Research progress on the effects of pesticides endocrine disrupting chemicals on anura amphibians
-
摘要: 农药类内分泌干扰物 (endocrine disrupting chemicals, EDCs) 对人类健康和生态环境造成了一定威胁。无尾两栖动物因其处于水生生态系统和陆生生态系统的过渡阶段,在食物链中具有重要位置,同时也是经济合作与发展组织 (OECD) 和美国环保局 (USEPA) 识别和评估化合物影响的常见模式生物。因此开展农药类EDCs对无尾两栖动物影响的研究可进一步评价农药的生态风险,有助于全面认识农药类EDCs。本文综述了农药类内分泌干扰物对无尾两栖动物甲状腺及性腺干扰的研究进展,并展望了研究农药类EDCs对无尾两栖动物影响的深远意义,旨在为全面的农药生态风险评价及为农药安全性评价体系引入更加全面、科学的试验方法和评价标准提供科学依据。Abstract: Pesticides endocrine disrupting chemicals (EDCs) pose a certain threat to human health and the ecological environment. Because of their transitional stages in aquatic ecosystems and terrestrial ecosystems, anura amphibians play an important role in the food chain. They are also common model organisms for the Organization for Economic Cooperation and Development (OECD) and the United States Environmental Protection Agency (USEPA) to identify and evaluate the effects of compounds. Therefore, the study on the effects of pesticide EDCs on anura amphibians can further evaluate the ecological risks of pesticides and is helpful for the fully understanding of pesticides EDCs. In this review, the research progress of pesticide EDCs on thyroid and gonadal disturbance in anura amphibians were summarized. And the far-reaching significance of the study on the effects of pesticide EDCs on anura amphibians was prospected. The purpose of which is to comprehensively evaluate the ecological risks of pesticides and provide scientific basis for introducing more comprehensive and scientific test methods and evaluation standards into the pesticide safety evaluation system.
-
Key words:
- pesticides /
- endocrine disrupting chemicals /
- anura amphibians /
- thyroid /
- gonad /
- research progress
-
表 1 对无尾两栖动物甲状腺具有干扰效应的农药
Table 1. Pesticides that interfere with the thyroid gland of anura amphibians
种类
Species暴露物
Chemicals剂量
Dosage暴露时间
Exposure durations效应
Observed effects参考文献Reference 非洲爪蟾
Xenopus laevis三唑酮
triadimefon0, 0.112, 1.12 mg/L NF 51 期,暴露 21 d
Nieuwkoop-Faber stage
51, exposure 21 days1.12 mg/L 处理组甲状腺激素浓度显著降低,甲状腺球蛋白下调
Thyroid hormone concentration decreased significantly in 1.12 mg/L treatment group, thyroglobulin decreased[40] 黑斑蛙
Rana nigromaculata三唑酮,三唑醇
triadimefon, triadimenol0.1, 1, 10 mg/L Gosner 26 期,暴露 28 d
Gosner stage 26, exposure
28 days各处理组甲状腺激素信号受到破坏,10 mg/L 三唑酮比三唑醇对HPT轴产生更多的影响
The thyroid hormone signal was destroyed in each treatment group, 10 mg/L triadimefon had more significant effects on the HPT axis than triadimenol[41] 北美牛蛙
North American bullfrog (Rana catesbeiana)三氯生
triclosan0.15-0.03 μg/L 预变态蝌蚪,暴露 96 h
Pre-metamorphic tadpoles,
exposure 96 hours各处理组变态前蝌蚪脑部甲状腺激素受体 α 的转录水平改变
Each treatment group changed the transcription level of thyroid hormone receptor alpha in tadpole brain before metamorphosis[42] 黑斑蛙
Rana nigromaculata环丙唑醇
cyproconazole1, 10 mg/L Gosner 24 期,
暴露 14、28、42、90 d
Gosner stage 24, exposure
14, 28, 42, 90 days各处理组甲状腺在组织学上显著改变,且 10 mg/L 处理组甲状腺相关基因和激素水平受影响
Thyroid gland was changed significantly in each treatment group, 10 mg/L treatment group affected thyroid-related genes and hormone levels[43] 非洲爪蟾
