In vitro bioactivities of four fungicides including carbendazim against Botrytis cinerea in tobacco
-
摘要: 采用菌丝生长速率法和孢子萌发法,分别测定了烟草灰霉病菌对多菌灵、嘧霉胺、异菌脲和丙环唑的敏感性,同时通过离体叶片法评估了这4种杀菌剂对烟草灰霉病的保护和治疗作用。结果表明:4种杀菌剂对烟草灰霉病菌的菌丝生长和孢子萌发均表现出了不同程度的抑制活性,并对灰霉病同时具有保护和治疗作用。其中多菌灵对菌丝生长的抑制活性最强,EC50平均值为0.06 mg/L,其次为丙环唑、嘧霉胺和异菌脲,EC50平均值分别为0.36、0.53和0.60 mg/L;异菌脲和丙环唑对烟草灰霉病菌孢子萌发的抑制活性较强,EC50平均值分别为2.05和2.21 mg/L,其次为嘧霉胺和多菌灵,EC50平均值分别为10.56和131.23 mg/L。异菌脲和多菌灵对灰霉病的保护作用和治疗作用均最强,当药剂质量浓度为200 mg/L时,其对离体叶片的保护和治疗作用防效分别为100%、100%和98.3%、91.8%。研究结果可为烟草灰霉病的科学防治提供依据。Abstract: The in vitro bioactivities of four fungicides (carbendazim, iprodione, pyrimethanil, propiconazole) against Botrytis cinerea from tobacco were investigated using mycelial growth rate method and spore germination method. Their protective and curative activities against grey mould on detached leaves were investigated. The results showed that the four fungicides had different inhibitory activities. The fungicide with the highest toxic potential against the mycelial growth of B. cinerea was carbendazim with average EC50 value of 0.06 mg/L, followed by propiconazole, pyrimethanil and iprodione, with average EC50 values of 0.36, 0.53 and 0.60 mg/L, respectively. The EC50 values of fungicides against spore germination were as followings: iprodione (2.05 mg/L), propiconazole (2.21 mg/L), pyrimethanil (10.56 mg/L) and carbendazim (131.23 mg/L). The most effective fungicide with the best protective and curative activities was iprodione and carbendazim. At the concentration of 200 mg/L, protective control efficacies were both 100% and the curative efficacies were 98.3% and 91.8%, respectively. This study provided scientific basis for guiding the control of tobacco grey mould.
-
Key words:
- tobacco grey mould /
- Botrytis cinerea /
- carbendazim /
- pyrimethanil /
- iprodione /
- propiconazole /
- sensitivity /
- control efficacy
-
表 1 供试4种杀菌剂对烟草灰霉病菌菌丝生长的抑制作用
Table 1. Inhibitory effects of four fungicides against the mycelium growth of B. cinerea from tobacco
杀菌剂
Fungicide菌株
Strain毒力回归方程
Virulence regression
equation相关系数
Correlation
coefficient, rEC50/(mg/L) EC90/(mg/L) EC50 平均值
Average
EC50/(mg/L)EC90 平均值
Average
EC90/(mg/L)多菌灵
carbendazim3 y = 1.09x + 6.80 0.97 0.02 0.33 0.06 ± 0.04 b 0.97 ± 0.86 c 3-2 y = 1.04x + 6.15 0.97 0.08 1.34 4 y = 0.99x + 5.98 0.95 0.10 2.01 6 y = 1.68x + 7.43 0.99 0.04 0.21 异菌脲
iprodione3 y = 0.82x + 5.26 0.98 0.48 17.85 0.60 ± 0.25 a 10.53 ± 5.98 ab 3-2 y = 1.52x + 5.49 0.98 0.47 3.30 4 y = 0.94x + 5.29 0.98 0.49 11.33 6 y = 1.28x + 5.02 0.97 0.97 9.64 嘧霉胺
pyrimethanil3 y = 1.66x + 5.22 0.96 0.73 4.37 0.53 ± 0.28 a 3.68 ± 0.90 bc 3-2 y = 1.73x + 5.15 0.89 0.22 3.24 4 y = 1.11x + 5.72 0.91 0.81 4.47 6 y = 1.52x + 5.65 0.93 0.37 2.62 丙环唑
propiconazole3 y = 0.79x + 5.55 0.98 0.69 30.73 0.36 ± 0.27 ab 13.34 ± 11.97 a 3-2 y = 0.78x + 5.12 0.98 0.21 8.40 4 y = 0.61x + 5.65 0.98 0.09 10.67 6 y = 1.45x + 5.49 0.98 0.46 3.54 注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间存在显著性差异 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05. 表 2 供试4种杀菌剂对烟草灰霉病菌孢子萌发的抑制作用
Table 2. Inhibitory effects of four fungicides against the spore germination of B. cinerea from tobacco
