• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植物病原菌抗药性及其抗性治理策略

刘西莉 苗建强 张灿

刘西莉, 苗建强, 张灿. 植物病原菌抗药性及其抗性治理策略[J]. 农药学学报, 2022, 24(5): 921-936. doi: 10.16801/j.issn.1008-7303.2022.0109
引用本文: 刘西莉, 苗建强, 张灿. 植物病原菌抗药性及其抗性治理策略[J]. 农药学学报, 2022, 24(5): 921-936. doi: 10.16801/j.issn.1008-7303.2022.0109
LIU Xili, MIAO Jianqiang, ZHANG Can. Fungicide resistance and the management strategies[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 921-936. doi: 10.16801/j.issn.1008-7303.2022.0109
Citation: LIU Xili, MIAO Jianqiang, ZHANG Can. Fungicide resistance and the management strategies[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 921-936. doi: 10.16801/j.issn.1008-7303.2022.0109

植物病原菌抗药性及其抗性治理策略

doi: 10.16801/j.issn.1008-7303.2022.0109
基金项目: 农业部公益性农业行业专项 (201303023);国家自然科学基金重点项目 (31730075).
详细信息
    通讯作者:

    刘西莉,seedling@cau.edu.cn

  • 中图分类号: S481.4

Fungicide resistance and the management strategies

Funds: The Special Fund for Agro-scientific Research in the Public Interest (201303023); National Natural Science Foundation of China (31730075).
  • 摘要: 随着现代高活性的选择性杀菌剂的研发和广泛使用,病原菌的抗药性问题日趋严重,这已成为植物病害化学保护领域最受关注的问题之一。本文阐释了抗药性相关术语的定义,概述了病原菌的抗药性现状,并从自然选择和诱导突变两种学说的角度分析了抗药性产生的原因。进一步分析了抗药性群体流行与病原菌自身特点、杀菌剂类型和作用机制等影响因子密切相关,综述了抗药性风险评估、抗药性机制、抗药性进化以及抗药性常规和分子检测方法等内容。最后,提出了抗药性治理的目标和策略,即根据抗药病原群体形成的主要影响因素,针对性地设计抗药性治理短期和长期策略,特别是需进一步加强对新药剂和新防治对象开展抗药性风险评估、制定抗药性管理策略、建立再评价机制等。综上,明确植物病原菌抗药性发生发展特点并制定科学合理的抗性治理策略,对进一步开展植物病害的科学防控具有重要的参考价值。
  • 图  1  辣椒疫霉菌PsCesA3上4种导致CAA类杀菌剂抗性的点突变[58]

    Figure  1.  Four point mutations of PsCesA3 causing resistance to CAA fungicides in Phytophthora capsici [58]

    图  2  致病疫霉PiORP1上的14种点突变可导致病原菌对OSPBI类杀菌剂的高水平抗性

    Figure  2.  A total of 14 point mutations of PiORP1 causing high-level resistance to OSBPI fungicides in Phytophthora infestans

    图  3  马铃薯晚疫病菌对甲霜灵的抗性进化途径

    (a) RPA190单倍型网络图;(b) 抗性进化途径示意图[66]。SAA和RAAn分别代表来自敏感菌株的氨基酸类型和来自抗性菌株的第n种氨基酸类型。       

    Figure  3.  Evolutionary network of metalaxyl resistance in Phytophthora infestans

    (a) RPA190 haplotype network; (b) schematic evolutionary pathways[66] . SAA: amino acid isoforms from sensitive isolates; RAAn: amino acid isoforms from resistant isolates.

    图  4  大豆疫霉在氟吗啉使用压力下对CAA类杀菌剂的抗性及其CesA3点突变的微进化过程[60]

    Figure  4.  Stepwise evolution of the CesA3 protein and CAA resistance in Phytophthora sojae exposed to flumorph[60]

    图  5  (A) AS-PCR引物在67 ℃时检测大豆疫霉对苯酰菌胺的敏感菌株和抗性突变体情况; (B) 非特异性引物对在敏感菌株和抗性突变体中的扩增情况[99]

    Figure  5.  (A) Amplification results of AS-PCR primers for zoxamide-resistant and -sensitive Phytophthora sojae at 67 ℃; (B) Amplification results of non-specific primers on sensitive strains and resistant mutants[99]

    图  6  快速鉴定辣椒疫霉PcORP1基因核苷酸点突变及其对氟噻唑吡乙酮抗药性的PCR-RFLP方法[15]