Xenopus laevis丁草胺
butachlor1, 10, 100 mg/L NF 51 期,暴露 7、14、
21 d Nieuwkoop-Faber
stage 51, exposure 7, 14,
21 days3 个处理组甲状腺激素含量升高,100 mg/L处理组下丘脑-垂体-甲状腺 (HPT) 轴相关基因表达受影响
The thyroid hormone levels in the three treatment groups were elevated, and the expression of the hypothalamic-pituitary-thyroid (HPT) axis-related genes was affected in the 100 mg/L treatment group[44] 非洲爪蟾
Xenopus laevis乙草胺
acetochlor2.7 μg/L NF 52-54 期 暴露 48、72 h
Nieuwkoop-Faber stage,
52-54, exposure 48, 72 hours乙草胺处理组非洲爪蟾尾部的甲状腺相关基因表达发生改变
Thyroid-related gene expression was changed in the tail of Xenopus laevis in the acetochlor treatment group[45] 木蛙蝌蚪
Wood frog tadpoles (Lithobates sylvaticus)草甘膦
glyphosate0.21 mg/L, 2.89 mg/L 受精卵至 Gosner 36/37 期
Fertilized eggs to Gosner stage 36/37高浓度处理组影响甲状腺相关基因的mRNA 水平
High concentration treatment group affected mRNA levels of thyroid related genes[46] 黑斑蛙
Rana nigromaculata异丙甲草胺,精异丙
甲草胺
metolachlor, S-metolachlor0.1, 1, 5 mg/L Gosner 26 期,暴露 28 d
Gosner stage 26, exposure
28 days各处理组均抑制TH响应基因的表达,且对黑斑蛙蝌蚪甲状腺组织学均产生影响,异丙甲草胺和精异丙甲草胺处理组差异不明显
All the treatment groups inhibited the expression of TH-responsive genes, and affected thyroid histology, the difference between the metolachlor and the S-metolachlor treatment group was not obvious[47] 绿蛙蝌蚪
Green frog tadpoles (Lithobates clamitans)甲萘威
carbaryl1 mg/L 孵化后约 14、28、56、112 d,
暴露 3 d
About 14, 28, 56, 112 days after hatching, exposure 3 days甲萘威处理组改变绿蛙蝌蚪发育过程中 Th 调节基因的 mRNA 丰度分布
The carbaryl treatment group altered the mRNA abundance distribution of Th regulatory genes[48] 非洲爪蟾
Xenopus laevis联苯菊酯 (外消旋及
两个异构体)
bifenthrin (racemate and two enantiomers)rac-bifenthrin 0.001 μg/L, S-bifenthrin 0.1 μg/L, R-bifenthrin 0.1 μg/L. NF 46 期,暴露 28、35 d
Nieuwkoop-Faber stage 46,
exposure 28, 35 daysR-联苯菊酯处理组TH含量受到抑制,且 tshβ,dio2 等相关基因受到明显影响
R-bifenthrin treatment group inhibited TH content, related genes was affected such as tshβ and dio2[51] 表 2 对无尾两栖动物性腺具有干扰效应的农药
Table 2. Pesticides that interfere with the gonad of anura amphibians
种类
Species暴露物
Chemicals剂量
Dosage暴露时间
Exposure durations效应
Observed effects参考文献
Reference雄性非洲爪蟾
Xenopus laevis, male戊唑醇
tebuconazole0.1, 1, 10, 500 μg/L 成年雄性,暴露 27 d
Adult males, exposure
27 days500 μg/L 处理组血浆和性腺中类固醇激素水平改变
Steroid hormone levels in plasma and gonads were changed in 500 μg/L treatment group[65] 雄性非洲爪蟾
Xenopus laevis, male乙烯菌核利
vinclozolin10−6, 10−8, 10−10 mol/L 成年雄性,暴露 96 h
Adult males, exposure
96 hours10−6 mol/L 处理组雄性性唤起降低,处于性冷淡状态
Male sexual arousal, sexually apathetic was reduced in 10−6 mol/L treatment group[66] 雄性非洲爪蟾
Xenopus laevis, male咪鲜胺
prochloraz0, 6.7, 20, 60, 180 μg/L 非洲爪蟾胚胎 (受精后<1 d), 暴露至变态完成后 2 个月
Xenopus embryos (<1 d after fertilization), exposure to two months after completion of metamorphosis180 μg/L 处理组雄性苗勒氏管受到抑制且睾丸功能相关基因表达水平受到影响
Male Mullerian tube was inhibited in 180 μg/L treatment group, affected testicular function-related gene[67] 雄性非洲爪蟾
Xenopus laevis, male莠去津
atrazine2.5 μg/L 孵化后的幼虫,暴露3年
Hatched larvae, exposure
3 years莠去津处理组雄性睾酮水平降低、生殖腺减小,交配行为受抑制,生育能力下降
