Synthesis and insecticidal activity of novel heptafluoroisopropyl substituted 2,2-difluoro-1,3-benzodioxol-5-acetamide derivatives
-
摘要:
为探索环境友好新型农药先导化合物,通过水相中酰胺缩合反应合成了16个未见文献报道的七氟异丙基苯基取代的2,2-二氟-1,3-苯并二氧-5-乙酰胺类目标化合物。其结构通过核磁共振氢谱、氟谱以及高分辨质谱确认。初步生物活性测定表明,部分目标化合物对蚕豆蚜虫和粘虫表现出良好的杀虫活性,初步构效关系显示苯环上取代基的种类和位置在化合物的杀虫活性中起关键作用。
-
关键词:
- 多氟化合物 /
- 乙酰胺 /
- TPGS-750-M/H2O /
- 杀虫活性
Abstract:In order to discover novel and environmentally benign pesticides, a series of novel heptafluoroisopropyl substituted 2,2-difluoro-1,3-benzodioxol-5-acetamide derivatives were synthesized via amide condensation reaction in aqueous solution. All the title compouds were characterized by 1H NMR, 19F NMR and HRMS. The bioassays showed that some of the compounds exhibited good insecticidal activities against bean aphids (Aphis craccivora) and armyworms (Mythimna separata). Preliminary structure-activity relationship studies suggested that the substituent groups played a key role in the insecticidal activities of the compounds.
-
Key words:
- poly-fluorinated compounds /
- acetamide /
- TPGS-750-M/H2O /
- insecticidal activity
-
Table 1. Physical and chemical data of title compounds h1-h16
Entry Compd. R Appearance m.p./°C Yield/% 1 h1 2-CH3 White solid 125-127 60 2 h2 H White solid 103-105 63 3 h3 2, 3-(CH3)2 White solid 135-137 60 4 h4 3-CH3 White solid 112-114 59 5 h5 2, 5-(CH3)2 White solid 127-129 61 6 h6 3-OCH3 White solid 134-136 55 7 h7 2, 6-(CH2CH3)2 White solid 111-113 53 8 h8 2-CH3-6-CH2CH3 White solid 118-120 56 9 h9 2-OH White solid 130-132 43 10 h10 2, 6-(CH3)2 White solid 132-134 58 11 h11 2-OCH3 White solid 114-116 56 12 h12 2-CH2CH3 White solid 120-122 57 13 h13 2-OCH2CH3 White solid 105-107 60 14 h14 3-CH2CH3 White solid 128-130 55 15 h15 2, 5-(OCH3)2 White solid 122-124 52 16 h16 2, 6-(OCH3)2 White solid 123-125 58 Table 2. The 1H NMR, 19F NMR and HRMS of the title compounds h1-h16
Compd. 1H NMR(CDCl3, 400 MHz),δ 19F NMR (CDCl3, 564 MHz),δ HRMS [M+H]+, m/z Calcd. Found h1 2.26 (s, 3H, -CH3), 3.68 (s, 2H, -CH2-), 7.02-7.07 (m, 4H, Ar-H × 3, N-H), 7.19-7.33 (m, 3H, Ar-H). –181.70 (m, 1F, CF), –75.82 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.94 (s, 2F, CF2).474.074 6 474.075 0 h2 3.69 (s, 2H, -CH2-), 7.00-7.04 (m, 3H, Ar-H), 7.51 (d, 2H,
J = 9.0 Hz, Ar-H), 7.60 (d, 2 H, J = 9.0 Hz, Ar-H), 7.74 (br, 1H, N-H).–182.32 (m, 1F, CF), –75.87 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.96 (s, 2F, C F2).460.059 0 460.058 7 h3 2.01 (s, 3H, -CH3), 2.38 (d, 3 H, J = 5.4 Hz, -CH3), 3.74 (s, 2H, -CH2-), 7.07-7.09 (m, 3H, Ar-H), 7.17 (br, 1H, N-H), 7.34 (d, 1H, J = 7.8 Hz, Ar-H), 7.64 (d, 1H, J = 7.8 Hz, Ar-H). –174.74 (m, 1F, CF), –74.06 (d, 6 F, J = 6.2 Hz,