    Figure  6.  A PCR-RFLP method for rapid identification of nucleotide point mutations in the PcORP1 gene conferring to oxathiapiprolin resistance in Phytophthora capsici [15]

    图  7  LAMP引物组在68 ℃ 45 min条件下可检测出PcORP1上G700V突变的抗性突变体[103]

    Figure  7.  The LAMP primer set can detect the resistant mutants with G700V mutation in PcORP1 at 68 ℃ for 45 min[103]

    表  1  甲霜灵抗性划分标准

    Table  1.   Metalaxyl-resistance division criteria

    甲霜灵敏感菌株
    metalaxyl-sensitive (MS)
    甲霜灵中抗菌株
    metalaxyl-intermediate (MI)
    甲霜灵高抗菌株
    metalaxyl-resistant (MR)
    文献
    Reference
    10 μg/mL:PG≤10%10 μg/mL:10%<PG<60%10 μg/mL:PG≥60%[96]
    5 μg/mL 下 PG<40% 且 100 μg/mL 下
    PG<40%
    PG<40% at 5 μg/mL and PG<40%
    at 100 μg/mL
    5 μg/mL 下 PG≥40% 且 100 μg/mL 下
    PG<40%
    PG≥40% at 5 μg/mL and PG<40%
    at 100 μg/mL
    5 μg/mL 下 PG≥40% 且 100 μg/mL 下
    PG≥40%
    PG≥40% at 5 μg/mL and PG≥40%
    at 100 μg/mL
    [97]
    注:PG为percent of growth。PG/% =100 × 药剂处理下菌落直径/无药对照菌落直径。
    Note: PG/% = 100 × the diameter of the strain with fungicide treatment/without fungicide treatment.
    下载: 导出CSV
  • [1] DELP C J, DEKKER J. Fungicide resistance: definitions and use of terms[J]. EPPO Bulletin, 1985, 15(3): 333-335. doi: 10.1111/j.1365-2338.1985.tb00237.x
    [2] HORSFALL J G. Principles of fungicidal action[M]. Waltham, Massachusetts: Chronica Botanica Company, 1956.
    [3] DEKKER J. Acquired resistance to fungicides[J]. Annu Rev Phytopathol, 1976, 14(1): 405-428. doi: 10.1146/annurev.py.14.090176.002201
    [4] GEORGOPOULOS S G. Development of fungal resistance to fungicides[J]. Antifungal Compounds, 1977, 2: 439-495.
    [5] COYIER D L, COVEY R P. Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington[J]. Plant Dis Rep, 1975, 59(10): 849-852.
    [6] LACY G H, STROMBERG V K, CANNON N P. Erwinia amylovora mutants and in planta-derived transconjugants resistant to oxytetracycline[J]. Can J Plant Pathol, 1984, 6(1): 33-39. doi: 10.1080/07060668409501588
    [7] ZHU X F, XU Y, PENG D, et al. Detection and characterization of bismerthiazol-resistance of Xanthomonas oryzae pv. oryzae[J]. Crop Prot, 2013, 47: 24-29. doi: 10.1016/j.cropro.2012.12.026
    [8] LYU Q Y, BAI K H, KAN Y M, et al. Variation in streptomycin resistance mechanisms in Clavibacter michiganensis[J]. Phytopathology, 2019, 109(11): 1849-1858. doi: 10.1094/PHYTO-05-19-0152-R
    [9] CHITWOOD D J. Nematicides[M]//Plimmern J R. ed. Encyclopedia of agrochemicals, Vol. 3. New York: John Wiley & Sons, 2003, 1104-1115.
    [10] 李树正. 植物病原菌的抗药性[J]. 农业科技通讯, 1984, 3: 27-28.

    LI S Z. Fungicide resistance of plant pathogens[J]. Agric Sci Lett, 1984, 3: 27-28.
    [11] HAWKINS N J, BASS C, DIXON A, et al. The evolutionary origins of pesticide resistance[J]. Biol Rev Camb Philos Soc, 2018, 94(1): 135-155.
    [12] BRENT K J, HOLLOMON D W. Fungicide resistance: the assessment of risk[M]. Brussels, Belgium: FRAC Monograph No. 2 second, 2007.
    [13] DE MICCOLIS ANGELINI R M, POLLASTRO S, FARETRA F. Genetics of fungicide resistance[M]//ISHII H, HOLLOMON D. eds. Fungicide Resistance in Plant Pathogens. Tokyo: Springer, 2015: 13-34.
    [14] MIKABERIDZE A, MCDONALD B A. Fitness cost of resistance: impact on management[M]//Ishii H, Hollomon D. eds. Fungicide Resistance in Plant Pathogens. Springer, Tokyo. 2015: 77-89.
    [15] MIAO J Q, CAI M, DONG X, et al. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance[J]. Front Microbiol, 2016, 7: 615.
    [16] LUCAS J A, HAWKINS N J, FRAAIJE B A. The evolution of fungicide resistance[J]. Adv Appl Microbiol, 2015, 90: 29-92.
    [17] 农药抗性风险评估 第2部分: 卵菌对杀菌剂抗药性风险评估: NY/T 1859.2—2012[S]. 北京: 中华人民共和国农业部, 2012.

