Comparative study on the susceptibility of macropteous and brachypterous Nilaparvata lugens to insecticides
-
摘要: 采用稻苗浸渍法测定了长、短翅型褐飞虱对烯啶虫胺、环氧虫啶、呋虫胺、噻虫嗪、噻虫胺、吡虫啉、毒死蜱、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性,并对其体内解毒酶活力进行了比较分析。结果表明:长翅型与短翅型褐飞虱若虫对新烟碱类杀虫剂呋虫胺、噻虫嗪、噻虫胺和吡虫啉的敏感性存在显著差异,长翅型比短翅型更敏感;相反,对于有机磷类杀虫剂毒死蜱,短翅型褐飞虱则更敏感;2种生物型对烯啶虫胺、环氧虫啶、敌敌畏、噻嗪酮、异丙威、吡蚜酮和醚菊酯的敏感性无显著差异。解毒酶相对比活力测定结果表明,长翅型褐飞虱若虫酯酶比活力显著高于短翅型,细胞色素P450单加氧酶比活力显著低于短翅型,而谷胱甘肽S-转移酶比活力无显著性差异。本研究结果可为褐飞虱的有效防控提供科学参考。Abstract: The susceptibility to twelve commonly used insecticides and detoxification enzyme activity of wing dimorphic Nilaparvata lugens were compared. The rice seedling dipping method was used for the bioassay of nitenpyram, cycloxaprid, dinotefuran, thiamethoxam, clothianidin, imidacloprid, chlorpyrifos, dichlorvos, buprofezin, isoprocarb, pymetrozine and etofenprox. The results showed that macropterous N. lugens was more susceptible to the neonicotinoid insecticides including dinotefuran, thiamethoxam, clothianidin and imidacloprid than that of the brachypterous speices. On the contrary, brachypterous N. lugens was more susceptible to the organophosphorus insecticide chlorpyrifos than the macropterous speices. While no significant difference in the susceptibility to nitenpyram, cycloxaprid, dichlorvos, buprofezin, isoprocarb, pymetrozine and etofenprox was observed between those two biotypes of N. lugens. The results of relative specific activity of the detoxification enzyme assay showed that the specific activity of esterase of macropteous N. lugens was significantly higher than that of the brachypteous speices, while the cytochrome P450 monooxygenase specific activity was significantly lower than that of brachypteous speices. The specific activity of glutathione S-transferase showed no significant difference. These results will be helpful for the chemical controlof the wing dimorphic N. lugens.
-
Key words:
- Nilaparvata lugens /
- wing dimorphism /
- insecticide /
- sensitivity /
- detoxifying enzymes
-
图 1 不同杀虫剂的短翅型致死中浓度处理后长、短翅型褐飞虱的死亡率
图中 * 表示差异显著 (t检验, P < 0.05),MS表示长翅型褐飞虱,BS表示短翅型褐飞虱。
Figure 1. Mortality of the macropterous and brachypterous N. lugens after treatment with insecticides in LC50 of brachpterous strain
* Indicates significantly different at 0.05 level by t test. MS indicate macropterous N. lugens. BS indicate brachypterous N. lugens.
图 2 长短翅型褐飞虱的解毒酶相对比活力
图中 * 表示差异显著 (t检验, P < 0.05),MS表示长翅型褐飞虱,BS表示短翅型褐飞虱。
Figure 2. Relative specific activities of detoxifying enzymes the macropterous and brachypterous N. lugens
* Indicates significantly different at 0.05 level by t test, MS indicate macropterous N. lugens. BS indicate brachypterous N. lugens.
