• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天然高分子材料在农药控释剂中的应用研究进展

王俊钦 冯松 柯妮 王海鸥 张波 谢海波 张丽华

王俊钦, 冯松, 柯妮, 王海鸥, 张波, 谢海波, 张丽华. 天然高分子材料在农药控释剂中的应用研究进展[J]. 农药学学报, 2020, 22(4): 567-578. doi: 10.16801/j.issn.1008-7303.2020.0072
引用本文: 王俊钦, 冯松, 柯妮, 王海鸥, 张波, 谢海波, 张丽华. 天然高分子材料在农药控释剂中的应用研究进展[J]. 农药学学报, 2020, 22(4): 567-578. doi: 10.16801/j.issn.1008-7303.2020.0072
WANG Junqin, FENG Song, KE Ni, WANG Haiou, ZHANG Bo, XIE Haibo, ZHANG Lihua. Research progress on natural polymer materials in controlled release formulations of pesticides[J]. Chinese Journal of Pesticide Science, 2020, 22(4): 567-578. doi: 10.16801/j.issn.1008-7303.2020.0072
Citation: WANG Junqin, FENG Song, KE Ni, WANG Haiou, ZHANG Bo, XIE Haibo, ZHANG Lihua. Research progress on natural polymer materials in controlled release formulations of pesticides[J]. Chinese Journal of Pesticide Science, 2020, 22(4): 567-578. doi: 10.16801/j.issn.1008-7303.2020.0072

天然高分子材料在农药控释剂中的应用研究进展

doi: 10.16801/j.issn.1008-7303.2020.0072
基金项目: 国家级大学生创新创业训练计划项目 (201810657005);国家自然科学基金 (51803038,21574030,21774028);贵州省科技厅联合基金项目 (黔科合LH字[2017]7249);贵州大学2017年度学术新苗培养及创新探索专项 (黔科合平台人才[2017]5788);贵州大学引进人才项目 (贵大人基合字[2017]08)
详细信息
    作者简介:

    王俊钦,男,本科生,E-mail:1649549111@qq.com

    通讯作者:

    张丽华,通信作者 (Author for correspondence),女,博士,副教授,主要从事天然高分子的高值化利用研究,E-mail:lhzhang5@gzu.edu.cn

  • 中图分类号: TQ450.68;O636

Research progress on natural polymer materials in controlled release formulations of pesticides

  • 摘要: 基于传统农药剂型存在理化性质不稳定、利用率低、持效期短以及环境问题凸显等不足,开发释放剂量可控、安全性高的农药控释剂已成为目前农药研究的热点。天然高分子材料因具有无毒无害、来源丰富、廉价易得且生物降解性好等特点而成为农药控释剂的理想载体。本文综述了淀粉、纤维素、壳聚糖和木质素4种自然界中含量丰富的天然高分子材料在农药控释剂中应用的研究进展,并展望了其发展前景。
  • 图  1  直链淀粉和支链淀粉的化学结构 (转载自文献[20])

    Figure  1.  Structural formula of amylose (a) and amylopectin (b) (Reprinted with permission from Reference[20]. Copyright 2019 John Wiley & Sons)

    图  2  HNTs-AT和聚合物基体之间氢键相互作用的示意图 (转载自文献[26])

    Figure  2.  Hydrogen bonding interaction between HNTs-AT and polymer matrix (Reprinted with permission from Reference[26]. Copyright (2017) American Chemical Society)

    图  3  纤维素的化学结构

    Figure  3.  Structural formula of cellulose

    图  4  二氧化硅-环氧氯丙烷-羧甲基纤维素微胶囊的制备机理 (转载自文献[46])

    Figure  4.  The possible mechanism for the preparation of the silica-epichlorohydrin-carboxymethylcellulose microcapsules (From Reference[46]. Reproduced by permission of The Royal Society of Chemistry)

    图  5  甲壳素和壳聚糖的化学结构

    Figure  5.  Structural formula of chitin and chitosan

    图  6  两步乳液法制备双层微胶囊的机理示意图 (转载自文献[62])

    Figure  6.  The formation mechanism of double-shelled microcapsules by a two-step emulsion technique (From Reference[62]. Reproduced by permission of The Royal Society of Chemistry)

    图  7  木质素的3种单体分子结构

    Figure  7.  Three structural unites of lignin

    图  8  通过LbL技术制备包埋毒莠定微晶的微胶囊以及毒莠定释放示意图 (转载自文献[86])

    Figure  8.  Illustration of the encapsulation of PLR microcrystals by LbL assembly and drug release from the PLR microcapsules (Reprinted with permission from Reference[86]. Copyright (2013) American Chemical Society)

  • [1] BAI C, ZHANG S, HUANG L, et al. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption[J]. Carbohydr Polym, 2015, 125: 376-383. doi: 10.1016/j.carbpol.2015.03.004
    [2] XU X, BAI B, WANG H, et al. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Appl Mater Inter, 2017, 9(7): 6424-6432. doi: 10.1021/acsami.6b15393
    [3] 杨光. 农业农村部:我国农药利用率已达到38.8%[J]. 农药市场信息, 2018, 11: 11.