杀菌剂
Fungicide菌株
Strain毒力回归方程
Virulence regression
equation相关系数
Correlation
coefficient, rEC50/(mg/L) EC90/(mg/L) EC50 平均值
Average
EC50/(mg/L)EC90 平均值
Average
EC90/(mg/L)多菌灵
carbendazim3 y = 3.62x ‒ 1.85 0.98 78.31 177.03 131.23 ± 45.16 a 240.00 ± 45.24 a 3-2 y = 4.75x ‒ 5.04 0.98 130.31 242.60 4 y = 4.21x ‒ 3.87 0.98 127.60 257.06 6 y = 4.13x ‒ 3.85 0.99 188.71 283.31 异菌脲
iprodione3 y = 5.69x + 2.47 0.94 2.79 4.69 2.05 ± 0.57 b 3.64 ± 0.83 c 3-2 y = 4.57x + 4.25 0.98 1.46 2.79 4 y = 5.16x + 3.27 0.96 2.16 3.85 6 y = 4.93x + 3.78 0.98 1.77 3.22 嘧霉胺
pyrimethanil3 y = 2.04x + 2.67 0.98 13.96 59.36 10.56 ± 7.23 b 44.73 ± 28.62 b 3-2 y = 1.73x + 4.09 0.99 3.36 18.55 4 y = 1.99x + 3.57 0.99 5.26 23.18 6 y = 2.15x + 2.22 0.97 19.67 77.81 丙环唑
propiconazole3 y = 6.32x + 2.93 0.99 2.13 3.40 2.21 ± 0.48 b 4.73 ± 1.18 c 3-2 y = 3.34x + 4.23 0.96 1.70 4.11 4 y = 3.16x + 3.94 0.94 2.17 5.52 6 y = 4.05x + 3.16 0.98 2.85 5.90 注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间存在显著性差异 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05. 表 3 供试4种杀菌剂对离体叶片上烟草灰霉病的保护和治疗作用防效
Table 3. Protective and curative effects of four fungicides against tobacco grey mould on detached leaves
杀菌剂
Fungicide作用方式
Mode of action防效 Control effects/% 3.13 mg/L 12.5 mg/L 50 mg/L 200 mg/L 800 mg/L 多菌灵 carbendazim 保护作用 Protective 58.36 ± 3.43 b 84.36 ± 2.42 a 98.76 ± 1.14 a 100 ± 0 a 100 ± 0 a 治疗作用 Curative 40.45 ± 2.86 c 74.34 ± 2.45 b 95.32 ± 2.43 a 100 ± 0 a 100 ± 0 a 异菌脲 iprodione 保护作用 Protective 66.81 ± 2.65 a 85.92 ± 2.43 a 92.86 ± 1.76 a 98.32 ± 1.45 a 100 ± 0 a 治疗作用 Curative 65.76 ± 1.12 a 83.61 ± 0.65 a 89.50 ± 0.46 b 91.81 ± 2.34 b 100 ± 0 a 嘧霉胺 pyrimethanil 保护作用 Protective 51.76 ± 3.58 b 64.26 ± 2.54 c 76.76 ± 2.43 c 91.20 ± 3.26 b 100 ± 0 a 治疗作用 Curative 5.46 ± 2.24 d 57.75 ± 3.34 cd 59.15 ± 3.56 d 62.68 ± 3.42 c 69.37 ± 3.12 b 丙环唑 propiconazole 保护作用 Protective 58.80 ± 3.48 b 65.49 ± 2.67 c 78.70 ± 1.48 c 94.72 ± 2.63 b 100 ± 0 a 治疗作用 Curative 10.56 ± 3.12 d 61.27 ± 1.34 c 64.61 ± 3.75 d 65.32 ± 4.36 c 74.82 ± 3.24 b 注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间差异显著 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05. -
[1] ELMER P A G, MICHAILIDES T J. Epidemiology of Botrytis cinerea in orchard and vine crops[M]//ELMER P A G, MICHAILIDES T J. eds. Botrytis: biology, pathology and control. Dordrecht: Springer Netherlands, 2007: 243-272. [2] WILLIAMSON B, TUDZYNSKI B, TUDZYNSKI P, et al. Botrytis cinerea: the cause of grey mould disease[J]. Mol Plant Pathol, 2007, 8(5): 561-580. doi: 10.1111/mpp.2007.8.issue-5 [3] WANG H C, LI W H, WANG M S, et al. First report of Botrytis cinerea causing gray mold of tobacco in Guizhou Province of China[J]. Plant Dis, 2011, 95(5): 612. [4] WANG H C, WANG J, LI L C, et al. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate[J]. Sci Rep, 2016, 6: 31025. doi: 10.1038/srep31025 [5] 卢燕回, 谭海文, 袁高庆, 等. 烟草灰霉病病原鉴定及其生物学特性[J]. 