    Risk assessment of pesticide resistance. Part 2: Risk assessment of fungicide resistance in oomycete: NY/T 1859.2—2012[S]. Beijing: Ministry of Agriculture of the People's Republic of China, 2012.
    [18] 农药抗性风险评估 第6部分: 灰霉病菌抗药性风险评估: NY/T 1859.6—2014[S]. 北京: 中华人民共和国农业部, 2014.

    Pesticide resistance risk assessment. Part 6: Fungicide resistance risk assessment in Botrytis cinerea: NY/T 1859.6—2014[S]. Beijing: Ministry of Agriculture of the People's Republic of China, 2014.
    [19] 朱书生, 卢晓红, 陈磊, 等. 羧酸酰胺类(CAAs)杀菌剂研究进展[J]. 农药学学报, 2010, 12(1): 1-12. doi: 10.3969/j.issn.1008-7303.2010.01.01

    ZHU S S, LU X H, CHEN L, et al. Research advances in carboxylic acid amide fungicides[J]. Chin J Pestic Sci, 2010, 12(1): 1-12. doi: 10.3969/j.issn.1008-7303.2010.01.01
    [20] STEFFENS J J, PELL E J, TIEN M. Mechanisms of fungicide resistance in phytopathogenic fungi[J]. Curr Opin Biotechnol, 1996, 7(3): 348-355. doi: 10.1016/S0958-1669(96)80043-7
    [21] MA Z H, MICHAILIDES T J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi[J]. Crop Prot, 2005, 24(10): 853-863. doi: 10.1016/j.cropro.2005.01.011
    [22] RESCHKE M. Strobis in Gefahr[J]. Dlg-Mitteilungen, 1999, 1: 51.
    [23] GISI U, SIEROTZKI H, COOK A, et al. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides[J]. Pest Manag Sci, 2002, 58(9): 859-867. doi: 10.1002/ps.565
    [24] PENG Q, ZHAO H, ZHAO G S, et al. Resistance assessment of pyraoxystrobin in Magnaporthe oryzae and the detection of a point mutation in cyt b that confers resistance[J]. Pestic Biochem Physiol, 2022, 180: 105006. doi: 10.1016/j.pestbp.2021.105006
    [25] PENG Q, FAN J, WANG M, et al. Evaluation of the risk of development of resistance to QoI fungicide ZJ0712 in Podosphaera xanthii under greenhouse conditions[J]. Phytopathol Res, 2022, 4(1): 1-10. doi: 10.1186/s42483-021-00106-w
    [26] SIEROTZKI H, WULLSCHLEGER J, GISI U. Point mutation in cytochrome b gene conferring resistance to strobilurin fungicides in Erysiphe graminis f. sp. tritici field isolates[J]. Pestic Biochem Phys, 2000, 68(2): 107-112. doi: 10.1006/pest.2000.2506
    [27] ISHII H, FRAAIJE B A, SUGIYAMA T, et al. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew[J]. Phytopathology, 2001, 91(12): 1166-1171. doi: 10.1094/PHYTO.2001.91.12.1166
    [28] GISI U, CHIN K M, KNAPOVA G, et al. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides[J]. Crop Prot, 2000, 19(8-10): 863-872. doi: 10.1016/S0261-2194(00)00114-9
    [29] SIEROTZKI H, PARISI S, STEINFELD U, et al. Mode of resistance to respiration inhibitors at the cytochrome bc1 enzyme complex of Mycosphaerella fijiensis field isolates[J]. Pest Manag Sci, 2000, 56(10): 833-841. doi: 10.1002/1526-4998(200010)56:10<833::AID-PS200>3.0.CO;2-Q
    [30] LESNIAK K E, PROFFER T J, BECKERMAN J L, et al. Occurrence of QoI resistance and detection of the G143A mutation in Michigan populations of Venturia inaequalis[J]. Plant Dis, 2011, 95(8): 927-934. doi: 10.1094/PDIS-12-10-0898
    [31] 刘凤华, 马迪成, 张晓敏, 等. 植物病原真菌对甾醇脱甲基抑制剂类杀菌剂抗性分子机制研究进展[J]. 农药学学报, 2022, 24(3): 452-464. doi: 10.16801/j.issn.1008-7303.2022.0008