In the carbaryl treatment group male testosterone level and gonad size decreased, mating behavior was inhibited, and fertility decreased[69] 雄性非洲爪蟾
Xenopus laevis, male莠去津
atrazine0.1, 1, 10, 100 μg/L NF 47 期,暴露 90 和 180 d
Nieuwkoop-Faber stage 47, exposure 90, 180 days100 μg/L 处理组睾丸变性相关基因表达显著受到抑制
Gene expression of testicular degeneration in 100 μg/L treatment group was significantly inhibited[70] 雄性非洲爪蟾
Xenopus laevis, male西玛津
simazine0.1, 1.2, 11.0, 100.9 μg/L NF 46 期,暴露 100 d
Nieuwkoop-Faber stage 46, exposure 100 days11.0 μg/L 和100.9 μg/L 处理组雄性腺重量显著减少,并且导致精原细胞肥大和睾丸形状不规则
Male gland weight was significantly reduced in 11.0 μg/L and 100.9 μg/L treatment groups, lead to hypertrophy of spermatogonia and irregular testicular shape[71] 非洲爪蟾
Xenopus laevis利谷隆
linuron9, 45 μg/L NF 40 期,暴露至 NF51/53, 55/58, 66期 Nieuwkoop-Faber stage 40, exposure
to Nieuwkoop-Faber stage 51-53, 55-58, 66低浓度处理组导致性别比例雌性化,雄性生育力降低
Low concentration treatment group resulted in feminization, male fertility decreased[73] 雄性非洲爪蟾
Xenopus laevis, malep,p′-DDE
p,p′-dichlordi-phenyldichloroethylene3.18 ng/L, 318.0 ng/L 成年雄性,暴露 96 h
Adult males, exposure
96 hours318.0 ng/L 处理组雄性性唤起降低
In the 318.0 ng/L treatment group, male arousal decreased[75] 林蛙蝌蚪
Rana dalmatina毒死蜱
chlorpyrifos0.025 mg/L, 0.05 mg/L Gosner 25 期,暴露至 46 期Gosner stage 25, exposure
to stage 46各处理组损害性腺发育,通过诱导睾丸间质状况和睾丸形态改变而影响性腺分化
Each treatment group impaired gonadal development and affected gonadal differentiation by inducing testicular interstitial status and testicular morphology[76] 雌性非洲爪蟾
Xenopus laevis, female甲氧滴滴涕
methoxychlor0.5, 5, 50, 500 μg/L 成年雌性,暴露 30 d
Adult females, exposure
30 days雌性产卵延迟,500 μg/L 处理组产卵数量显著减少,不可受精卵数量增加
Female oviposition was delayed, number of oviposition decreased significantly and the number of unfertilized eggs increased in 500 μg/L treatment group[77] -
[1] 邓童庆. 污染物与多生物标志物同时分析方法的建立及其在内分泌干扰物毒性评估中的初步应用[D]. 杭州: 浙江大学, 2019.DENG T Q. Development of simultaneous analysis of contaminant and multiple biomarkers and preliminary application in evaluation for endocrine disrupting chemicals[D]. Hangzhou: Zhejiang University, 2019. [2] MICHEL C. How to regulate endocrine disrupting chemicals? Feedback and future development[J]. Curr Opin Endocr Metab Res, 2019, 7: 21-25. doi: 10.1016/j.coemr.2019.04.009 [3] KAVLOCK R J, DASTON G P, DEROSA C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the USEPA-sponsored workshop[J]. Environ Heal Perspect, 1996, 104(2): 715-740. [4] SCHMG T T, JANESICK A, BLUMBERG B, et al. Endocrine disrupting chemicals and disease susceptibility[J]. J Steroid Biochem Mol Biol, 2011, 127(3-5): 204-215. doi: 10.1016/j.jsbmb.2011.08.007 [5] CHANG H, CHOO K, LEE B, et al. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water[J]. J Hazard Mater, 2009, 172(1): 1-12. doi: 10.1016/j.jhazmat.2009.06.135 [6] ORTON F, LUTZ I, KLOAS W, et al. Endocrine disrupting effects of herbicides and pentachlorophenol: in vitro and in vivo evidence[J]. Environ Sci Technol, 2009, 43(6): 2144-2150. doi: 10.1021/es8028928 [7] ZACCARONI A, GAMBERONI M, MANDRIOLI L, et al. Thyroid hormones as a potential early biomarker of exposure to 4-nonylphenol in adult male shubunkins (Carassius auratus)[J]. Sci Total Environ, 2009, 407(10): 3301-3306. doi: 10.1016/j.scitotenv.2009.01.036 [8] CAMPBELL C G, BORGLIN S E, GREEN F B, et al. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review[J]. Chemosphere, 2006, 65(8): 1265-1280. doi: 10.1016/j.chemosphere.2006.08.003 [9] 伍吉云, 万祎, 胡建英. 环境中内分泌干扰物的作用机制[J]. 环境与健康杂志, 2005, 22(6): 494-497. doi: 10.3969/j.issn.1001-5914.2005.06.046WU J Y, WANG Y, HU J Y. The action mechanism of environmental endocrine disruptors[J]. J Environ Health, 2005, 22(6): 494-497. doi: 10.3969/j.issn.1001-5914.2005.06.046 [10] 杜磊, 李勃, 马瑜, 等. 环境内分泌干扰物危害及作用机制研究进展[J]. 国外医学医学地理杂志, 2012, 33(4): 261-265.DU L, LI B, MA Y, et al. The hazards and mechanism of the environmental endocrine disruptors[J]. Foreign Medical Science Section of Medgeography, 2012, 33(4): 261-265. [11] OLMSTEAD A W, LEBLANC G A. Joint action of polycyclic aromatic hydrocarbons: Predictive modeling of sublethal toxicity[J]. Aquat Toxicol, 2005, 75(3): 253-262. doi: 10.1016/j.aquatox.2005.08.007 [12] CLOTFELTER E D, BELL A M, LEVERING K R. The role of animal behaviour in the study of endocrine-disrupting chemicals[J]. Anim Behav, 2004, 68(4): 665-676. doi: 10.1016/j.anbehav.2004.05.004 [13] VINGGAARD A M, HNIDA C, BREINHOLT V, et al. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro[J]. Toxicology in Vitro, 2000, 14(3): 227-234. doi: 10.1016/S0887-2333(00)00018-7 [14] RAUN ANDERSEN H, VINGGAARD A M, HØJ RASMUSSEN T, et al. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro[J]. Toxicol Appl Pharmacol, 2002, 179(1): 1-12. doi: 10.1006/taap.2001.9347 [15] KOJIMA H, KATSURA E, TAKEUCHI S, et al. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells[J]. Environ Heal Perspect, 2004, 112(5): 524-531. doi: 10.1289/ehp.6649 [16] LEMAIRE G, MNIF W, MAUVAIS P, et al. Activation of α-and β-estrogen receptors by persistent pesticides in reporter cell lines[J]. Life Sci, 2006, 79(12): 1160-1169. doi: 10.1016/j.lfs.2006.03.023 [17] LEMAIRE G, MNIF W, PASCUSSI J, et al. Identification of new human pregnane X receptor ligands among pesticides using a stable reporter cell system[J]. Toxicol Sci, 2006, 91(2): 501-509. doi: 10.1093/toxsci/kfj173 [18] GREULICH K, PFLMGMACHER S. Differences in susceptibility of various life stages of amphibians to pesticide exposure[J]. Aquat Toxicol, 2003, 65(3): 329-336. doi: 10.1016/S0166-445X(03)00153-X [19] 尹晓辉. 几种农药对中华蟾蜍的生态毒理效应及分子毒性研究[D]. 上海: 东华大学, 2008.YIN X H. Molecular toxicity and ecotoxicology effects on Chinese toad (Bufo bufo gargarizans) exposed to several pesticides[D]. Shanghai: Donghua University, 2008. [20] BALCH G C, VÉLEZ-ESPINO L A, SWEET C, et al. Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs)[J]. Chemosphere, 2006, 64(2): 328-338. doi: 10.1016/j.chemosphere.2005.12.019 [21] DEGITZ S J, HOLCOMBE G W, FLYNN K M, et al. Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine[J]. Toxicol Sci, 2005, 87(2): 353-364. doi: 10.1093/toxsci/kfi246 [22] OECD. Test no. 248: Xenopus eleutheroembryonic thyroid assay (XETA)[S/OL]. OECD, Paris, 2019. https://doi.org/10.1787/a13f80ee-en. [23] OECD. Test no. 231: Amphibian metamorphosis assay[S/OL]. OECD, Paris, 2009. https://doi.org/10.1787/9789264076242-en. [24] OECD. Test no. 241: The larval amphibian growth and development assay (LAGDA)[S/OL]. OECD, Paris, 2015. https://doi.org/10.1787/9789264242340-en. [25] USEPA. Tadpole/sediment subchronic toxicity test (OPPTS 850. 1800)[S/OL]. USEPA, Washington, DC, 1996. https://www.epa.gov/sites/production/files/2015-07/documents/850-1800.pdf [26] USEPA. Amphibian metamorphosis assay OCSPP guideline 890.1100[S/OL]. GUSEPA, Washington, DC, 2011. https://www.epa.gov/sites/production/files/2015-07/documents/final_890.1100_ama_sep_9.30.11.pdf [27] 化学农药环境安全评价试验准则第18部分: 天敌两栖类急性毒性试验: GB/T31270—2014[S]. 北京, 2014.Test guidelines on environmental safety assessment for chemical pesticides-Part 18: Amphibian acute toxicity test: GB/T31270—2014[S]. Beijing, 2014. [28] 生物多样性观测技术导则两栖动物: HJ 710.6—2014[S]. 北京, 2014.Technical guidelines for biodiversity monitoring: amphibians: HJ 710.6—2014[S]. Beijing, 2014. [29] BROWN D D. Amphibian metamorphosis. From morphology to molecular biology[J]. Cell Biol Int, 2000, 24(12): 909. doi: 10.1006/cbir.2000.0612 [30] MIYATA K, OSE K. Thyroid hormone-disrupting effects and the amphibian metamorphosis assay[J]. J Toxicol Pathol, 2012, 25(1): 1-9. doi: 10.1293/tox.25.1 [31] BLANTON M L, SPECKER J L. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction[J]. Crit Rev Toxicol, 2007, 37(1-2): 97-115. doi: 10.1080/10408440601123529 [32] FERNANDEZ M O, BOURGUIGNON N S, AROCENA P, et al. Neonatal exposure to bisphenol A alters the hypothalamic-pituitary-thyroid axis in female rats[J]. Toxicol Lett, 2018, 285: 81-86. doi: 10.1016/j.toxlet.2017.12.029 [33] ZOELLER R T, TAN S, TYL R. General background on the hypothalamic-pituitary-thyroid (HPT) axis[J]. Critical Rev Toxicol, 2007, 37(1-2): 11-53. doi: 10.1080/10408440601123446 [34] AMBROSIO R, DE STEFANO M A, DI GIROLAMO D, et al. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells[J]. Mol Cell Endocrinol, 2017, 459: 79-83. doi: 10.1016/j.mce.2017.06.014 [35] CHANG J, WANG H, XU P, et al. Oral and dermal diflubenzuron exposure causes a hypothalamic-pituitary-thyroid (HPT) axis disturbance in the Mongolian racerunner (Eremias argus)[J]. Environ Pollut, 2018, 232: 338-346. doi: 10.1016/j.envpol.2017.08.115 [36] FORT D J, DEGITZ S, TIETGE J, et al. The hypothalamic-pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction[J]. Crit Rev Toxicol, 2007, 37(1-2): 117-161. doi: 10.1080/10408440601123545 [37] 刘莉云, 高璐, 薛永来, 等. 甲状腺激素干扰物对鱼类甲状腺轴的干扰效应研究进展[J]. 