ARTINEZ-TORRES D, CHEVILLON C, BRUN-BARALE A, et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes[J]. Pest Manage Sci, 1999, 55(10):1012-1020.
|
HARGREAVES K, KOEKEMOER L L, BROOKE B D, et al. Anopheles funestus resistant to pyrethroid insecticides in South Africa[J]. Med Vet Entomol, 2000, 14(2):181-189.
|
MUTUNGA J M, ANDERSON T D, CRAFT D T, et al. Carbamate and pyrethroid resistance in the akron strain of Anopheles gambiae[J]. Pestic Biochem Physiol, 2015, 121:116-121.
|
JOHNSON B J, FONSECA D M. Insecticide resistance alleles in wetland and residential populations of the West Nile virus vector Culex pipiens in New Jersey[J]. Pest Manage Sci, 2016, 72(3):481-488.
|
PALMQUIST K, SALATAS J, FAIRBROTHER A. Pyrethroid insecticides:use, environmental fate, and ecotoxicology[M]//PERVEEN F. Insecticides-advances in integrated pest management. INTECH Open Access Publisher, 2012:251-278.
|
LI Y, XU Z F, SHI L, et al. Insecticide resistance monitoring and metabolic mechanism study of the green peach aphid, Myzus persicae (Sulzer)(Hemiptera:Aphididae), in Chongqing, China[J]. Pestic Biochem Physiol, 2015, 132:21-28.
|
PANSA M G, BLANDINO M, INGEGNO B L, et al. Toxicity and persistence of three pyrethroids for the control of cereal bugs on common wheat[J]. J Pest Sci, 2015, 88(1):201-208.
|
HE L M, TROIANO J, WANG A, et al. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin[M]//WHITACRE D M. Reviews of environmental contamination and toxicology. New York:Springer, 2008:71-91.
|
BIONDI A, ZAPPALÀ L, DESNEUX N, et al. Potential toxicity of acypermethrin-treated nets on Tuta absoluta (Lepidoptera:Gelechiidae)[J]. J Econ Entomol, 2015, 108(3):1191-1197.
|
SODERLUND D M, CLARK J M, SHEETS L P, et al. Mechanisms of pyrethroid neurotoxicity:implications for cumulative risk assessment[J]. Toxicology, 2002, 171(1):3-59.
|
SODERLUND D M. Molecular mechanisms of pyrethroid insecticide neurotoxicity:recent advances[J]. Arch Toxicol, 2012, 86(2):165-181.
|
PRIESTER T M, GEORGHIOU G P. Inheritance of resistance to permethrin in Culex pipiens quinquefasciatus[J]. J Econ Entomol, 1979, 72(1):124-127.
|
MARTINEZ-TORRES D, CHANDRE F, WILLIAMSON M S, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s.[J]. Insect Mol Biol, 1998, 7(2):179-184.
|
TAN J, LIU Z, TSAI T D, et al. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin[J]. Insect Biochem Mol Biol, 2002, 32(4):445-454.
|
ZHEN C A, GAO X W. A point mutation (L1015F) of the voltage-sensitive sodium channel gene associated with lambda-cyhalothrin resistance in Apolygus lucorum (Meyer-Dür) population from the transgenic Bt cotton field of China[J]. Pestic Biochem Physiol, 2016, 127:82-89.
|
LIU N N. Insecticide resistance in mosquitoes:impact, mechanisms, and research directions[J]. Annu Rev Entomol, 2015, 60:537-559.
|
CASIDA J E, RUZO L O. Metabolic chemistry of pyrethroid insecticides[J]. Pest Manage Sci, 1980, 11(2):257-269.
|
CASIDA J E, GAMMON D W, GLICKMAN A H, et al. Mechanisms of selective action of pyrethroid insecticides[J]. Annu Rev Pharmacol Toxicol, 1983, 23:413-438.
|
WANG X, MARTÍNEZ M A, DAI M H, et al. Permethrin-induced oxidative stress and toxicity and metabolism. a review[J]. Environ Res, 2016, 149:86-104.
|
CHOI J, ROSE R L, HODGSON E. In vitro human metabolism of permethrin:the role of human alcohol and aldehyde dehydrogenases[J]. Pestic Biochem Physiol, 2002, 74(3):117-128.
|
CROW J A, BORAZJANI A, POTTER P M, et al. Hydrolysis of pyrethroids by human and rat tissues:examination of intestinal, liver and serum carboxylesterases[J]. Toxicol Appl Pharmacol, 2007, 221(1):1-12.
|
LESTREMAU F, WILLEMIN M E, CHATELLIER C, et al. Determination of cis-permethrin, trans-permethrin and associated metabolites in rat blood and organs by gas chromatography-ion trap mass spectrometry[J]. Anal Bioanal Chem, 2014, 406(14):3477-3487.
|
SCOLLON E J, STARR J M, GODIN S J, et al. In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome P450 isoforms[J]. Drug Metab Dispos, 2009, 37(1):221-228.