中国烟草学报, 2012, 18(3): 61-66. doi: 10.3969/j.issn.1004-5708.2012.03.011LU Y H, TAN H W, YUAN G Q, et al. Identification and evaluation in biological characteristics of tobacco grey mould pathogen[J]. Acta Tabacaria Sinica, 2012, 18(3): 61-66. doi: 10.3969/j.issn.1004-5708.2012.03.011 [6] LEROUX P. Chemical control of Botrytis and its resistance to chemical fungicides[M]//LEROUX P. eds. Botrytis: biology, pathology and control. Dordrecht: Springer Netherlands, 2007: 195-222 [7] SONG Y Y, HE L M, CHEN L L, et al. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea[J]. Eur J Plant Pathol, 2016, 146(2): 337-347. doi: 10.1007/s10658-016-0920-z [8] CUI W, BEEVER R E, PARKES S L, et al. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea)[J]. Fungal Genet Biol, 2002, 36(3): 187-198. doi: 10.1016/S1087-1845(02)00009-9 [9] 方中达. 植物病理学方法[M]. 3 版. 北京: 中国农业出版社, 1998: 122-125.FANG Z D. Plant pathology research methods[M]. 3rd Ed. Beijing: China Agriculture Press, 1998: 122-125. [10] 孙广宇, 宗兆锋. 植物病理学实验手册 [M]. 北京: 中国农业出版社, 2001: 141-142.SUN G Y, ZONG Z F. Laboratory manual of plant pathology [M]. Beijing: China Agriculture Press, 2001: 141-142. [11] MARKOGLOU A N, ZIOGAS B N. SBI-fungicides: fungicidal effectiveness and resistance in Botrytis cinerea[J]. Phytopathologia Mediterranea, 2002, 41(2): 120-130. [12] 徐超. 福建省烟草灰霉病菌对 5 种药剂的敏感性测定及药剂筛选[D]. 福建农林大学, 2008.XU C. Sensitivity to 5 fungicides of Botrytis cinerea of tobacco and screening on fungicides to the pathogens in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008. [13] 丁中, 刘峰, 王会利, 等. 番茄灰霉菌的多重抗药性研究[J]. 山东农业大学学报 (自然科学版), 2001, 32(4): 452-456.DING Z, LIU F, WANG H L, et al. Studies on multiple fungicide resistance to Botrytis cinerea[J]. J Shandong Agric Univ(Nat Sci Ed), 2001, 32(4): 452-456. [14] 宫飞燕, 杨程, 蒋自立, 等. 烟草灰霉病在烟草漂浮育苗中的表现及 8 种杀菌剂对病菌的室内毒力测定[J]. 中国烟草学报, 2008, 14(3): 32-35. doi: 10.3321/j.issn:1004-5708.2008.03.007GONG F Y, YANG C, JIANG Z L, et al. The expression of tobacco grey mould in floating-seedling system and laboratory toxicity tests of eight fungicides to Botrytis cinerea[J]. Acta Tabacaria Sinica, 2008, 14(3): 32-35. doi: 10.3321/j.issn:1004-5708.2008.03.007 [15] 李诚, 蒋军喜, 赵尚高, 等. 猕猴桃灰霉病病原菌鉴定及室内药剂筛选[J]. 植物保护, 2014, 40(3): 48-52. doi: 10.3969/j.issn.0529-1542.2014.03.008LI C, JIANG J X, ZHAO S G, et al. Identification of the pathogenic fungus of kiwifruit gray mold and indoor screening of fungicides[J]. Plant Prot, 2014, 40(3): 48-52. doi: 10.3969/j.issn.0529-1542.2014.03.008 [16] 张鹏, 刘长远, 梁春浩, 等. 7 种杀菌剂对葡萄灰霉病的室内抑菌活性测定[J]. 园艺与种苗, 2012, 32(1): 61-64. doi: 10.3969/j.issn.2095-0896.2012.01.022ZHANG P, LIU C Y, LIANG C H, et al. Antibacterial activity determination of 7 different fungicides on grape Botrytis cinerea pers[J]. Horticulture & Seed, 2012, 32(1): 61-64. doi: 10.3969/j.issn.2095-0896.2012.01.022 [17] SUN H Y, WANG H C, CHEN Y, et al. Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China[J]. Plant Dis, 2010, 94(5): 551-556. doi: 10.1094/PDIS-94-5-0551 [18] FAN F, HAMADA M S, LI N, et al. Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China[J]. Plant Dis, 2017, 101(4): 601-606. doi: 10.1094/PDIS-09-16-1227-RE [19] LOPES U P, ZAMBOLIM L, CAPOBIANGO N P, et al. Resistance of Botrytis cinerea to fungicides controlling gray mold on strawberry in Brazil[J]. Bragantia, 2017, 76(2): 266-272. doi: 10.1590/1678-4499.055 -