江苏农业科学, 2018, 46(14): 8-14.LIU L Y, GAO L, XUE Y L, et al. Research progress on interference effects of thyroid hormone disrupting chemicals on hypothalamus-pituitary-thyroid axis of fish[J]. Jiangsu Agr Sci, 2018, 46(14): 8-14. [38] ORGANIZATION W H. Global assessment of the state of the science of endocrine disruptors[J]. Poluição Ambiental, 2002, 35(4): 333-343. [39] FABER J, NIEUWKOOP P D. Normal table of Xenopus Laevis (Daudin): A systematical & chronological survey of the development from the fertilized egg till the end of metamorphosis[J]. Q Rev Biol, 1994, 33(1): 85. [40] LI M, LI S Y, YAO T T, et al. Waterborne exposure to triadimefon causes thyroid endocrine disruption and developmental delay in Xenopus laevis tadpoles[J]. Aquat Toxicol, 2016, 177: 190-197. doi: 10.1016/j.aquatox.2016.05.018 [41] ZHANG W J, LU Y L, HUANG L D, et al. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata Tadpoles[J]. Ecotoxicol Environ Saf, 2018, 156: 247-254. doi: 10.1016/j.ecoenv.2018.03.009 [42] VELDHOEN N, SKIRROW R C, OSACHOFF H, et al. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development[J]. Aquat Toxicol, 2006, 80(3): 217-227. doi: 10.1016/j.aquatox.2006.08.010 [43] ZHANG W J, CHEN L, XU Y Y, et al. Amphibian (Rana nigromaculata)exposed to cyproconazole: Changes in growth index, behavioral endpoints, antioxidant biomarkers, thyroid and gonad development[J]. Aquat Toxicol, 2019, 208: 62-70. doi: 10.1016/j.aquatox.2018.12.015 [44] LI S Y, LI M, WANG Q W, et al. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis[J]. Chemosphere, 2016, 152: 158-165. doi: 10.1016/j.chemosphere.2016.02.098 [45] CRUMP D, WERRY K, VELDHOEN N, et al. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus laevis[J]. Environ Health Perspect, 2002, 110(12): 1199-1205. doi: 10.1289/ehp.021101199 [46] LANCTÔT C, ROBERTSON C, NAVARRO-MARTÍN L, et al. Effects of the glyphosate-based herbicide Roundup WeatherMax® on metamorphosis of wood frogs (Lithobates sylvaticus) in natural wetlands[J]. Aquat Toxicol, 2013, 140-141: 48-57. doi: 10.1016/j.aquatox.2013.05.012 [47] 程程. 几种手性农药异构体在绿藻和蝌蚪体内的富集、代谢及毒理差异研究[D]. 北京: 中国农业大学, 2018.CHENG C. The differences in bioaccumulation, metabolism and toxicological effects of several chiral pesticides on green alga and tadpole[D]. Beijing: China Agricultural University, 2018. [48] BOONE M D, HAMMOND S A, VELDHOEN N, et al. Specific time of exposure during tadpole development influences biological effects of the insecticide carbaryl in green frogs (Lithobates clamitans)[J]. Aquat Toxicol, 2013, 130-131: 139-148. doi: 10.1016/j.aquatox.2012.12.022 [49] 谭彦君, 王恒娟, 宋雁, 等. 农药联苯菊酯对大鼠内分泌干扰作用的研究[J]. 卫生研究, 2012, 41(3): 399-404.TAN Y J, WANG H J, SONG Y, et al. Potential endocrine disrupting effects of bifenthrin in rats[J]. J Hyg Res, 2012, 41(3): 399-404. [50] USEPA. Final list of initial pesticide active ingredients and pesticide inert ingredients to be screened under the federal food, drug, and cosmetic act[N/OL]. Federal Register, 2009, 74(71): 17579-17585. https://swap.stanford.edu/20121130230005/http://www.epa.gov/scipoly/oscpendo/pubs/final_list_frn_041509.pdf. [51] ZHANG W J, CHEN L, DIAO J L, et al. Effects of cis-bifenthrin enantiomers on the growth, behavioral, biomarkers of oxidative damage and bioaccumulation in Xenopus laevis[J]. Aquat Toxicol, 2019, 214: 105237. doi: 10.1016/j.aquatox.2019.105237 [52] 唐韵, 胡英超, 郑乐舟, 等. 两栖动物的性别决定和分化[J]. 