• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多菌灵等4种杀菌剂对烟草灰霉病菌的室内生物活性

周浩 李丽翠 樊杰 余知和 汪汉成 陈兴江 马骏 刘锦华

周浩, 李丽翠, 樊杰, 余知和, 汪汉成, 陈兴江, 马骏, 刘锦华. 多菌灵等4种杀菌剂对烟草灰霉病菌的室内生物活性[J]. 农药学学报, 2019, 21(2): 238-243. doi: 10.16801/j.issn.1008-7303.2019.0033
引用本文: 周浩, 李丽翠, 樊杰, 余知和, 汪汉成, 陈兴江, 马骏, 刘锦华. 多菌灵等4种杀菌剂对烟草灰霉病菌的室内生物活性[J]. 农药学学报, 2019, 21(2): 238-243. doi: 10.16801/j.issn.1008-7303.2019.0033
ZHOU Hao, LI Licui, FAN Jie, YU Zhihe, WANG Hancheng, CHEN Xingjiang, MA Jun, LIU Jinhua. In vitro bioactivities of four fungicides including carbendazim against Botrytis cinerea in tobacco[J]. Chinese Journal of Pesticide Science, 2019, 21(2): 238-243. doi: 10.16801/j.issn.1008-7303.2019.0033
Citation: ZHOU Hao, LI Licui, FAN Jie, YU Zhihe, WANG Hancheng, CHEN Xingjiang, MA Jun, LIU Jinhua. In vitro bioactivities of four fungicides including carbendazim against Botrytis cinerea in tobacco[J]. Chinese Journal of Pesticide Science, 2019, 21(2): 238-243. doi: 10.16801/j.issn.1008-7303.2019.0033

多菌灵等4种杀菌剂对烟草灰霉病菌的室内生物活性

doi: 10.16801/j.issn.1008-7303.2019.0033
基金项目: 国家自然科学基金 (31501679);贵州省科技厅优秀青年人才培养计划 (黔科合平台人才[2017]5619);贵州省科技支撑计划 (黔科合支撑[2018]2356);中国烟草总公司贵州省公司科技项目 (201711,201714)
详细信息
    作者简介:

    **周浩,男,硕士研究生,E-mail:919355397@qq.com

    **李丽翠,并列第一作者,女,硕士研究生,E-mail:2392693846@qq.com

    通讯作者:

    汪汉成,通信作者 (Author for correspondence),男,博士,研究员,主要从事烟草植物保护和微生物学研究,E-mail:xiaobaiyang126@hotmail.com

    刘锦华,共同通信作者 (Co-author for correspondence),男,农艺师,主要从事烟草生产及行业管理研究,E-mail:majun161@163.com

  • 中图分类号: S482.2; TQ450.21

In vitro bioactivities of four fungicides including carbendazim against Botrytis cinerea in tobacco

  • 摘要: 采用菌丝生长速率法和孢子萌发法,分别测定了烟草灰霉病菌对多菌灵、嘧霉胺、异菌脲和丙环唑的敏感性,同时通过离体叶片法评估了这4种杀菌剂对烟草灰霉病的保护和治疗作用。结果表明:4种杀菌剂对烟草灰霉病菌的菌丝生长和孢子萌发均表现出了不同程度的抑制活性,并对灰霉病同时具有保护和治疗作用。其中多菌灵对菌丝生长的抑制活性最强,EC50平均值为0.06 mg/L,其次为丙环唑、嘧霉胺和异菌脲,EC50平均值分别为0.36、0.53和0.60 mg/L;异菌脲和丙环唑对烟草灰霉病菌孢子萌发的抑制活性较强,EC50平均值分别为2.05和2.21 mg/L,其次为嘧霉胺和多菌灵,EC50平均值分别为10.56和131.23 mg/L。异菌脲和多菌灵对灰霉病的保护作用和治疗作用均最强,当药剂质量浓度为200 mg/L时,其对离体叶片的保护和治疗作用防效分别为100%、100%和98.3%、91.8%。研究结果可为烟草灰霉病的科学防治提供依据。
  • 表  1  供试4种杀菌剂对烟草灰霉病菌菌丝生长的抑制作用