表 1 不同杀虫剂对长、短翅型褐飞虱的毒力
Table 1. Toxicity of insecticides to the macropterous and brachypterous N. lugens
杀虫剂
Insecticide长翅型品系 Macropterous strain 短翅型品系 Brachypterous strain 致死中浓度
(95% 置信区间)
LC50 value (95% confidence
limits)/(mg/L)斜率 ± 标准误
Slope ± SE卡方值 (自由度)
χ2 (df)致死中浓度
(95%置信区间)
LC50 value (95% confidence
limits)/(mg/L)斜率 ± 标准误
Slope ± SE卡方值 (自由度)
χ2 (df)烯啶虫胺 nitenpyram 0.279 (0.141~0.574) 2.18 ± 0.28 10.5 (3) 0.343 (0.249~0.475) 2.72 ± 0.38 1.17 (2) 环氧虫啶 cycloxaprid 3.00 (2.44~3.72) 2.19 ± 0.29 1.80 (3) 3.02 (1.73~4.96) 2.23 ± 0.35 1.29 (2) 呋虫胺* dinotefuran 0.425 (0.227~0.738) 2.03 ± 0.31 4.73 (3) 1.47 (1.33~1.61) 2.65 ± 0.40 8.36 (2) 噻虫嗪* thiamethoxam 1.19 (1.06~1.33) 2.45 ± 0.40 0.269 (3) 4.54 (2.64~7.81) 1.57 ± 0.25 3.81 (3) 噻虫胺* clothianidin 0.492 (0.395~0.603) 1.27 ± 0.20 0.709 (4) 1.15 (0.772~1.62) 1.62 ± 0.23 1.37 (3) 吡虫啉* imidacloprid 9.79 (8.43~11.4) 0.886 ± 0.199 9.02 (3) 38.4 (27.5~53.6) 1.85 ± 0.21 4.06 (4) 毒死蜱* chlorpyrifos 22.4 (16.9~29.9) 1.94 ± 0.43 0.320 (2) 10.7 (6.00~19.0) 3.02 ± 0.42 4.10 (2) 敌敌畏 dichlorvos 128 (104~158) 2.28 ± 0.32 1.09 (3) 101 (89.8~114) 2.42 ± 0.30 0.430 (3) 噻嗪酮 buprofezin 6.17 (4.94~7.68) 2.36 ± 0.32 1.07 (3) 6.51 (6.04~7.02) 3.00 ± 0.36 0.208 (3) 异丙威 isoprocarb 48.2 (34.4~67.2) 2.77 ± 0.38 3.01 (3) 54.0 (36.1~80.8) 2.50 ± 0.39 1.56 (2) 吡蚜酮 pymetrozine 397 (231~621) 2.04 ± 0.32 3.34 (3) 376 (198~717) 0.954 ± 0.174 2.01 (3) 醚菊酯 etofenprox 117 (79.9~172) 1.49 ± 0.22 0.469 (2) 136 (93.8~197) 2.39 ± 0.30 3.89 (3) *表示长翅型与短翅型褐飞虱对药剂的敏感性差异显著 (P < 0.05)。*Indicates significant differences in susceptibility to insecticides between macropterous and brachypterous N. lugens.. -
[1] LIN X D, YAO Y, WANG B, et al. FOXO links wing form polyphenism and wound healing in the brown planthopper, Nilaparvata lugens[J]. Insect Biochem Mol Biol, 2016, 70: 24-31. doi: 10.1016/j.ibmb.2015.12.002 [2] DENNO R F. The evolution of dispersal polymorphisms in insects: The influence of habitats, host plants and mates[J]. Res Popul Ecol, 1994, 36(2): 127-135. doi: 10.1007/BF02514927 [3] ROFF D A. The cost of being able to fly: a study of wing polymorphism in two species of crickets[J]. Oecologia, 1984, 63(1): 30-37. doi: 10.1007/BF00379781 [4] MACKAY P A, WELLINGTON W G. A comparison of the reproductive patterns of apterous and alate virginoparous Acyrthosiphon pisum (Homoptera: Aphididae)[J]. Can Entomol, 1975, 107(11): 1161-1166. doi: 10.4039/Ent1071161-11 [5] BRISSON J A, ISHIKAWA A, MIURA T. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs[J]. Insect Mol Biol, 2010, 19(Suppl 2): 63-73. [6] XUE J, ZHANG X Q, XU H J, et al. Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea[J]. Insect Biochem Mol Biol, 2013, 43(5): 433-443. doi: 10.1016/j.ibmb.2013.02.006 [7] WANG X Y, YANG Z Q, SHEN Z R, et al. Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (Hom., Aphididae)[J]. J Appl Entomology, 2008, 132(2): 135-142. doi: 10.1111/jen.2008.132.issue-2 [8] 张小磊, 廖逊, 毛凯凯, 等. 湖北稻区褐飞虱田间种群对常用杀虫剂抗药性监测[J]. 