IsolationandstructureidentificationofdodoneaviscosideAfromtheseedsof<italic>Dodonaeaviscosa</italic>anditsantifeedantactivityagainst<italic>Plutellaxylostella</italic>(L.)
-
摘要: 采用小孔树脂、凝胶SephadexLH-20、反相色谱ODS及制备型高效液相色谱 (Pre-HPLC) 等分离技术,从坡柳Dodonaea viscosa (Linn.) Jacq. Enum. 种子乙醇提取物中分离获得1个活性化合物。通过质谱及核磁共振等波谱技术,鉴定其为新的齐墩果烷型三萜皂苷类化合物21-epoxyangeloyl-15,16,28-tirhydroxy-22-(2-methylbutanoyl)-Olean-12-en-3-(O-α-L-arabinofuranosyl-(1→3)-O-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronide,命名为坡柳皂苷A,英文名dodoneaviscoside A。生物活性测定结果表明,其对小菜蛾Plutella xylostella (L.) 3龄幼虫具有较好的非选择性拒食活性,24 h拒食中浓度 (AFC50) 为207.4 μg/mL。值得进一步研究。Abstract: A bioactive compound was obtained from the ethanol extract of the Dodonaea viscosa (Linn.) Jacq. Enum. seeds using separation technologies including pore resin, gel SephadexLH-20, reversed phase chromatography ODS and preparative high performance liquid chromatography (Pre-HPLC). The structures of compound 1 were characterized by NMR experiments and mass spectrometry as a new oleanane-type triterpenoid, 21-epoxyangeloyl-15,16,28-tirhydroxy-22-(2-meth-ylbutanoyl)-Olean-12-en-3-(O-α-L-arabinofuranosyl-(1→3)-O-[β-D-glucopyranosyl-(1→2)]-β-D-glucuronide. It was named as dodoneaviscoside A. The results of the bioactivity determination showed that dodoneaviscoside A had antifeedant activity against the 3th instar larvae of Plutella xylostella (L.) with AFC50 value of 207.4 μg/mL. As a new compound with good nonselective antifeeding activity to P. xylostella, the potential applicatio of dodoneaviscoside A is worth of further investigation.
-
表 1 化合物1及文献化合物dodoneaside B[7] 和R1-barrigenol[16] 的核磁共振数据
Table 1. The NMR datas of compound 1, dodoneasides B[7] and R1-barrigenol[16]
编号
No.化合物 1 Compound 1 dodoneaside B[7] R1-barrigenol[16] δHmulti, (J in Hz) δC 1H-1H相关 1H-1H COSY 1H异核多碳相关 HMBC δC δC 1 1.67-1.59 m 40.2 t 1.03 39.9 39.4 1.03 d, (8.8) 1.67 C-9 2 1.76-1.72 m 27.5 t 3.22 27.0 28.2 1.45-1.42 m 3 3.23-3.21 m 91.9 d 1.76 92.3 78.1 4 / 40.4 s / 40.4 39.4 5 0.81 br d, (12.0) 56.8 d 1.45 56.9 55.6 6 1.45-1.42 m 19.3 t 0.81 19.3 19.1 7 1.77-1.72 m 37.2 t C-8, C-26 33.9 36.8 8 / 42.3 s / 40.8 41.5 9 1.62-1.59 m 48.2 d 1.97 47.7 47.5 10 / 37.9 s / 37.7 37.5 11 1.97-1.93 m 24.8 t 1.62 24.7 24.1 12 5.49 brs 127.0 d 1.97 C-9/C-14, C-11w 125.3 124.5 13 / 143.5 s / 142.9 144.8 14 / 48.4 s / 41.0 47.5 15 3.77-3.73 m 68.5 d 4.53 C-14, C-8, C-27 34.9 67.4 16 3.86-3.82 m 73.95 d 3.77 69.7 72.4 17 / 48.2 s 49.0 48.1 18 2.68-2.62 m 41.6 d 1.21 42.3 42.0 19 2.62-2.58 m 47.3 t 1.21 C-18, C-30 47.9 47.8 1.21-1.17 m 2.68, 2.62 C-30w 20 / 36.7 s / 37.1 36.4 21 5.89 d, (8.0) 81.8 d 5.61 C21-1, C-22, C-20, C-29, C-30 81.9 78.4 22 5.61 d, (8.0) 