    Table  1.   Inhibitory effects of four fungicides against the mycelium growth of B. cinerea from tobacco

    杀菌剂
    Fungicide
    菌株
    Strain
    毒力回归方程
    Virulence regression
    equation
    相关系数
    Correlation
    coefficient, r
    EC50/(mg/L)EC90/(mg/L)EC50 平均值
    Average
    EC50/(mg/L)
    EC90 平均值
    Average
    EC90/(mg/L)
    多菌灵
    carbendazim
    3y = 1.09x + 6.800.970.020.330.06 ± 0.04 b0.97 ± 0.86 c
    3-2y = 1.04x + 6.150.970.081.34
    4y = 0.99x + 5.980.950.102.01
    6y = 1.68x + 7.430.990.040.21
    异菌脲
    iprodione
    3y = 0.82x + 5.260.980.4817.850.60 ± 0.25 a10.53 ± 5.98 ab
    3-2y = 1.52x + 5.490.980.473.30
    4y = 0.94x + 5.290.980.4911.33
    6y = 1.28x + 5.020.970.979.64
    嘧霉胺
    pyrimethanil
    3y = 1.66x + 5.220.960.734.370.53 ± 0.28 a3.68 ± 0.90 bc
    3-2y = 1.73x + 5.150.890.223.24
    4y = 1.11x + 5.720.910.814.47
    6y = 1.52x + 5.650.930.372.62
    丙环唑
    propiconazole
    3y = 0.79x + 5.550.980.6930.730.36 ± 0.27 ab13.34 ± 11.97 a
    3-2y = 0.78x + 5.120.980.218.40
    4y = 0.61x + 5.650.980.0910.67
    6y = 1.45x + 5.490.980.463.54
    注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间存在显著性差异 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05.
    下载: 导出CSV

    表  2  供试4种杀菌剂对烟草灰霉病菌孢子萌发的抑制作用

    Table  2.   Inhibitory effects of four fungicides against the spore germination of B. cinerea from tobacco

    杀菌剂
    Fungicide
    菌株
    Strain
    毒力回归方程
    Virulence regression
    equation
    相关系数
    Correlation
    coefficient, r
    EC50/(mg/L)EC90/(mg/L)EC50 平均值
    Average
    EC50/(mg/L)
    EC90 平均值
    Average
    EC90/(mg/L)
    多菌灵
    carbendazim
    3y = 3.62x ‒ 1.850.9878.31177.03131.23 ± 45.16 a240.00 ± 45.24 a
    3-2y = 4.75x ‒ 5.040.98130.31242.60
    4y = 4.21x ‒ 3.870.98127.60257.06
    6y = 4.13x ‒ 3.850.99188.71283.31
    异菌脲
    iprodione
    3y = 5.69x + 2.470.942.794.692.05 ± 0.57 b3.64 ± 0.83 c
    3-2y = 4.57x + 4.250.981.462.79
    4y = 5.16x + 3.270.962.163.85
    6y = 4.93x + 3.780.981.773.22
    嘧霉胺
    pyrimethanil
    3y = 2.04x + 2.670.9813.9659.3610.56 ± 7.23 b44.73 ± 28.62 b
    3-2y = 1.73x + 4.090.993.3618.55
    4y = 1.99x + 3.570.995.2623.18
    6y = 2.15x + 2.220.9719.6777.81
    丙环唑
    propiconazole
    3y = 6.32x + 2.930.992.133.402.21 ± 0.48 b4.73 ± 1.18 c
    3-2y = 3.34x + 4.230.961.704.11
    4y = 3.16x + 3.940.942.175.52
    6y = 4.05x + 3.160.982.855.90
    注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间存在显著性差异 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05.
    下载: 导出CSV

    表  3  供试4种杀菌剂对离体叶片上烟草灰霉病的保护和治疗作用防效

    Table  3.   Protective and curative effects of four fungicides against tobacco grey mould on detached leaves

