Extraction and identification of herbicidal active substances in cottonseed hulls
-
摘要: 为了开发利用棉籽壳中的除草活性物质,分别以无水乙醇、正丁醇、石油醚和乙酸乙酯为溶剂,采用索氏提取法对棉籽壳中的活性物质进行了提取,并对各溶剂粗提物进行了除草活性测定。结果发现:用无水乙醇提取的粗提物对稗草生长的抑制活性最高,经气相色谱-质谱(GC-MS)联用分析,发现该粗提物中主要含有甘油、三环己基3-烯-6-辛酮、4-乙烯基-2-甲氧基苯酚、(邻甲基苯酚)-2-溴-2氯-乙酰酯、十四酸、十四酸乙酯、十六烷酸、辛酸异戊酯和亚油酸9种化合物。进一步的除草活性测定结果表明,亚油酸、辛酸异戊酯、4-乙烯基-2-甲氧基苯酚和(邻甲基苯酚)-2-溴-2氯-乙酰酯4种化合物对稗草表现出一定的除草活性,其中亚油酸活性最强,其IC50值为14.5 mg/L。Abstract: In order to investigate the potential application of the herbicidal active substances in the cottonseed hull, the herbicidal active substances of the cotton husk was extracted by Soxhlet extraction using anhydrous ethanol, n-butanol, petroleum ether and ethyl acetate were selected. The activities of the crude extracts were determined. It was found that anhydrous ethanol was the best solvent for the extraction of the active ingredients from cottonseed hull which could inhibit Echinochloa crusgalli (L.) Beauv.. Based on the gas chromatography-mass spectrography(GC-MS)analysis, 9 main compounds in the ethanol extract of cottonseed hull were detected, including glycerol, tricyclohexyl 3-ene-6-octanone, 4-vinyl-2-methoxyphenol, (o-methylphenol) 2-bromo-2-chloroacetyl ester, myristic acid, ethyl myristate, palmitic acid, isoamyl octanoate and linoleic acid. Further herbicidal activity assays showed that linolenic acid, isoamyl octanoate, 4-vinyl-2-methoxyphenol, and myristic acid were the main components in cottonseed hull extract with certain herbicidal activities. Linoleic acid has the highest inhibitory effect against E. crusgalli, with the IC50 value for the inhibition of the growth of E. crusgalli was 14.5 mg/L.
-
表 1 不同溶剂粗提物对稗草的除草活性
Table 1. Herbicidal activities of the extracts obtained using four organic solvents against Echinochloa crusgalli
粗提物
Extract回归方程
Regression equationIC50 值
IC50 value/(g/L)95% 置信限
95% Confidence limit/(g/L)相关系数
Correlation coefficient, r无水乙醇粗提物
Ethanol extracty = 4.231 4 + 1.450 2x 3.38 2.88~3.97 0.990 0 正丁醇粗提物
n-Butanol extracty = 4.274 6 + 0.880 4x 6.66 4.96~8.95 0.973 3 石油醚粗提物
Petroleum ether extracty = 3.884 2 + 0.699 8x 39.3 26.1~59.2 0.989 6 乙酸乙酯粗提物
Ethyl acetate extracty = 4.048 3 + 0.735 6x 19.7 13.1~29.5 0.982 2 表 2 棉籽壳无水乙醇粗提物主要化合物GC-MS联用鉴定结果
Table 2. Results of the GC-MS analysis of cottonseed hulls ethanoli extracts
峰号
Peaks保留时间
Retention time/min分子式
Molecular formula相对分子质量
Molecular weight相对含量(体积分数)/%
Relative content(%V)比对后化合物名称
Chemical compound after comparison1 9.190 C3H8O3 92 1.77 甘油
glycerol2 12.125 C11H12O3 192 0.03 三环己基-3-烯-6-辛酮
tricyclohexyl 3-ene-6-octanone3 13.545 C9H10O2 150 0.05 4-乙烯基-2-甲氧基苯酚
4-vinyl-2-methoxyphenol4 16.246 C10H8BrClO3 290 0.15 (邻甲基苯酚)-2-溴-2氯-乙酰酯
(o-methylphenol)-2-bromo-2-chloroacetyl ester5 17.567 C14H28O2 228 0.33 十四酸
tetradecanoic acid6 19.531 C16H32O2 256 0.07 十四酸乙酯
ethyl myristate7 19.938 C16H32O2 256 28.24 十六烷酸
hexadecanoic acid8 20.731 C13H26O2 214 0.13 辛酸异戊酯
isoamyl octanate9 22.675 C18H32O2 280 69.23 亚油酸
linoleic acid表 3 无水乙醇粗提物中主要化合物对稗草的除草活性
Table 3. Herbicidal activities of major compounds in the ethanol extract against E. crusgalli
化合物