73.8 d 5.89 C22-1, C-21, C-16, C-28, C-17 73.7 77.2 23 1.11 s 28.4 q C-3, C-5, C-4, C-24 28.3 28.7 24 0.90 s 16.95 q C-3, C-5, C-4, C-23 16.8 16.6 25 1.01 s 16.3 q C-5, C-1, C-10 16.3 16.0 26 1.03 s 17.9 q C-14/C-9, C-8, C-7 17.3 17.6 27 1.42 s 21.1 q C-13, C-15, C-14, C-8 27.8 21.1 28 3.32-3.30 m 63.8 t 3.04 64.4 67.8 3.04-3.02 m 3.32 C-22, C-18 29 0.85 s 29.5 q C-21, C-19, C-20, C-30 29.8 30.6 30 1.10 s 20.0 q C-21, C-19, C-20, C-29 20.2 19.4 21-epoxyangeloyl 1 / 171.3 s 171.3 2 / 60.8 s 61.2 3 3.13-3.10 m 61.5 d 1.32 C21-2, C21-5, C21-4 61.1 4 1.32 d, (4.4) 13.8 q 3.13 C21-3, C21-2 13.9 5 1.48 s 19.5 q C21-1, C21-3w, C21-2 19.8 22-(2-methylbutanoyl) 1 / 178.2 s 169.1 2 2.41 q, (5.6) 42.8 d 1.19 C22-1, C22-3, C22-5, C22-4 128.9 3 2.00-1.94 m 27.1 t 1.77w 141.4 1.45-1.40 m 0.97 C22-1w, C22-2, C22-4 4 0.97 t (6.0) 12.3 q 1.45 C22-2, C22-3 16.2 5 1.19 d, (5.6) 17.1 q 2.41 C22-1, C22-2, C22-3 21.0 3-β-glcA 1′ 4.53-4.50 m 105.5 d 105.4 2′ 3.77-3.74 m 78.96 w d 78.1 3′ 3.77-3.74 m 86.7 w s 86.2 4′ 3.84-3.80 m 70.2 d 72.4 5′ 3.51-3.48 m 74.9 d 76.8 6′ / 171.3 s 172.0 2′-β-glc 1″ 4.69 d, (7.5) 104.5 d 103.7 2″ 3.49-3.45 m 77.0 d 75.9 3″ 3.88-3.85 m 77.9 d 77.8 4″ 3.58-3.52 m 73.5 d 72.1 5″ 4.13-4.09 m 79.5 77.8 6″ 3.80-3.75 m 63.0 t 63.6 3.68-3.65 m 3′-α-ara 1′′′ 5.28 brs 110.7 d 110.7 2′′′ 4.13 brs 83.3 d 83.3 3′′′ 3.86-3.84 m 78.7 78.7 4′′′ 4.13 brs 85.5 d 85.4 5′′′ 3.80-3.75 m 62.6 t 62.8 3.68-3.64 m 注:化合物1测试条件500 MHz,氘代氯仿。Note: Compound 1 recorded at 500 MHz, in CDCl3. -
[1] 云南省植物研究所. 云南植物志 第1卷 种子植物[M]. 北京: 科学出版社, 1977: 282.Kunming Institute of Botany, Chinese Academy of Sciences. Flora Yunnan: The First Volume, Seed Plants[M]. Beijing: Sciences Press, 1977: 282. [2] SACHDEV K, KULSHRESHTHA D K. Dodonic acid, a new diterpenoid from Dodonaea viscosa[J]. Planta Med, 1984, 50(5): 448-449. [3] RAMACHANDRAN N, SUBRAMANIAN A G, SANKARA S. Isorhamnetin and quercetin glycosides from Dodonaea viscosa and Sapindus emarginatus[J]. Indian J Chem, 1975, 13(6): 639-640. [4] ROJAS A, CRUZ S, PONCE-MONTER H. Smooth muscle relaxing compounds from Dodonaea viscosa[J]. Planta Med, 1996, 62(2): 154-159. [5] ORTEGA A, GARCÍA P E, CÁRDENAS J. Methyl dodonates, a new type of diterpenes with a modified clerodane skeleton from Dodonaea viscosa[J]. Tetrahedron, 2001, 57(15): 2981-2989. [6] WAGNER H, LUDWIG C, GROTJAHN L. Biologically active saponins from Dodonaea viscosa[J]. Phytochemistry, 1987, 26(3): 697-701. [7] CAO S G, BRODIE P, CALLMANDER M, et al. Antiproliferative triterpenoid saponins of Dodonaea viscosa from the Madagascar dry forest[J]. J Nat Prod, 2009, 72(9): 1705-1707. [8] KHALIL N M, SPEROTTO J S, MANFRON M P. Antiinflammatory activity and acute