CF3 × 2), –50.04 (s, 2 F, CF2).488.090 3 488.089 9 h4 2.46 (d, 3H, J = 8.8 Hz, -CH3), 3.71 (s, 2H, -CH2-), 7.04-7.08 (m, 2H, Ar-H), 7.38-7.44 (m, 2H, Ar-H × 1, N-H), 7.68-7.79 (m, 3H, Ar-H) –175.08 (m, 1F, CF), –74.11 (d, 6F, J = 6.2 Hz,
CF3 × 2), –50.02 (s, 2F, CF2)474.074 6 474.074 3 h5 2.05 (s, 3H, -CH3-), 2.46 (d, 3H, J = 9.2 Hz, -CH3), 3.76 (s, 2H, -CH2-), 7.00 (br, 1H, N-H), 7.05-7.10 (m, 3H, Ar-H × 3), 7.20 (s, 1H, Ar-H), 7.68-7.69 (m, 1H, Ar-H). –174.33 (m, 1F, CF), –74.04 (d, 6F, J = 6.2 Hz,
CF3 × 2), –50.03 (s, 2F, C F2)488.090 3 488.091 0 h6 3.72 (s, 2H, -CH2-), 3.81 (s, 3H, -OCH3), 7.04-7.08 (m, 3H, Ar-H × 2, N-H × 1), 7.67-7.79 (m, 4H, Ar-H). –173.14 (m, 1F, CF), –73.62 (d, 6F, J = 6.2 Hz,
CF3 × 2), –50.01 (s, 2F, CF2).490.069 5 490.069 0 h7 1.17 (t, 6H, J = 7.2 Hz, -CH2CH3 × 2), 2.72 (q, 4H, J = 7.2 Hz, -CH2 CH3 × 2), 3.74 (s, 2H, -CH2-), 7.03-7.07 (m, 3H, Ar-H), 7.36 (s, 2H, Ar-H). 7.42 (br, 1H, N-H). –180.52 (m, 1F, CF), –75.51 (d, 6F, J = 5.6 Hz, CF3×2), –49.95 (s, 2F, CF2). 516.121 6 516.122 1 h8 1.15 (t, 3H, J = 7.2 Hz, -CH2CH3), 2.26 (s, 3H, -CH3), 2.72 (q, 2H, J = 7.2 Hz, -CH2CH3), 3.73 (s, 2H, -CH2-), 7.00-7.05 (m, 3H, Ar-H), 7.34 (s, 1H, Ar-H), 7.38 (s, 1H, Ar-H), 7.44 (br, 1H, N-H). –181.03 (m, 1F, CF), –75.55 (d, 6F, J = 5.6 Hz,
CF3 × 2), –50.00 (s, 2F, CF2).502.105 9 502.105 3 h9 3.72 (s, 2H, -CH2-), 7.02-7.07 (m, 3H, Ar-H), 7.09 (d, 1H,
J = 8.4 Hz, Ar-H), 7.14 (s, 1H, Ar-H), 7.34 (br, 1H, N-H), 8.10 (d, 1H, J = 8.4 Hz, Ar-H).–182.45 (m, 1F, CF), –75.89 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.92 (s, 2F, CF2).476.053 9 476.054 3 h10 2.25 (s, 6H, -CH3 × 2), 3.70 (s, 2H, -CH2-), 7.01-7.06 (m, 3H, Ar-H), 7.35 (s, 2H, Ar-H), 7.46 (s, br H, N-H). –182.30 (m, 1F, CF), –75.80 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.95 (s, 2F, CF2).488.090 3 488.090 7 h11 3.75 (s, 2H, -CH2-), 3.85 (s, 3H, -OCH3), 7.02-7.09 (m, 4H, Ar-H), 7.19 (d, J =8.4 Hz, 1H, Ar-H), 7.87 (br, 1H, N-H), 8.47 (d, J =8.4 Hz, 1H, Ar-H). –182.50 (m, 1F, CF), –75.90 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.98 (s, 2F, CF2).490.069 5 490.070 1 h12 1.16 (t, 3H, J = 7.2 Hz, -CH2CH3), 2.72 (q, 2H, J = 7.2 Hz, -CH2CH3), 3.71 (s, 2H, -CH2-), 7.01-7.05 (m, 3H, Ar-H), 7.32-7.47 (m, 4H, Ar-H × 3, NH). –181.81 (m, 1F, CF), –75.67 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.93 (s, 2F, CF2).488.090 3 488.091 2 h13 1.39 (t, 3H, J = 6.8 Hz, -OCH2CH3), 3.74 (s, 2H, -CH2-), 3.83 (q, 2H, J = 6.8 Hz, -OCH2CH3), 7.03-7.10 (m, 4H, Ar-H), 7.20 (d, J = 8.4 Hz, 1H, Ar-H), 7.88 (br, 1H, N-H), 8.49 (d, J = 8.4 Hz, 1H, Ar-H). –182.48 (m, 1F, CF), –75.89 (d, 6F, J = 5.6 Hz,
CF3 × 2), –49.97 (s, 2F, CF2).504.085 2 504.084 5 h14 1.11 (t, 3H, J = 7.2 Hz, -CH2CH3), 2.60 (q, 2H, J = 7.2 Hz,