|
GUNNING R V, MOORES G D, DEVONSHIRE A L. Esterases and fenvalerate resistance in a field population of Helicoverpa punctigera (Lepidoptera:Noctuidae) in Australia[J]. Pestic Biochem Physiol, 1997, 58(2):155-162.
|
DEMKOVICH M, SIEGEL J P, HIGBEE B S, et al. Mechanism of resistance acquisition and potential associated fitness costs in Amyelois transitella (Lepidoptera:Pyralidae) exposed to pyrethroid insecticides[J]. Environ Entomol, 2015, 44(3):855-863.
|
RODRIGUES A R S, SIQUEIRA H A A, TORRES J B. Enzymes mediating resistance to lambda-cyhalothrin in Eriopis connexa (Coleoptera:Coccinellidae)[J]. Pestic Biochem Physiol, 2014, 110:36-43.
|
XI J H, PAN Y O, BI R, et al. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura[J]. Pestic Biochem Physiol, 2015, 118:77-81.
|
EL-LATIF A O A, SUBRAHMANYAM B. Pyrethroid resistance and esterase activity in three strains of the cotton bollworm, Helicoverpa armigera (Hübner)[J]. Pestic Biochem Physiol, 2010, 96(3):155-159.
|
WU S W, YANG Y H, YUAN G R, et al. Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera[J]. Insect Biochem Mol Biol, 2011, 41(1):14-21.
|
APONTE H A, PENILLA R P, DZUL-MANZANILLA F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico[J]. Pestic Biochem Physiol, 2013, 107(2):226-234.
|
ROCA-ACEVEDO G, PICOLLO M I, CAPRIOTTI N, et al. Examining mechanisms of pyrethroid resistance in eggs of two populations of the Chagas' disease vector Triatoma infestans (Hemiptera:Reduviidae)[J]. J Med Entomol, 2015, 52(5):987-992.
|
THALAVAISUNDARAM S, WILKES M A, MANSFIELD S, et al. Esterases and glutathione S-transferases contribute to pyrethroid resistance in western flower thrips, Frankliniella occidentalis[J]. Aust J Entomol, 2012, 51(4):272-278.
|
HEIDARI R, DEVONSHIRE A L, CAMPBELL B E, et al. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis[J]. Insect Biochem Mol Biol, 2005, 35(6):597-609.
|
ZHANG L, SHI J, SHI X Y, et al. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera:Muscidae)[J]. Comp Biochem Physiol Part B, 2010, 156(1):6-11.
|
AI G M, ZOU D Y, SHI X Y, et al. HPLC assay for characterizing α-cyano-3-phenoxybenzyl pyrethroids hydrolytic metabolism by Helicoverpa armigera (Hübner) based on the quantitative analysis of 3-phenoxybenzoic acid[J]. J Agric Food Chem, 2009, 58(2):694-701.
|
YUAN G, LI Y, FARNSWORTH C A, et al. Isomer-specific comparisons of the hydrolysis of synthetic pyrethroids and their fluorogenic analogues by esterases from the cotton bollworm Helicoverpa armigera[J]. Pestic Biochem Physiol, 2015, 121:102-106.
|
RAY D E, FRY J R. A reassessment of the neurotoxicity of pyrethroid insecticides[J]. Pharmacol Ther, 2006, 111(1):174-193.
|
YANG Y, WU Y, CHEN S, et al. The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia[J]. Insect Biochem Mol Biol, 2004, 34(8):763-773.
|
AWOLOLA T S, ODUOLA O A, STRODE C, et al. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria[J]. Trans R Soc Trop Med Hyg, 2009, 103(11):1139-1145.
|
ZHONG D B, CHANG X L, ZHOU G F, et al. Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis[J]. PLoS One, 2013, 8(2):e55475.
|
AROURI R, LE GOFF G, HEMDEN H, et al. Resistance to lambda-cyhalothrin in Spanish field populations of Ceratitis capitata and metabolic resistance mediated by P450 in a resistant strain[J]. Pest Manage Sci, 2015, 71(9):1281-1291.
|
MUTHUSAMY R, SHIVAKUMAR M S. Resistance selection and molecular mechanisms of cypermethrin resistance in red hairy caterpillar (Amsacta albistriga walker)[J]. Pestic Biochem Physiol, 2015, 117:54-61.
|
SHI L, ZHANG J, SHEN G M, et al. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)[J]. Sci Rep, 2015, 5:15581.
|
NIKOU D, RANSON H, HEMINGWAY J. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae[J]. Gene, 2003, 318:91-102.
|
DJOUAKA R F, BAKARE A A, COULIBALY O N, et al. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s. s. from Southern Benin and Nigeria[J]. BMC Genomics, 2008, 9(1):538.
|
MÜLLER P, WARR E, STEVENSON B J, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids[J]. PLoS Genet, 2008, 4(11):e1000286.
|
IBRAHIM S S, RIVERON J M, BIBBY J, et al. Allelic variation of cytochrome P450s drives resistance to bednet insecticides in a major malaria vector[J]. PLoS Genet, 2015, 11(10):e1005618.
