustain Chem Eng, 2016, 4(12): 6800-6808. doi: 10.1021/acssuschemeng.6b01761
    [71] WANG M, SUN X, ZHONG N Q, et al. Promising approach for improving adhesion capacity of foliar nitrogen fertilizer[J]. ACS Sustain Chem Eng, 2015, 3(3): 499-506. doi: 10.1021/acssuschemeng.5b00064
    [72] FAN Q H, TAN X L, LI J X, et al. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques[J]. Environ Sci Technol, 2009, 43(15): 5776-5782. doi: 10.1021/es901241f
    [73] PAN J M, XU L C, DAI J D, et al. Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2, 4-dichlorophenol[J]. Chem Eng J, 2011, 174(1): 68-75. doi: 10.1016/j.cej.2011.08.046
    [74] ZHAO K F, HU J, MA Y, et al. Topology-regulated pesticide retention on plant leaves through concave Janus carriers[J]. ACS Sustain Chem Eng, 2019, 7(15): 13148-13156. doi: 10.1021/acssuschemeng.9b02319
    [75] ZHAO K F, WANG B, ZHANG C H, et al. Catechol functionalized hat-shape carriers for prolonging pesticide retention and flush resistance on foliage[J]. Chem Eng J, 2021, 420: 127689. doi: 10.1016/j.cej.2020.127689
  • 加载中
图(13)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  19
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 录用日期:  2022-06-26
  • 网络出版日期:  2022-07-05
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回