Compound回归方程
Regression equationIC50 值
IC50 value/(mg/L)95% 置信限
95% Confidence limit/
(mg/L)相关系数
Correlation coefficient, r亚油酸
linoleic acidy = 3.269 6 + 1.491 5x 14.5 12.9~16.2 0.995 5 辛酸异戊酯
isoamyl octanatey = 3.338 9 + 1.039 4x 39.7 31.6~49.7 0.986 3 4-乙烯基-2-甲氧基苯酚
4-vinyl-2-methoxyphenoly = 3.378 9 + 0.900 5x 63.1 46.1~86.5 0.983 4 (邻甲基苯酚)-2-溴-2氯-乙酰酯
(o-methylphenol)
-2-bromo-2-chloroacetyl estery = 3.277 6 + 0.928 2x 71.7 49.5~104 0.979 8 氰氟草酯
cyhalofop-butyly = 4.686 6 + 1.371 7x 1.69 1.51~1.89 0.995 2 -
[1] 滕春红, 陶波, 吕志超, 等. 植物源除草剂研究进展[J]. 农药, 2013, 52(9): 632-634.TENG C H, TAO B, LYU Z C, et al. Review on research progress of botanical herbicides[J]. Agrochemicals, 2013, 52(9): 632-634. [2] 单承莺, 马世宏, 张卫明. 我国植物源农药研究进展[J]. 中国野生植物资源, 2011, 30(6): 14-18. doi: 10.3969/j.issn.1006-9690.2011.06.003SHAN C Y, MA S H, ZHANG W M. Review on research and development of botanical pesticides in China[J]. Chinese Wild Plant Resources, 2011, 30(6): 14-18. doi: 10.3969/j.issn.1006-9690.2011.06.003 [3] VYVYAN J R. Allelochemicals as leads for new herbicides and agrochemicals[J]. Tetrahedron, 2002, 58(9): 1631-1646. doi: 10.1016/S0040-4020(02)00052-2 [4] JUN W, HUA S, CHEN H, et al. Allelochemicals extracted from Eleocharis dulcis and their inhibitory effects on Microcystis aeruginosa[J]. J Chem Eng Process Technol, 2018, 9(2). [5] SAHA D, MARBLE S C, PEARSON B J. Allelopathic effects of common landscape and nursery mulch materials on weed control[J]. Front Plant Sci, 2018, 9: 733. doi: 10.3389/fpls.2018.00733 [6] 闫超, 陈敏, 周颖, 等. 石蝉草乙醇提取物除草活性初探[J]. 植物保护, 2018, 44(2): 199-203.YAN C, CHEN M, ZHOU Y, et al. Herbicidal activity of the ethanol extracts from Peperomia dindygulensis[J]. Plant Prot, 2018, 44(2): 199-203. [7] 郭全信. 把短纤维从棉籽壳中分离出的方法: CN1049201A[P/OL]. 1991-02-13. http://www.pss-system.gov.cn/sipopublicsearch/patentsearch/showViewList-jumpToView.shtmlGUO Q X. Method for separating short fibers from cottonseed hulls: CN1049201A[P/OL]. 1991-02-13. http://www.pss-system.gov.cn/sipopublicsearch/patentsearch/showViewList-jumpToView.shtml [8] 韩美玲, 杜娟, 安琪, 等. 不同栽培基质对糙皮侧耳不同发酵方式下产漆酶活性的影响[J]. 菌物学报, 2018, 37(8): 1100-1108.HAN M L, DU J, AN Q, et al. Effects of different culture substrate on laccase activities of Pleurotus ostreatus under different fermentation conditions[J]. Mycosystema, 2018, 37(8): 1100-1108. [9] 曾莹, 杨明, 曾灿伟, 等. 发酵棉籽壳生产饲用复合酶的初步研究[J]. 中国油脂, 2007, 32(4): 62-64. doi: 10.3321/j.issn:1003-7969.2007.04.017ZENG Y, YANG M, ZENG C W, et al. Production of feed compound enzymes from cottonseed husk by fermentation[J]. China Oils and Fats, 2007, 32(4): 62-64. doi: 10.3321/j.issn:1003-7969.2007.04.017 [10] 王俏. 棉籽壳水解-氧化-水解法制取草酸新工艺研究[J]. 中国油脂, 2004, 29(9): 31-33. doi: 10.3321/j.issn:1003-7969.2004.09.009WANG Q. Preparation of oxalic acid from cottonseed hull by hydrolysis-oxidation-hydrolysis[J]. China Oils and Fats, 2004, 29(9): 31-33. doi: 10.3321/j.issn:1003-7969.2004.09.009 [11] 高为民. 棉籽壳与木糠不同配比栽培秀珍菇效益比较试验[J]. 