-CH2 CH3), 3.72 (s, 2H, -CH2-), 7.07-7.10 (m, 2H, Ar-H), 7.41-7.48 (m, 2H, Ar-H × 1, N-H), 7.71-7.82 (m, 3H, Ar-H).–175.15 (m, 1F, CF), –74.17 (d, 6F, J = 6.2 Hz,
CF3 × 2), –50.00 (s, 2F, CF2).488.090 3 488.091 0 h15 3.74 (s, 2H, -CH2-), 3.76 (s, 3H, -OCH3), 3.80 (s, 3H, -OCH3), 7.62-7.24 (m, 6H, Ar-H × 5, N-H). –178.54 (m, 1F, CF), –75.12 (d, 6F, J = 6.0 Hz,
CF3 × 2), –50.06 (s, 2F, CF2).520.080 1 520.080 9 h16 3.75 (s, 2H, -CH2-), 3.79 (s, 6H, -OCH3 × 2), 7.68-7.33 (m, 5H, Ar-H × 5). 7.44 (br, 1H, N-H). –180.10 (m, 1F, CF), –75.52 (d, 6F, J = 5.6 Hz,
CF3 × 2), –50.03 (s, 2F, CF2).520.080 1 520.080 6 Table 3. Insecticidal activity of title compounds h1 to h16
Compd. Concentration/(mg/L) Mortality/% A. craccivora M. separata h1 500 80 0 h2 500 0 100 h3 500 70 0 h4 500 20 100 h5 500 100 0 h6 500 0 80 h7 500 90 0 h8 500 100 0 h9 500 0 0 h10 500 100 0 h11 500 60 0 h12 500 90 0 h13 500 70 0 h14 500 0 90 h15 500 80 0 h16 500 100 0 flubendiamide 500 0 100 abamectin 50 100 100 -
[1] DOLBIER JR W R. Guide to fluorine NMR for organic chemists[M]. Hoboken, New Jersey: John Wiley & Sons Inc, 2009. [2] MÜLLER K, FAEH C, DIEDERICH F. Fluorine in pharmaceuticals: looking beyond intuition[J]. Science, 2007, 317(5846): 1881-1886. [3] JESCHKE P. The unique role of halogen substituents in the design of modern agrochemicals[J]. Pest Manag Sci, 2010, 66(1): 10-27. [4] TOHNISHI M, NAKAO H, KOHNO E, et al. Phthalamide derivatives, or salt thereof agrohorticultural insecticide, and method for using the same: EP1006107A2[P]. 2000-06-07. [5] TOHNISHI M, NAKAO H, FURUYA T, et al. Flubendiamide, a novel insecticide highly active against lepidopterous insect pests[J]. J Pestic Sci, 2005, 30(4): 354-360. [6] UEHARA M, WATANABE M, KIMURA M, et al. Substituted aminoquinazolinone(thione)derivatives or salts thereof, intermediates thereof, and pest controllers and a method for using the same: EP1097932A1[P]. 2001-05-09. [7] SANPEI O, UEHARA M, NIINO N, et al. Process for producing substituted aminoquinazolinone derivative, intermediate therefor, and pest control agent: WO2004099184A1[P]. 2004-11-18. [8] FURUYA T, KANNO H, MACHIYA K, et al. Substituted pyrazolecarboxylic acid anilide derivative or salt thereof, intermediate thereof, agent for agricultural and horticultural use, and use thereof: US2009105325A1[P]. 2009-04-23. [9] NYFELER R, EHRENFREUND J. Difluorbenzodioxyl cyanopyrrole microbicidal compositions: US4705800A[P]. 1987-11-10. [10] SUTTER M. 3-Aryl-4-cyano-pyrrole derivatives, process for their preparation and microbiocidal agents containing them: EP0386681A1[P]. 