    杀菌剂
    Fungicide
    作用方式
    Mode of action
    防效 Control effects/%
    3.13 mg/L12.5 mg/L50 mg/L200 mg/L800 mg/L
    多菌灵 carbendazim保护作用 Protective58.36 ± 3.43 b84.36 ± 2.42 a98.76 ± 1.14 a100 ± 0 a100 ± 0 a
    治疗作用 Curative40.45 ± 2.86 c74.34 ± 2.45 b95.32 ± 2.43 a100 ± 0 a100 ± 0 a
    异菌脲 iprodione保护作用 Protective66.81 ± 2.65 a85.92 ± 2.43 a92.86 ± 1.76 a98.32 ± 1.45 a100 ± 0 a
    治疗作用 Curative65.76 ± 1.12 a83.61 ± 0.65 a89.50 ± 0.46 b91.81 ± 2.34 b100 ± 0 a
    嘧霉胺 pyrimethanil保护作用 Protective51.76 ± 3.58 b64.26 ± 2.54 c76.76 ± 2.43 c91.20 ± 3.26 b100 ± 0 a
    治疗作用 Curative5.46 ± 2.24 d57.75 ± 3.34 cd59.15 ± 3.56 d62.68 ± 3.42 c69.37 ± 3.12 b
    丙环唑 propiconazole保护作用 Protective58.80 ± 3.48 b65.49 ± 2.67 c78.70 ± 1.48 c94.72 ± 2.63 b100 ± 0 a
    治疗作用 Curative10.56 ± 3.12 d61.27 ± 1.34 c64.61 ± 3.75 d65.32 ± 4.36 c74.82 ± 3.24 b
    注:表中数据为平均值 ± 标准差 (n = 3),不同小写字母表示处理间差异显著 (P < 0.05)。Note: Data in the table were average value ± standard deviation (n = 3). Different lowercase indicates significant differences among treatments with P < 0.05.
    下载: 导出CSV
  • [1] ELMER P A G, MICHAILIDES T J. Epidemiology of Botrytis cinerea in orchard and vine crops[M]//ELMER P A G, MICHAILIDES T J. eds. Botrytis: biology, pathology and control. Dordrecht: Springer Netherlands, 2007: 243-272.
    [2] WILLIAMSON B, TUDZYNSKI B, TUDZYNSKI P, et al. Botrytis cinerea: the cause of grey mould disease[J]. Mol Plant Pathol, 2007, 8(5): 561-580. doi: 10.1111/mpp.2007.8.issue-5
    [3] WANG H C, LI W H, WANG M S, et al. First report of Botrytis cinerea causing gray mold of tobacco in Guizhou Province of China[J]. Plant Dis, 2011, 95(5): 612.
    [4] WANG H C, WANG J, LI L C, et al. Metabolic activities of five botryticides against Botrytis cinerea examined using the Biolog FF MicroPlate[J]. Sci Rep, 2016, 6: 31025. doi: 10.1038/srep31025
    [5] 卢燕回, 谭海文, 袁高庆, 等. 烟草灰霉病病原鉴定及其生物学特性[J]. 中国烟草学报, 2012, 18(3): 61-66. doi: 10.3969/j.issn.1004-5708.2012.03.011

    LU Y H, TAN H W, YUAN G Q, et al. Identification and evaluation in biological characteristics of tobacco grey mould pathogen[J]. Acta Tabacaria Sinica, 2012, 18(3): 61-66. doi: 10.3969/j.issn.1004-5708.2012.03.011
    [6] LEROUX P. Chemical control of Botrytis and its resistance to chemical fungicides[M]//LEROUX P. eds. Botrytis: biology, pathology and control. Dordrecht: Springer Netherlands, 2007: 195-222
    [7] SONG Y Y, HE L M, CHEN L L, et al. Baseline sensitivity and control efficacy of antibiosis fungicide tetramycin against Botrytis cinerea[J]. Eur J Plant Pathol, 2016, 146(2): 337-347. doi: 10.1007/s10658-016-0920-z
    [8] CUI W, BEEVER R E, PARKES S L, et al. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in Botryotinia fuckeliana (Botrytis cinerea)[J]. Fungal Genet Biol, 2002, 36(3): 187-198. doi: 10.1016/S1087-1845(02)00009-9
    [9] 方中达. 植物病理学方法[M]. 3 版. 北京: 中国农业出版社, 1998: 122-125.