现代农业科技, 2018(10): 54-55. doi: 10.3969/j.issn.1007-5739.2018.10.035GAO W M. Comparative experiment on the benefits of different cultivation of cottonseed hulls and mudus[J]. Xiandai Nongye Keji, 2018(10): 54-55. doi: 10.3969/j.issn.1007-5739.2018.10.035 [12] RADCLIFFE J D, CZAJKA-NARINS D M, IMRHAN V. Fatty acid composition of serum, adipose tissue, and liver in rats fed diets containing corn oil or cottonseed oil[J]. Plant Foods Human Nutr, 2004, 59(2): 73-77. doi: 10.1007/s11130-004-0029-y [13] 张城嘉, 李祖任, 刘祥英. 15 种农副产物醇提物的除草活性生物测定[J]. 湖南农业科学, 2018(6): 69-71.ZHANG C J, LI Z R, LIU X Y. Herbicidal activities of 15 agricultural by-product ethanol extracts[J]. Hunan Agric Sci, 2018(6): 69-71. [14] 郝双红, 魏艳, 张璟, 等. 中国粗榧枝叶提取物分离及其对反枝苋的除草活性[J]. 农药学学报, 2006, 8(1): 91-94. doi: 10.3321/j.issn:1008-7303.2006.01.018HAO S H, WEI Y, ZHANG J, et al. Herbicidal activity of twig and needle extracts from Cephalotaxus sinensis against Amaranthus retroflexus[J]. Chin J Pestic Sci, 2006, 8(1): 91-94. doi: 10.3321/j.issn:1008-7303.2006.01.018 [15] CHOTSAENG N, LAOSINWATTANA C, CHAROENYING P. Herbicidal activities of some allelochemicals and their synergistic behaviors toward Amaranthus tricolor L[J]. Molecules, 2017, 22(11): E1841. doi: 10.3390/molecules22111841 [16] KONG C H, ZHANG S Z, LI Y H, et al. Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals[J]. Nat Commun, 2018, 9(1): 3867. doi: 10.1038/s41467-018-06429-1 [17] BOONMEE S, KATO N H. Allelopathic activity of Acacia concinna pod extracts[J]. Emirates Journal of Food and Agriculture, 2017, 29(4): 250-255. [18] 韩丽梅, 沈其荣, 鞠会艳, 等. 大豆地上部水浸液的化感作用及化感物质的鉴定[J]. 生态学报, 2002, 22(9): 1425-1432. doi: 10.3321/j.issn:1000-0933.2002.09.009HAN L M, SHEN Q R, JU H Y, et al. Allelopathy of the aqueous extracts of above ground parts of soybean and the identification of the allelochemicals[J]. Acta Ecologica Sinica, 2002, 22(9): 1425-1432. doi: 10.3321/j.issn:1000-0933.2002.09.009 [19] 唐成林, 罗夫来, 赵致, 等. 半夏植株腐解液对 8 种作物的化感作用及化感物质成分分析[J]. 核农学报, 2018, 32(8): 1639-1648.TANG C L, LUO F L, ZHAO Z, et al. The allelopathy of Pinellia ternata decomposed liquid on 8 crops and composition of allelochemicals[J]. J Nucl Agric Sci, 2018, 32(8): 1639-1648. [20] 钱振官, 沈国辉, 李涛, 等. 植物源除草剂壬酸除草活性及其应用技术的研究[J]. 上海农业学报, 2010, 26(2): 1-4. doi: 10.3969/j.issn.1000-3924.2010.02.001QIAN Z G, SHEN G H, LI T, et al. Study on the herbicidal activity and applied technology of botanical pelargonic acid[J]. Acta Agriculturae Shanghai, 2010, 26(2): 1-4. doi: 10.3969/j.issn.1000-3924.2010.02.001 [21] MIYUKI F, YASUKO T, TAKANE F, et al. Phytotoxic activity of middle-chain fatty acids I: effects on cell constituents[J]. Pest Biochem Physiol, 2004, 80(3): 143-150. doi: 10.1016/j.pestbp.2004.06.011 [22] 李祖任, 黄勤勤, 彭琼, 等. 植物源羊脂酸除草活性及其响应机制[J]. 植物保护学报, 2018, 45(5): 1161-1167.LI Z R, HUANG Q Q, PENG Q, et al. Herbicidal activity and response mechanism of botanical caprylic acid[J]. J Plant Prot, 2018, 45(5): 1161-1167. [23] 张庭廷, 郑春艳, 何梅, 等. 亚油酸对铜绿微囊藻的抑制机理[J]. 中国环境科学, 2009, 29(4): 419-424. doi: 10.3321/j.issn:1000-6923.2009.04.015ZHANG T T, ZHENG C Y, HE M, et al. The inhibitory mechanism of linoleic acid on Microcystis aeruginosa[J]. China Environ Sci, 2009, 29(4): 419-424. doi: 10.3321/j.issn:1000-6923.2009.04.015 -