1990-09-12. [11] LEADBEATER A J, NEVILL D J, STECK B, et al. CGA 173506: a novel fungicide for seed treatment[C]//Brighton Crop Protection Conference, Pests and Diseases. Thornton Heath, UK: British Crop Protection Council, 1990: 825-830. [12] LIPSHUTZ B H. The ‘Nano-to-Nano’ effect applied to organic synthesis in water[J]. Johnson Matthey Technol Rev, 2017, 61(3): 196-202. [13] LIPSHUTZ B H, GALLOU F, HANDA S. Evolution of solvents in organic chemistry[J]. ACS Sustainable Chem Eng, 2016, 4(11): 5838-5849. [14] LIPSHUTZ B H, GHORAI S, ABELA A R, et al. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature[J]. J Org Chem, 2011, 76(11): 4379-4391. [15] CARPINO L A, IMAZUMI H, EL-FAHAM A, et al. The uronium/guanidinium peptide coupling reagents: finally the true uronium salts[J]. Angew Chem Int Ed, 2002, 41(3): 441-445. [16] CARPINO L A. 1-Hydroxy-7-azabenzotriazole. An efficient peptide coupling additive[J]. J Am Chem Soc, 1993, 115(10): 4397-4398. [17] CARPINO L A, EL-FAHAM A, ALBERICIO F. Racemization studies during solid-phase peptide synthesis using azabenzotriazole-based coupling reagents[J]. Tetrahedron Lett, 1994, 35(15): 2279-2282. [18] FENNIE M W, ROTH J M. Comparing amide-forming reactions using green chemistry metrics in an undergraduate organic laboratory[J]. J Chem Educ, 2016, 93(10): 1788-1793. [19] DUNETZ J R, MAGANO J, WEISENBURGER G A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals[J]. Org Process Res Dev, 2016, 20(2): 140-177. [20] GABRIEL C M, KEENER M, GALLOU F, et al. Amide and peptide bond formation in water at room temperature[J]. Org Lett, 2015, 17(16): 3968-3971. [21] PARMENTIER M, WAGNER M K, MAGRA K, et al. Selective amidation of unprotected amino alcohols using surfactant-in-water technology: a highly desirable alternative to reprotoxic polar aprotic solvents[J]. Org Process Res Dev, 2016, 20(6): 1104-1107. [22] KRAUSE N. New surfactants for chemistry in water[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 7: 18-20. [23] LEIMGRUBER W, WICK A E. Process for the methylenation of catechols: US3922285A[P]. 1975-11-25. [24] BERKELHAMMER G, KAMESWARAN V. Insecticidal and acaricidal m-phenoxybenzyl esters of 2,2-difluoro-1,3-benzodioxole-5-(α-alkyl)acetic acids: US4105780A[P]. 1978-08-08. [25] FRANCKOWIA G, MARHOLD A, BECHEM M, et al. Circulation-active dioxyalkylenearyl-dihydropyridines: US5344944A[P]. 1994-09-06. [26] SCHLOSSER M, GORECKA J, CASTAGNETTI E. A homologous series of O- and N-functionalized 2,2-difluoro1,3-benzodioxoles: an exercise in organometallic methodology[J]. Eur J Org Chem, 2003: 452-462. [27] ONISHI M, YOSHIURA A, KOHNO E, et al. Process for the production of perfluoroalkylated aniline derivatives: EP1006102B1[P]. 2006-08-30. -