    FANG Z D. Plant pathology research methods[M]. 3rd Ed. Beijing: China Agriculture Press, 1998: 122-125.
    [10] 孙广宇, 宗兆锋. 植物病理学实验手册 [M]. 北京: 中国农业出版社, 2001: 141-142.

    SUN G Y, ZONG Z F. Laboratory manual of plant pathology [M]. Beijing: China Agriculture Press, 2001: 141-142.
    [11] MARKOGLOU A N, ZIOGAS B N. SBI-fungicides: fungicidal effectiveness and resistance in Botrytis cinerea[J]. Phytopathologia Mediterranea, 2002, 41(2): 120-130.
    [12] 徐超. 福建省烟草灰霉病菌对 5 种药剂的敏感性测定及药剂筛选[D]. 福建农林大学, 2008.

    XU C. Sensitivity to 5 fungicides of Botrytis cinerea of tobacco and screening on fungicides to the pathogens in Fujian Province[D]. Fuzhou: Fujian Agriculture and Forestry University, 2008.
    [13] 丁中, 刘峰, 王会利, 等. 番茄灰霉菌的多重抗药性研究[J]. 山东农业大学学报 (自然科学版), 2001, 32(4): 452-456.

    DING Z, LIU F, WANG H L, et al. Studies on multiple fungicide resistance to Botrytis cinerea[J]. J Shandong Agric Univ(Nat Sci Ed), 2001, 32(4): 452-456.
    [14] 宫飞燕, 杨程, 蒋自立, 等. 烟草灰霉病在烟草漂浮育苗中的表现及 8 种杀菌剂对病菌的室内毒力测定[J]. 中国烟草学报, 2008, 14(3): 32-35. doi: 10.3321/j.issn:1004-5708.2008.03.007

    GONG F Y, YANG C, JIANG Z L, et al. The expression of tobacco grey mould in floating-seedling system and laboratory toxicity tests of eight fungicides to Botrytis cinerea[J]. Acta Tabacaria Sinica, 2008, 14(3): 32-35. doi: 10.3321/j.issn:1004-5708.2008.03.007
    [15] 李诚, 蒋军喜, 赵尚高, 等. 猕猴桃灰霉病病原菌鉴定及室内药剂筛选[J]. 植物保护, 2014, 40(3): 48-52. doi: 10.3969/j.issn.0529-1542.2014.03.008

    LI C, JIANG J X, ZHAO S G, et al. Identification of the pathogenic fungus of kiwifruit gray mold and indoor screening of fungicides[J]. Plant Prot, 2014, 40(3): 48-52. doi: 10.3969/j.issn.0529-1542.2014.03.008
    [16] 张鹏, 刘长远, 梁春浩, 等. 7 种杀菌剂对葡萄灰霉病的室内抑菌活性测定[J]. 园艺与种苗, 2012, 32(1): 61-64. doi: 10.3969/j.issn.2095-0896.2012.01.022

    ZHANG P, LIU C Y, LIANG C H, et al. Antibacterial activity determination of 7 different fungicides on grape Botrytis cinerea pers[J]. Horticulture & Seed, 2012, 32(1): 61-64. doi: 10.3969/j.issn.2095-0896.2012.01.022
    [17] SUN H Y, WANG H C, CHEN Y, et al. Multiple resistance of Botrytis cinerea from vegetable crops to carbendazim, diethofencarb, procymidone, and pyrimethanil in China[J]. Plant Dis, 2010, 94(5): 551-556. doi: 10.1094/PDIS-94-5-0551
    [18] FAN F, HAMADA M S, LI N, et al. Multiple fungicide resistance in Botrytis cinerea from greenhouse strawberries in Hubei Province, China[J]. Plant Dis, 2017, 101(4): 601-606. doi: 10.1094/PDIS-09-16-1227-RE
    [19] LOPES U P, ZAMBOLIM L, CAPOBIANGO N P, et al. Resistance of Botrytis cinerea to fungicides controlling gray mold on strawberry in Brazil[J]. Bragantia, 2017, 76(2): 266-272. doi: 10.1590/1678-4499.055
  • 加载中
计量
  • 文章访问数:  1485
  • HTML全文浏览量:  280
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 录用日期:  2019-01-17
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回