    LIU F H, MA D C, ZHANG X M, et al. Research progress on molecular resistance mechanism of plant pathogenic fungi to sterol demethylase inhibitors[J]. Chin J Pestic Sci, 2022, 24(3): 452-464. doi: 10.16801/j.issn.1008-7303.2022.0008
    [32] WYAND R A, BROWN J K M. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides[J]. Fungal Genet Biol, 2005, 42(8): 726-735. doi: 10.1016/j.fgb.2005.04.007
    [33] ZHAO Y X, CHI M Y, SUN H L, et al. The FgCYP51B Y123H mutation confers reduced sensitivity to prochloraz and is important for conidiation and ascospore development in Fusarium graminearum[J]. Phytopathology, 2021, 111(8): 1420-1427. doi: 10.1094/PHYTO-09-20-0431-R
    [34] CAI M, MIAO J Q, CHEN F P, et al. Survival cost and diverse molecular mechanisms of Magnaporthe oryzae isolate resistance to epoxiconazole[J]. Plant Dis, 2021, 105(2): 473-480. doi: 10.1094/PDIS-02-20-0393-RE
    [35] ZHANG Y, MAO C X, ZHAI X Y, et al. Mutation in cyp51b and overexpression of cyp51a and cyp51b confer multiple resistant to DMIs fungicide prochloraz in Fusarium fujikuroi[J]. Pest Manag Sci, 2021, 77(2): 824-833. doi: 10.1002/ps.6085
    [36] GAO X H, PENG Q, YUAN K, et al. Monitoring and characterization of prochloraz resistance in Fusarium fujikuroi in China[J]. Pestic Biochem Physiol, 2022, 187: 105189. doi: 10.1016/j.pestbp.2022.105189
    [37] ZHANG C, IMRAN M, LIU M, et al. Two point mutations on CYP51 combined with induced expression of the target gene appeared to mediate pyrisoxazole resistance in Botrytis cinerea[J]. Front Microbiol, 2020, 11: 1396. doi: 10.3389/fmicb.2020.01396
    [38] CHEN F P, FAN J R, ZHOU T, et al. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants[J]. Plant Dis, 2012, 96(3): 416-422. doi: 10.1094/PDIS-06-11-0495
    [39] FAN F, HAHN M, LI G Q, et al. Rapid detection of benzimidazole resistance in Botrytis cinerea by loop-mediated isothermal amplification[J]. Phytopathol Res, 2019, 1(1): 1-10. doi: 10.1186/s42483-018-0011-5
    [40] YARDEN O, KATAN T. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea[J]. Phytopathology, 1993, 83: 1478-1483. doi: 10.1094/Phyto-83-1478
    [41] BANNO S, FUKUMORI F, ICHIISHI A, et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays[J]. Phytopathology, 2008, 98(4): 397-404. doi: 10.1094/PHYTO-98-4-0397
    [42] 詹家绥, 吴娥娇, 刘西莉, 等. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404.