toxicity of Dodonaea viscosa[J]. Fitoterapia, 2006, 77(6): 478-480. [9] GETIE M, GEBRE-MARIAM T, RIETZ R, et al. Evaluation of the anti-microbial and anti-inflammatory activities of the medicinal plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus[J]. Fitoterapia, 2003, 74(1-2): 139-143. [10] ARUN M, ASHA V V. Gastroprotective effect of Dodonaea viscosa on various experimental ulcer models[J]. J Ethnopharmacol, 2008, 118(3): 460-465. [11] 崔凯, 李昆, 廖声熙. 坡柳种子对脱水干燥的生理生化响应[J]. 林业科学研究, 2011, 24(5): 619-626.CUI K, LI K, LIAO S X. Physiological and biochemical response of Dodonaea viscose seeds to desiccation[J]. Forest Res, 2011, 24(5): 619-626. [12] 秦小萍, 赵红艳, 杨美林. 坡柳种子提取物对菜青虫取食和生长发育的影响[J]. 农药, 2007, 46(7): 494-495, 499.QIN X P, ZHAO H Y, YANG M L. Effect of extracts from Dodonaea viscosa seed on feeding and growth and development of Pieris rapae L.[J]. Agrochemicals, 2007, 46(7): 494-495, 499. [13] 秦小萍, 赵红艳, 杨美林. 坡柳种子提取物对小菜蛾的拒食活性[J]. 昆虫知识, 2008, 45(4): 577-579.QIN X P, ZHAO H Y, YANG M L. Antifeeding activities of Dodonaea viscose seed extracts against Plutella xylostella[J]. Chin Bull Entomol, 2008, 45(4): 577-579. [14] 张宗炳. 杀虫药剂的毒力测定[M]. 北京: 科学出版社, 1988: 123-128.ZHANG Z B. Determination of insecticide toxicity[M]. Beijing: Science Press, 1988: 123-128. [15] 文思, 管希锋, 黄晓君, 等. 岗梅根中1个新的齐墩果烷型三萜皂苷[J]. 中国中药杂志, 2017, 42(13): 2503-2509.WEN S, GUAN X F, HUANG X J, et al. A new oleanane-type triterpenoid glycoside from roots of Ilex asprella[J]. China J Chin Mater Med, 2017, 42(13): 2503-2509. [16] TANG M J, SHEN D D, HU Y C, et al. Cytotoxic triterpenoid saponins from Symplocos chinensis[J]. J Nat Prod, 2004, 67(12): 1969-1974. [17] YOSHIKAWA M, SHIMADA H, MORIKAWA T, et al. Medicinal foodstuffs. VII. On the saponin constituents with glucose and alcohol absorption-inhibitory activity from a food garnish “Tonburi”, the fruit of Japanese Kochia scoparia (L.) Schrad.: structures of scoparianosides A, B, and C[J]. Chem Pharm Bull, 1997, 45(8): 1300-1305. [18] ZHANG Z Z, LI S Y, ZHANG S M, et al. Triterpenoid saponins from the fruits of Aesculus pavia[J]. Phytochemistry, 2006, 67(8): 784-794. [19] ZHANG L, LIU Z H, TIAN J K. Cytotoxic triterpenoid saponins from the roots of Platycodon grandiflorum[J]. Molecules, 2007, 12(4): 832-841. [20] ZHANG Z Z, LI S Y. Cytotoxic triterpenoid saponins from the fruits of Aesculus pavia L.[J]. Phytochemistry, 2007, 68(15): 2075-2086. [21] LI Z L, LI X, LI L H, et al. Two new triterpenes from the husks of Xanthoceras sorbifolia[J]. Planta Med, 2005, 71(11): 1068-1070. [22] FU G M, LIU Y, YU S S, et al. Cytotoxic oxygenated triterpenoid saponins from Symplocos chinensis[J]. J Nat Prod, 2006, 69(12): 1680-1686. -