昆虫学报, 2016, 59(11): 1222-1231.ZHANG X L, LIAO X, MAO K K, et al. Resistance monitoring of the field populations of the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) to common insecticides in rice production areas of Hubei Province, central China[J]. Acta Entomologica Sinica, 2016, 59(11): 1222-1231. [9] 高希武, 彭丽年, 梁帝允. 对 2005 年水稻褐飞虱大发生的思考[J]. 植物保护, 2006, 32(2): 23-25. doi: 10.3969/j.issn.0529-1542.2006.02.006GAO X W, PENG L N, LIANG D Y. Factors causing the outbreak of brown planthopper (BHP), Nilapavata lugens Stål in China in 2005[J]. Plant Prot, 2006, 32(2): 23-25. doi: 10.3969/j.issn.0529-1542.2006.02.006 [10] 夏敬源. 我国重大农业生物灾害暴发现状与防控成效[J]. 中国植保导刊, 2008, 28(1): 5-9. doi: 10.3969/j.issn.1672-6820.2008.01.001XIA J Y. Outbreaks of major agricultural pests and the control achievements in China[J]. China Plant Protection, 2008, 28(1): 5-9. doi: 10.3969/j.issn.1672-6820.2008.01.001 [11] ZHANG X L, MAO K K, LIAO X, et al. Fitness cost of nitenpyram resistance in the brown planthopper Nilaparvata lugens[J]. J Pest Sci, 2018, 91(3): 1145-1151. doi: 10.1007/s10340-018-0972-2 [12] XU H J, XUE J, LU B, et al. Two insulin receptors determine alternative wing morphs in planthoppers[J]. Nature, 2015, 519(7544): 464-467. doi: 10.1038/nature14286 [13] BAO H B, LIU S H, GU J H, et al. Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens[J]. Pest Manag Sci, 2009, 65(2): 170-174. doi: 10.1002/ps.v65:2 [14] ZHANG X L, LIAO X, MAO K K, et al. Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012-2014[J]. Pestic Biochem Physiol, 2016, 132: 13-20. doi: 10.1016/j.pestbp.2015.10.003 [15] VAN ASPEREN K. A study of housefly esterases by means of a sensitive colorimetric method[J]. Journal of Insect Physiology, 1962, 8(4): 401-416. doi: 10.1016/0022-1910(62)90074-4 [16] HAN Y C, YU W T, ZHANG W Q, et al. Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera[J]. Pestic Biochem Physiol, 2015, 121: 129-135. doi: 10.1016/j.pestbp.2014.12.004 [17] LI X X, LI R, ZHU B, et al. Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.)[J]. Pest Manag Sci, 2018, 74(6): 1386-1393. doi: 10.1002/ps.2018.74.issue-6 [18] 常菊花, 何月平. 应用 Polo 软件进行农药毒力数据的比较分析[J]. 浙江农业学报, 2014, 26(6): 1552-1557. doi: 10.3969/j.issn.1004-1524.2014.06.26CHANG J H, HE Y P. The analysis for comparing the pesticide toxicity data using the Polo software[J]. Acta Agriculturae Zhejiangensis, 2014, 26(6): 1552-1557. doi: 10.3969/j.issn.1004-1524.2014.06.26 [19] 朱道弘. 昆虫翅型分化的调控及翅多型性的进化[J]. 昆虫知识, 2009, 46(1): 11-16. doi: 10.3969/j.issn.0452-8255.2009.01.003ZHU D H. Regulatory mechanism and evolution of insect wing polymorphism[J]. Chinese Bull Entomol, 2009, 46(1): 11-16. doi: 10.3969/j.issn.0452-8255.2009.01.003 [20] 臧连生, 傅荣幸, 刘树生, 等. B 型与浙江非 B 型烟粉虱药剂敏感性的比较[J]. 昆虫知识, 2006, 43(2): 207-210. doi: 10.3969/j.issn.0452-8255.2006.02.016ZANG L S, FU R X, LIU S S, et al. Comparison of susceptibility to insecticides between the B biotype and a non-B biotype of Bemisia tabaci in Zhejiang[J]. Chinese Bull Entomol, 2006, 43(2): 207-210. doi: 10.3969/j.issn.0452-8255.2006.02.016 [21] 吴向军, 黄彰欣. 