    ZHAN J S, WU E J, LIU X L, et al. Molecular basis of resistance of phytopathogenic fungi to several site-specific fungicides[J]. Scientia Agricultura Sinica, 2014, 47(17): 3392-3404.
    [43] MIAO J Q, MU W J, BI Y, et al. Heterokaryotic state of a point mutation (H249Y) in SDHB protein drives the evolution of thifluzamide resistance in Rhizoctonia solani[J]. Pest Manag Sci, 2021, 77(3): 1392-1400. doi: 10.1002/ps.6155
    [44] LIU S Y, MA J, JIANG B X, et al. Functional characterization of MoSdhB in conferring resistance to pydiflumetofen in blast fungus Magnaporthe oryzae[J]. Pest Manag Sci, 2022, 78(10): 4018-4027. doi: 10.1002/ps.7020
    [45] SUN H Y, CUI J H, TIAN B H, et al. Resistance risk assessment for Fusarium graminearum to pydiflumetofen, a new succinate dehydrogenase inhibitor[J]. Pest Manag Sci, 2020, 76(4): 1549-1559. doi: 10.1002/ps.5675
    [46] SHAO W Y, WANG J R, WANG H Y, et al. Fusarium graminearum FgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen[J]. Pest Manag Sci, 2022, 78(5): 1780-1788. doi: 10.1002/ps.6795
    [47] CHEN W C, WEI L L, ZHAO W C, et al. Resistance risk assessment for a novel succinate dehydrogenase inhibitor pydiflumetofen in Fusarium asiaticum[J]. Pest Manag Sci, 2021, 77(1): 538-547. doi: 10.1002/ps.6053
    [48] DE MICCOLIS ANGELINI R M, MASIELLO M, ROTOLO C, et al. Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea)[J]. Pest Manag Sci, 2014, 70(12): 1884-1893. doi: 10.1002/ps.3748
    [49] HU M J, FERNÁNDEZ-ORTUÑO D, SCHNABEL G. Monitoring resistance to SDHI fungicides in Botrytis cinerea from strawberry fields[J]. Plant Dis, 2016, 100(5): 959-965. doi: 10.1094/PDIS-10-15-1210-RE
    [50] LI X, GAO X H, HU S P, et al. Resistance to pydiflumetofen in Botrytis cinerea: risk assessment and detection of point mutations in sdh genes that confer resistance[J]. Pest Manag Sci, 2022, 78(4): 1448-1456. doi: 10.1002/ps.6762
    [51] LANDSCHOOT S, CARRETTE J, VANDECASTEELE M, et al. Boscalid-resistance in Alternaria alternata and Alternaria solani populations: an emerging problem in Europe[J]. Crop Prot, 2017, 92: 49-59. doi: 10.1016/j.cropro.2016.10.011
    [52] MALLIK I, ARABIAT S, PASCHE J S, et al. Molecular characterization and detection of mutations associated with resistance to succinate dehydrogenase-inhibiting fungicides in Alternaria solani[J]. Phytopathology, 2014, 104(1): 40-49. doi: 10.1094/PHYTO-02-13-0041-R
    [53] MIYAMOTO T, ISHII H, STAMMLER G, et al. Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid[J]. Plant Pathol, 2010, 59(5): 873-881. doi: 10.1111/j.1365-3059.2010.02321.x
    [54] SUN B X, ZHU G X, XIE X W, et al. Double mutations in succinate dehydrogenase are involved in SDHI resistance in Corynespora cassiicola[J]. Microorganisms, 2022, 10(1): 132. doi: 10.3390/microorganisms10010132
    [55] ZHU J M, LI J, MA D C, et al. SDH mutations confer complex cross-resistance patterns to SDHIs in Corynespora cassiicola[J]. Pestic Biochem Physiol, 2022, 186: 105157. doi: 10.1016/j.pestbp.2022.105157
    [56] BLUM M, WALDNER M, OLAYA G, et al. Resistance mechanism to carboxylic acid amide fungicides in the cucurbit downy mildew pathogen Pseudoperonospora cubensis[J]. Pest Manag Sci, 2011, 67(10): 1211-1214. doi: 10.1002/ps.2238
    [57] PANG Z L, SHAO J P, CHEN L, et al. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance[J]. PLoS One, 2013, 8(2): e56513. doi: 10.1371/journal.pone.0056513
    [58] CAI M, LI T J, LU X H, et al. Multiple mutations in the predicted transmembrane domains of the cellulose synthase 3 (CesA3) of Phytophthora capsici can confer semi-dominant resistance to carboxylic acid amide fungicides[J]. Int J Biol Macromol, 2021, 193: 2343-2351.
    [59] BLUM M, BOEHLER M, RANDALL E, et al. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans[J]. Mol Plant Pathol, 2010, 11(2): 227-243. doi: 10.1111/j.1364-3703.2009.00604.x
    [60] CAI M, ZHANG C, WANG W Z, et al. Stepwise accumulation of mutations in CesA3 in Phytophthora sojae results in increasing resistance to CAA fungicides[J]. Evol Appl, 2020, 14(4): 996-1008.
    [61] CHEN L, ZHU S S, LU X H, et al. Assessing the risk that Phytophthora melonis can develop a point mutation (V1109L) in CesA3 conferring resistance to carboxylic acid amide fungicides[J]. PLoS One, 2012, 7(7): e42069. doi: 10.1371/journal.pone.0042069
    [62] CAI M, MIAO J Q, SONG X, et al. C239S mutation in the β-tubulin of Phytophthora sojae confers resistance to zoxamide[J]. Front Microbiol, 2016, 7: 762.
    [63] PENG Q, WANG Z W, FANG Y, et al. Point mutations in the β-tubulin of Phytophthora sojae confer resistance to ethaboxam[J]. Phytopathology, 2019, 109(12): 2096-2106. doi: 10.1094/PHYTO-01-19-0032-R
    [64] GAO X H, HU S P, LIU Z Q, et al. Analysis of resistance risk and resistance-related point mutations in Cyt b of QioI fungicide ametoctradin in Phytophthora litchii[J]. Pest Manag Sci, 2022, 78(7): 2921-2930. doi: 10.1002/ps.6916
    [65] MIAO J Q, LIU X F, LI G X, et al. Multiple point mutations in PsORP1 gene conferring different resistance levels to oxathiapiprolin confirmed using CRISPR-Cas9 in Phytophthora sojae[J]. Pest Manag Sci, 2020, 76(7): 2434-2440. doi: 10.1002/ps.5784
    [66] CHEN F P, ZHOU Q, XI J, et al. Analysis of RPA190 revealed multiple positively selected mutations associated with metalaxyl resistance in Phytophthora infestans[J]. Pest Manag Sci, 2018, 74(8): 1916-1924.
    [67] BRUNNER P C, STEFANATO F L, MCDONALD B A. Evolution of the CYP51 gene in Mycosphaerella graminicola: evidence for intragenic recombination and selective replacement[J]. Mol Plant Pathol, 2008, 9(3): 305-316.
    [68] PENG Q, WAQAS YOUNAS M, YANG J, et al. Characterization of prochloraz resistance in Fusarium fujikuroi from Heilongjiang Province in China[J]. Plant Dis, 2022, 106(2): 418-424. doi: 10.1094/PDIS-02-21-0372-RE
    [69] ZHANG C, IMRAN M, XIAO L, et al. Difenoconazole resistance shift in Botrytis cinerea from tomato in China associated with inducible expression of CYP51[J]. Plant Dis, 2021, 105(2): 400-407. doi: 10.1094/PDIS-03-20-0508-RE
    [70] ZHANG C, LI T J, XIAO L, et al. Characterization of tebuconazole resistance in Botrytis cinerea from tomato plants in China[J]. Phytopathol Res, 2020, 2: 25. doi: 10.1186/s42483-020-00064-9
    [71] HAMAMOTO H, HASEGAWA K, NAKAUNE R, et al. Tandem repeat of a transcriptional enhancer upstream of the sterol 14alpha-demethylase gene (CYP51) in Penicillium digitatum[J]. Appl Environ Microbiol, 2000, 66(8): 3421-3426. doi: 10.1128/AEM.66.8.3421-3426.2000
    [72] SCHNABEL G, JONES A L. The 14alpha-demethylasse(CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil[J]. Phytopathology, 2001, 91(1): 102-110. doi: 10.1094/PHYTO.2001.91.1.102
    [73] DEL SORBO G, SCHOONBEEK H J, DE WAARD M A. Fungal transporters involved in efflux of natural toxic compounds and fungicides[J]. Fungal Genet Biol, 2000, 30(1): 1-15. doi: 10.1006/fgbi.2000.1206
    [74] MAARTEN A D W, ALAN C A, KEISUKE H, et al. Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence[J]. Pest Manag Sci, 2006, 62: 195-207. doi: 10.1002/ps.1150
    [75] STERGIOPOULOS I, ZWIERS L, DE WAARD M D. Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily[J]. Eur J Plant Pathol, 2002, 108: 719-734. doi: 10.1023/A:1020604716500
    [76] 李志勇, 高娜娜, 崔志峰. 灰葡萄孢多药抗性转运蛋白研究进展[J]. 浙江农业科学, 2016, 57(9): 1467-1471. doi: 10.16178/j.issn.0528-9017.20160933