生态学杂志, 2017, 36(9): 2650-2657.TANG Y, HU Y C, ZHENG L Z, et al. Sex determination and sex differentiation in amphibians[J]. Chin J Ecol, 2017, 36(9): 2650-2657. [53] MILLER W L, BOSE H S. Early steps in steroidogenesis: intracellular cholesterol trafficking[J]. J Lipid Res, 2011, 52(12): 2111-2135. doi: 10.1194/jlr.R016675 [54] VENMGOPAL S, MARTINEZ-ARGUELLES D B, CHEBBI S, et al. Plasma membrane origin of the steroidogenic pool of cholesterol used in hormone-induced acute steroid formation in leydig cells[J]. J Biol Chem, 2016, 291(50): 26109-26125. doi: 10.1074/jbc.M116.740928 [55] MENNENGA S E, KOEBELE S V, MOUSA A A, et al. Pharmacological blockade of the aromatase enzyme, but not the androgen receptor, reverses and rostenedione-induced cognitive impairments in young surgically menopausal rats[J]. Steroids, 2015, 99: 16-25. doi: 10.1016/j.steroids.2014.08.010 [56] CONNELL E. Tietz textbook of clinical chemistry and molecular diagnostics (5th Edition)[J]. Ann Clin Biochem, 2012, 49(6): 615. doi: 10.1258/acb.2012.201217 [57] 曹楚彦. 三唑锡对非洲爪蟾内分泌干扰作用的分子机制[D]. 杭州: 浙江大学, 2016.CAO C Y. Effects of azocyclotin on endocrine disruption and its mechanism in Xenopus Laevis[D]. Hangzhou: Zhejiang University, 2016. [58] WELSHONS W V, THAYER K A, JUDY B M, et al. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity[J]. Environ Health Perspect, 2003, 111(8): 994-1006. doi: 10.1289/ehp.5494 [59] 刘佳, 李忻怡, 张育辉. 两栖动物性别决定相关基因的研究进展[J]. 动物学杂志, 2011, 46(6): 134-140.LIU J, LI X Y, ZHANG Y H. Sex determination-related genes in amphibians[J]. Chin J Zool, 2011, 46(6): 134-140. [60] 雷忻, 张育辉. 性类固醇激素在两栖动物卵母细胞发育中的调控作用[J]. 延安大学学报(自然科学版), 2004, 23(1): 79-83. doi: 10.3969/j.issn.1004-602X.2004.01.025LEI X, ZHANG Y H. Regulation of sex steroid hormones in the development of amphibian oocytes[J]. J Yanan Univ (Nat Sci Ed), 2004, 23(1): 79-83. doi: 10.3969/j.issn.1004-602X.2004.01.025 [61] 李亚琳, 张育辉. 两栖动物精巢中类固醇激素的研究进展[J]. 陕西师范大学继续教育学报, 2003, 20(1): 115-117.LI Y L, ZHANG Y H. Advances in studies on steroid hormones in testis of amphibians[J]. J Further Education Shaanxi Normal Univ, 2003, 20(1): 115-117. [62] 田海峰, 孟彦, 胡乔木, 等. 两栖动物的性别决定研究新进展[J]. 四川动物, 2014, 33(5): 772-777.TIAN H F, MENG Y, HU Q M, et al. Advances in the sex determination mechanisms of amphibians[J]. Sichuan J Zool, 2014, 33(5): 772-777. [63] KHAN M Z, LAW F C P. Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: A review [C]//Poceedings of the Pakistan Academy of Sciences, 2005, 42(4): 315-323 [64] 孙欠欠. 戊唑醇对斑马鱼成鱼HPG轴的内分泌干扰效应[D]. 杭州: 浙江大学, 2017.SUN Q Q. Endocrine disruption of tebuconazole on the HPG axis of adult zebrafish[D]. Hangzhou: Zhejiang University, 2017. [65] POULSEN R, LUONG X, HANSEN M, et al. Tebuconazole disrupts steroidogenesis in Xenopus laevis[J]. Aquat Toxicol, 2015, 168: 28-37. doi: 10.1016/j.aquatox.2015.09.008 [66] HOFFMANN F, KLOAS W. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis[J]. Horm Behav, 2010, 58(4): 653-659. doi: 10.1016/j.yhbeh.2010.06.008 [67] HASELMAN J T, KOSIAN P A, KORTE J J, et al. Effects of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity[J]. Aquat Toxicol, 2018, 199: 240-251. doi: 10.1016/j.aquatox.2018.03.013 [68] HAYES T B, STUART A A, MENDOZA M, et al. Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17β-estradiol): support for the demasculinization/feminization hypothesis[J]. Environ Heal Perspect, 2006, 114(Suppl 1): 134-141. doi: 10.1289/ehp.8067 [69] HAYES T B, KHOURY V, NARAYAN A, et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)[J]. Proc Natl Acad Sci USA, 2010, 107(10): 4612-4617. doi: 10.1073/pnas.0909519107 [70] SAI L L, DONG Z H, LI L, et al. Gene expression profiles in testis of developing male Xenopus laevis damaged by chronic exposure of atrazine[J]. Chemosphere, 2016, 159: 145-152. doi: 10.1016/j.chemosphere.2016.05.008 [71] SAI L L, LIU Y Z, QU B P, et al. The effects of simazine, a chlorotriazine herbicide, on the expression of genes in developing male Xenopus laevis[J]. Bull Environ Contam Toxicol, 2015, 95(2): 157-163. doi: 10.1007/s00128-015-1483-y [72] SPIRHANZLOVA P, DE GROEF B, NICHOLSON F E, et al. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb[J]. Comp Biochem Phys C, 2017, 200: 52-58. [73] ORTON F, SÄFHOLM M, JANSSON E, et al. Exposure to an anti-androgenic herbicide negatively impacts reproductive physiology and fertility in Xenopus tropicalis[J]. Sci Rep, 2018, 8: 9124. doi: 10.1038/s41598-018-27161-2 [74] YANG F X, XU Y, WEN S. Endocrine-disrupting effects of nonylphenol, bisphenol A, and p, p'-DDE on Rana nigromaculata tadpoles[J]. Bull Environ Contam Toxicol, 2005, 75(6): 1168-1175. doi: 10.1007/s00128-005-0872-z [75] HOFFMANN F, KLOAS W. p, p'-Dichlordiphenyldichloroethylene (p, p'-DDE) can elicit antiandrogenic and estrogenic modes of action in the amphibian Xenopus laevis[J]. Physiol Behav, 2016, 167: 172-178. doi: 10.1016/j.physbeh.2016.09.012 [76] BERNABÒ I, GALLO L, SPERONE E, et al. Survival, development, and gonadal differentiation in Rana dalmatina chronically exposed to chlorpyrifos[J]. J Exp Zool, 2011, 315A(5): 314-327. doi: 10.1002/jez.678 [77] PICKFORD D B, MORRIS I D. Inhibition of gonadotropin-induced oviposition and ovarian steroidogenesis in the African clawed frog (Xenopus laevis) by the pesticide methoxychlor[J]. Aquat Toxicol, 2003, 62(3): 179-194. doi: 10.1016/S0166-445X(02)00082-6 [78] OECD. Revised guidance document 150 on standardised test guidelines for evaluating chemicals for endocrine disruption[S/OL]. OECD, Paris, 2018. https://doi.org/10.1787/9789264304741-en. [79] 吕潇, 李慧冬, 杜红霞, 等. 农药类内分泌干扰物的研究进展[J]. 华中农业大学学报, 2006(1): 94-100. doi: 10.3321/j.issn:1000-2421.2006.01.024LV X, LI H D, DU H X, et al. Advances in endocrine disrupting pesticides[J]. J Huazhong Agric Univ, 2006(1): 94-100. doi: 10.3321/j.issn:1000-2421.2006.01.024 [80] 农药内分泌干扰作用评价方法: NY/T2873—2015[S]. 北京, 2015.Evaluation method of pesticide endocrine disrupting effects: NY/T2873—2015[S]. Beijing, 2015. [81] 刘德英, 张剑波, 丁剑. 我国农药类环境内分泌干扰物使用现状和对策[J]. 环境保护, 2005(6): 45-50. doi: 10.3969/j.issn.1003-6504.2005.06.018LIU D Y, ZHANG J B, DING J. Present application status and control policy of endocrine disrupting farm chemicals in China[J]. Environ Prot, 2005(6): 45-50. doi: 10.3969/j.issn.1003-6504.2005.06.018 -