|
MULAMBA C, RIVERON J M, IBRAHIM S S, et al. Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms[J]. PLoS One, 2014, 9(10):e110058.
|
DUSFOUR I, ZORRILLA P, GUIDEZ A, et al. Deltamethrin resistance mechanisms in Aedes aegypti populations from three French overseas territories worldwide[J]. PLoS Negl Trop Dis, 2015, 9(11):e0004226.
|
ZHANG H, TANG T, CHENG Y, et al. Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China[J]. J Appl Entomol, 2010, 134(9-10):754-761.
|
JOUßEN N, AGNOLET S, LORENZ S, et al. Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3[J]. Proc Natl Acad Sci USA, 2012, 109(38):15206-15211.
|
RASOOL A, JOUßEN N, LORENZ S, et al. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan[J]. Insect Biochem Mol Biol, 2014, 53:54-65.
|
HAN Y C, YU W T, ZHANG W Q, et al. Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera[J]. Pestic Biochem Physiol, 2015, 121:129-135.
|
ZIMMER C T, BASS C, WILLIAMSON M S, et al. Molecular and functional characterization of CYP6BQ23, a cytochrome P450 conferring resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus[J]. Insect Biochem Mol Biol, 2014, 45:18-29.
|
KONUS M, KOY C, MIKKAT S, et al. Molecular adaptations of Helicoverpa armigera midgut tissue under pyrethroid insecticide stress characterized by differential proteome analysis and enzyme activity assays[J]. Comp Biochem Physiol Part D, 2013, 8(2):152-162.
|
SHI L, XU Z F, SHEN G M, et al. Expression characteristics of two novel cytochrome P450 genes involved in fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval)[J]. Pestic Biochem Physiol, 2015, 119:33-41.
|
STEVENSON B J, BIBBY J, PIGNATELLI P, et al. Cytochrome P4506M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids:sequential metabolism of deltamethrin revealed[J]. Insect Biochem Mol Biol, 2011, 41(7):492-502.
|
PRAPANTHADARA L, RANSON H, SOMBOON P, et al. Cloning, expression and characterization of an insect class I glutathione S-transferase from Anopheles dirus species B[J]. Insect Biochem Mol Biol, 1998, 28(5-6):321-329.
|
BUTLER R N, BUTLER W J, MORABY Z, et al. Glutathione concentrations and glutathione S-transferase activity in human colonic neoplasms[J]. J Gastroenterol Hepatol, 1994, 9(1):60-63.
|
REIDY G F, ROSE H A, VISETSON S, et al. Increased glutathione S-transferase activity and glutathione content in an insecticide-resistant strain of Tribolium castaneum (Herbst)[J]. Pestic Biochem Physiol, 1990, 36(3):269-276.
|
MORGAN J C, IRVING H, OKEDI L M, et al. Pyrethroid resistance in an Anopheles funestus population from Uganda[J]. PLoS One, 2010, 5(7):e11872.
|
ADEYI A O, AKOZI G O, ADELEKE M A, et al. Induction and activity of glutathione S-transferases extracted from Zonocerus variegatus (Orthoptera:Pyrgomorphidae) exposed to insecticides[J]. Int J Trop Insect Sci, 2015, 35(1):27-33.
|
SILVA W M, BERGER M, BASS C, et al. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta[J]. Pestic Biochem Physiol, 2015, 122:8-14.
|
NANDI A, SINGH H, SINGH N K. Esterase and glutathione S-transferase levels associated with synthetic pyrethroid resistance in Hyalomma anatolicum and Rhipicephalus microplus ticks from Punjab, India[J]. Exp Appl Acarol, 2015, 66(1):141-157.
|
RANSON H, PRAPANTHADARA L, HEMINGWAY J. Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae[J]. Biochem J, 1997, 324(Pt 1):97-102.
|
GRANT D F, MATSUMURA F. Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti[J]. Pestic Biochem Physiol, 1989, 33(2):132-143.
|
VONTAS J G, SMALL G J, HEMINGWAY J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens[J]. Biochem J, 2001, 357(Pt 1):65-72.
|
KOSTAROPOULOS I, PAPADOPOULOS A I, METAXAKIS A, et al. Glutathione S-transferase in the defence against pyrethroids in insects[J]. Insect Biochem Mol Biol, 2001, 31(4-5):313-319.
|
DAVID J P, STRODE C, VONTAS J, et al. The Anopheles gambiae detoxification chip:a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors[J]. Proc Natl Acad Sci USA, 2005, 102(11):4080-4084.
|
SAMRA A I, KAMITA S G, YAO H W, et al. Cloning and characterization of two glutathione S-transferases from pyrethroid-resistant Culex pipiens[J]. Pest Manage Sci, 2012, 68(5):764-772.
|
ZHOU L, FANG S M, HUANG K, et al. Characterization of an epsilon-class glutathione S-transferase involved in tolerance in the silkworm larvae after long term exposure to insecticides[J]. Ecotoxicol Environ Saf, 2015, 120:20-26
|