    LI Z Y, GAO N N, CUI Z F. Research progress of multidrug resistance transporters of Botrytis cinerea[J]. J Zhejiang Agric Sci, 2016, 57(9): 1467-1471. doi: 10.16178/j.issn.0528-9017.20160933
    [77] KRETSCHMER M, LEROCH M, MOSBACH A, et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea[J]. PLoS Pathog, 2009, 5(12): e1000696. doi: 10.1371/journal.ppat.1000696
    [78] OMRANE S, SGHYER H, AUDÉON C, et al. Fungicide efflux and the MgMFS1 transporter contribute to the multidrug resistance phenotype in Zymoseptoria tritici field isolates[J]. Environ Microbiol, 2015, 17(8): 2805-2823. doi: 10.1111/1462-2920.12781
    [79] LEROUX P, WALKER A S. Activity of fungicides and modulators of membrane drug transporters in field strains of Botrytis cinerea displaying multidrug resistance[J]. Eur J Plant Pathol, 2013, 135(4): 683-693. doi: 10.1007/s10658-012-0105-3
    [80] WAALWIJK C, MENDES O, VERSTAPPEN E C P, et al. Isolation and characterization of the mating-type idiomorphs from the wheat Septoria leaf blotch fungus Mycosphaerella graminicola[J]. Fungal Genet Biol, 2002, 35(3): 277-286. doi: 10.1006/fgbi.2001.1322
    [81] KAPTEYN J C, PILLMOOR J B, De WAARD M A. Biochemical mechanisms involved in selective fungitoxicity of two sterol 14α-demethylation inhibitors, prochloraz and quinconazole: accumulation and metabolism studies[J]. Pestic Sci, 1992, 36(2): 85-93. doi: 10.1002/ps.2780360202
    [82] WELLMANN H, SCHAUZ K. DMI-resistance in Ustilago maydis: II. Effect of triadimefon on regenerating protoplasts and analysis of fungicide uptake[J]. Pestic Biochem Physiol, 1993, 46(1): 55-64. doi: 10.1006/pest.1993.1036
    [83] CHENG X K, MAN X J, WANG Z T, et al. Fungicide SYP-14288 inducing multidrug resistance in Rhizoctonia solani[J]. Plant Dis, 2020, 104(10): 2563-2570. doi: 10.1094/PDIS-01-20-0048-RE
    [84] DAI T, WANG Z W, CHENG X K, et al. Uncoupler SYP-14288 inducing multidrug resistance of Phytophthora capsici through overexpression of cytochrome P450 monooxygenases and P-glycoprotein[J]. Pest Manag Sci, 2022, 78(6): 2240-2249. doi: 10.1002/ps.6845
    [85] CHENG X K, DAI T, HU Z H, et al. Cytochrome P450 and glutathione S-transferase confer metabolic resistance to SYP-14288 and multi-drug resistance in Rhizoctonia solani[J]. Front Microbiol, 2022, 13: 806339. doi: 10.3389/fmicb.2022.806339
    [86] ZHANG C, MENG D H, WANG W Z, et al. Overexpression of three P450 genes is responsible for resistance to novel pyrimidine amines in Magnaporthe oryzae[J]. Pest Manag Sci, 2020, 76(12): 4268-4277. doi: 10.1002/ps.5991
    [87] LAMBOWITZ A M, SLAYMAN C W. Cyanide-resistant respiration in Neurospora crassa[J]. J Bacteriol, 1971, 108(3): 1087-1096. doi: 10.1128/jb.108.3.1087-1096.1971
    [88] JOSEPH-HORNE T, HOLLOMON D W, WOOD P M. Fungal respiration: a fusion of standard and alternative components[J]. Biochim Biophys Acta, 2001, 1504(2-3): 179-195. doi: 10.1016/S0005-2728(00)00251-6
    [89] JOSEPH-HORNE T, WOOD P M, HEPPNER C, et al. Involvement of the alternative oxidase in cellular energy production in the wheat ‘take all’ fungus, Gaeumannomyces graminis var tritici[J]. Pestic Sci, 1999, 55(3): 367-370. doi: 10.1002/(SICI)1096-9063(199903)55:3<367::AID-PS911>3.0.CO;2-E
    [90] ZIOGAS B N, BALDWIN B C, YOUNG J E. Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA5504) in Septoria tritici[J]. Pestic Sci, 1997, 50: 28-34. doi: 10.1002/(SICI)1096-9063(199705)50:1<28::AID-PS555>3.0.CO;2-1
    [91] 柏亚罗. Strobilurins类杀菌剂研究开发进展[J]. 农药, 2007, 46(5): 289-295. doi: 10.3969/j.issn.1006-0413.2007.05.001