不同虫态的褐稻虱对杀虫剂的毒力及毒理研究[J]. 广东农业科学, 1996, 23(1): 34-36.WU X J, HUANG Z X. Study on toxicity and toxicology of different stages and instars of Nilaparvata lugens to insecticides[J]. Guangdong Agric Sci, 1996, 23(1): 34-36. [22] 苗建忠, 马伏宁, 曾鑫年. 红火蚁不同虫态个体对杀虫剂的敏感性研究[C]// 全国生物入侵学术研讨会. 2008.MIAO J Z, MA F N, ZENG X N. Study on the susceptibility of different stages and instars of Solenopsis invicta to insecticides[C]// National Biological Invasion Symposium. 2008. [23] HECKEL D G. Ecology. insecticide resistance after silent spring[J]. Science, 2012, 337(6102): 1612-1614. doi: 10.1126/science.1226994 [24] SCHARF M. Examination of esterases from insecticide resistant and susceptible strains of the German cockroach, Blattella germanica (L.)[J]. Insect Biochemistry and Molecular Biology, 1997, 27(6): 489-497. doi: 10.1016/S0965-1748(97)00023-4 [25] ZHAO G Y, LIU W, KNOWLES C O. Mechanisms associated with diazinon resistance in western flower thrips[J]. Pesticide Biochemistry and Physiology, 1994, 49(1): 13-23. doi: 10.1006/pest.1994.1030 [26] BASS C, CARVALHO R A, OLIPHANT L, et al. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens[J]. Insect Mol Biol, 2011, 20(6): 763-773. doi: 10.1111/imb.2011.20.issue-6 [27] DING Z P, WEN Y C, YANG B J, et al. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1[J]. Insect Biochem Mol Biol, 2013, 43(11): 1021-1027. doi: 10.1016/j.ibmb.2013.08.005 [28] GARROOD W T, ZIMMER C T, GORMAN K J, et al. Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia[J]. Pest Manag Sci, 2016, 72(1): 140-149. doi: 10.1002/ps.3980 [29] 王志超, 康志娇, 史雪岩, 等. 有机磷类杀虫剂代谢机制研究进展[J]. 农药学学报, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01WANG Z C, KANG Z J, SHI X Y, et al. Research progresses on the metabolic mechanisms of organophosphate insecticides[J]. Chin J Pestic Sci, 2015, 17(1): 1-14. doi: 10.3969/j.issn.1008-7303.2015.01.01 [30] LIAO X, MAO K K, ALI E, et al. Temporal variability and resistance correlation of sulfoxaflor susceptibility among Chinese populations of the brown planthopper Nilaparvata lugens (Stål)[J]. Crop Protection, 2017, 102: 141-146. doi: 10.1016/j.cropro.2017.08.024 [31] SARKAR M, BHATTACHARYYA I K, BORKOTOKI A, et al. Insecticide resistance and detoxifying enzyme activity in the principal bancroftian filariasis vector, Culex quinquefasciatus, in northeastern India[J]. Med Vet Entomol, 2009, 23(2): 122-131. doi: 10.1111/mve.2009.23.issue-2 [32] 王彦华, 苍涛, 赵学平, 等. 褐飞虱和白背飞虱对几类杀虫剂的敏感性[J]. 昆虫学报, 2009, 52(10): 1090-1096. doi: 10.3321/j.issn:0454-6296.2009.10.005WANG Y H, CANG T, ZHAO X P, et al. Susceptibility to several types of insecticides in the rice planthoppers Nilaparvata lugens(Stål) and Sogatella furcifera(Horváth)(Homoptera: Delphacidae)[J]. Acta Entomologica Sinica, 2009, 52(10): 1090-1096. doi: 10.3321/j.issn:0454-6296.2009.10.005 -