    BAI Y L. The progresses of research and development on strobilurin fungicides[J]. Agrochemicals, 2007, 46(5): 289-295. doi: 10.3969/j.issn.1006-0413.2007.05.001
    [92] CHEN F, LIU X, SCHNABEL G. Field strains of Monilinia fructicola resistant to both MBC and DMI fungicides isolated from stone fruit orchards in the eastern United States[J]. Plant Dis, 2013, 97(8): 1063-1068. doi: 10.1094/PDIS-12-12-1177-RE
    [93] FERNÁNDEZ-ORTUÑO D, GRABKE A, LI X P, et al. Independent emergence of resistance to seven chemical classes of fungicides in Botrytis cinerea[J]. Phytopathology, 2015, 105(4): 424-432. doi: 10.1094/PHYTO-06-14-0161-R
    [94] SIEGEL M. Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action[J]. Plant Dis, 1981, 65(12): 986. doi: 10.1094/PD-65-986
    [95] CHEN F P, HAN P, LIU P F, et al. Activity of the novel fungicide SYP-Z048 against plant pathogens[J]. Sci Rep, 2014, 4: 6473.
    [96] SHATTOCK R C. Studies on the inheritance of resistance to metalaxyl in Phytophthora infestans[J]. Plant Pathol, 1988, 37: 4-11. doi: 10.1111/j.1365-3059.1988.tb02188.x
    [97] FORBES G A. Manual for laboratory work on Phytophthora infestans[M]. Lima, Peru: International Potato Center (CIP), 1997: 5-16.
    [98] LUCK J E, GILLINGS M R. Rapid identification of benomyl resistant strains of Botrytis cinerea using the polymerase chain reaction[J]. Mycol Res, 1995, 99(12): 1483-1488. doi: 10.1016/S0953-7562(09)80797-1
    [99] 蔡萌. 大豆疫霉对两类卵菌抑制剂的抗性分子机制研究[D]. 北京: 中国农业大学, 2016.

    CAI M. Studies of resistance molecular mechanism of CAA and benzamide fungicides in Phytophthora sojae[D]. Beijing: China Agricultural University, 2016.
    [100] NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): E63. doi: 10.1093/nar/28.12.e63
    [101] 吴娜, 李淑君, 康业斌. 烟草疫霉菌LAMP检测方法的建立及验证[J]. 中国烟草科学, 2020, 41(1): 74-80. doi: 10.13496/j.issn.1007-5119.2020.01.012

    WU N, LI S J, KANG Y B. Establishment of the loop-mediated isothermal amplification assay for detection of Phytophthora parasitica[J]. Chin Tob Sci, 2020, 41(1): 74-80. doi: 10.13496/j.issn.1007-5119.2020.01.012
    [102] 黄雯, 徐进, 张昊, 等. 植物青枯菌LAMP检测方法的建立[J]. 中国农业科学, 2016, 49(11): 2093-2102. doi: 10.3864/j.issn.0578-1752.2016.11.006

    HUANG W, XU J, ZHANG H, et al. Development of a LAMP approach for detection of Ralstonia solanacearum[J]. Scientia Agricultura Sinica, 2016, 49(11): 2093-2102. doi: 10.3864/j.issn.0578-1752.2016.11.006
    [103] 刘西莉, 苗建强, 李成成, 等. 一种Fluoxapiprolin抗性基因型G700V辣椒疫霉的LAMP引物及应用: CN111635959B[P]. 2022-05-13.

    LIU X L, MIAO J Q, LI C C, et al. A LAMP primer of fluoxapiprolin-resistant genotype G700V in Phytophthora capsici and its application: CN111635959B[P]. 2022-05-13.
    [104] LIU Y H, YUAN S K, HU X R, et al. Shift of sensitivity in Botrytis cinerea to benzimidazole fungicides in strawberry greenhouse ascribing to the rising-lowering of E198A subpopulation and its visual, on-site monitoring by loop-mediated isothermal amplification[J]. Sci Rep, 2019, 9(1): 11644. doi: 10.1038/s41598-019-48264-4
    [105] WANG H C, ZHANG C Q. Multi-resistance to thiophanate-methyl, diethofencarb, and procymidone among Alternaria alternata populations from tobacco plants, and the management of tobacco brown spot with azoxystrobin[J]. Phytoparasitica, 2018, 46(5): 677-687. doi: 10.1007/s12600-018-0690-6
    [106] 刘圣明, 高续恒, 张艳慧, 等. 河南省番茄灰霉病菌对3种杀菌剂的抗药性检测[J]. 植物保护, 2014, 40(4): 144-147.

    LIU S M, GAO X H, ZHANG Y H, et al. Detection of the resistance of Botrytis cinerea on tomato in Henan Province to three fungicides[J]. Plant Prot, 2014, 40(4): 144-147.
    [107] MERCER P C, RUDDOCK A. Disease management of spring barley with reduced doses of fungicides in Northern Ireland[J]. Crop Prot, 2003, 22(1): 79-85. doi: 10.1016/S0261-2194(02)00114-X
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  706
  • HTML全文浏览量:  216
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-05
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回