    YANG G. Ministry of Agriculture and Rural Affairs: China's pesticide utilization rate has reached 38.8%[J]. Pestic Mark News, 2018, 11: 11.
    [4] 郭明程. 环境响应性农药控释剂的制备及生物效应研究[D]. 北京: 中国农业大学, 2016.

    GUO M C. Preparation and biological efficacy evaluation of stimuli-responsive controlled release formulation of pesticide[D]. Beijing: China Agricultural University, 2016.
    [5] WANG S, JIA Z X, ZHOU X Y, et al. Preparation of a biodegradable poly(vinyl alcohol)-starch composite film and its application in pesticide controlled release[J]. J Appl Polym Sci, 2017, 134(28): 45051. doi: 10.1002/app.45051
    [6] NURUZZAMAN M, RAHMAN M M, LIU Y, et al. Nanoencapsulation, nano-guard for pesticides: a new window for safe application[J]. J Agric Food Chem, 2016, 64(7): 1447-1483. doi: 10.1021/acs.jafc.5b05214
    [7] 冯建国, 郁倩瑶, 孙陈铖, 等. 农药控释剂的研究与应用进展[J]. 中国农业大学学报, 2016, 21(8): 67-76.

    FENG J G, YU Q Y, SUN C C, et al. Progress in research and application of formulations for controlled release of pesticide[J]. J China Agric Univ, 2016, 21(8): 67-76.
    [8] ROY A, BAJPAI J, BAJPAI A K. Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch[J]. Carbohydr Polym, 2009, 76(2): 222-231. doi: 10.1016/j.carbpol.2008.10.013
    [9] 郭明程, 陈立萍, 张佳, 等. 环境响应性载体材料在农药控释中的应用研究进展[J]. 农药学学报, 2018, 20(3): 270-278.

    GUO M C, CHEN L P, ZHANG J, et al. Recent progress on stimuli-responsive materials as pesticides controlled release carriers[J]. Chin J Pestic Sci, 2018, 20(3): 270-278.
    [10] 何顺, 高云昊, 万虎, 等. 基于介孔二氧化硅纳米粒子的农药可控释放研究进展[J]. 农药学学报, 2016, 18(4): 416-423.

    HE S, GAO Y H, WAN H, et al. Recent progress in the application of mesoporous silica nanoparticles to controlled pesticides delivery system[J]. Chin J Pestic Sci, 2016, 18(4): 416-423.
    [11] CAMPOS E V R, OLIVEIRA J L D, FRACETO L F, et al. Polysaccharides as safer release systems for agrochemicals[J]. Agron Sustain Dev, 2015, 35(1): 47-66. doi: 10.1007/s13593-014-0263-0
    [12] KASHYAP P L, XIANG X, HEIDEN P. Chitosan nanoparticle based delivery systems for sustainable agriculture[J]. Int J Biol Macromol, 2015, 77: 36-51. doi: 10.1016/j.ijbiomac.2015.02.039
    [13] 卢陈君, 沈梅锋, 李建法. 天然高分子基载体对农药控制释放作用的研究进展[J]. 生物质化学工程, 2011, 45(4): 51-55. doi: 10.3969/j.issn.1673-5854.2011.04.010

    LU C J, SHEN M F, LI J F. Effects of natural polymers carriers on pesticides release control: A review[J]. Biomass Bioenerg, 2011, 45(4): 51-55. doi: 10.3969/j.issn.1673-5854.2011.04.010
    [14] LI Y, YANG D, LU S, et al. Modified lignin with anionic surfactant and its application in controlled release of avermectin[J]. J Agric Food Chem, 2018, 66(13): 3457-3464. doi: 10.1021/acs.jafc.8b00393
    [15] COSTA P, SOUSA LOBO J M. Modeling and comparison of dissolution profiles[J]. Eur J Pharm Sci, 2001, 13(2): 123-133. doi: 10.1016/S0928-0987(01)00095-1
    [16] ENGLAND C G, MILLER M C, KUTTAN A, et al. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles[J]. Eur J Pharm Biopharm, 2015, 92: 120-129. doi: 10.1016/j.ejpb.2015.02.017
    [17] HIGUCHI T. Rate of release of medicaments from ointment bases containing drugs in suspension[J]. J Pharm Sci, 1961, 50(10): 874-875. doi: 10.1002/jps.2600501018
    [18] KORSMEYER R W, GURNY R, DOELKER E, et al. Mechanisms of solute release from porous hydrophilic polymers[J]. Int J Pharm, 1983, 15(1): 25-35. doi: 10.1016/0378-5173(83)90064-9
    [19] RITGER P L, PEPPAS N A. A simple equation for description of solute release Ⅱ. Fickian and anomalous release from swellable devices[J]. J Controlled Release, 1987, 5(1): 37-42. doi: 10.1016/0168-3659(87)90035-6
    [20] ROMANO N, KUMAR V. Starch gelatinization on the physical characteristics of aquafeeds and subsequent implications to the productivity in farmed aquatic animals[J]. Rev Aquacult, 2019, 11(4): 1271-1284. doi: 10.1111/raq.12291
    [21] ZHU Z F, YU C Y, WANG L P. Effect of starch sources on the release rates of herbicides encapsulated[J]. Wuhan Univ J Nat Sci, 2006, 11(2): 423-426. doi: 10.1007/BF02832136
    [22] 祝志峰, 卓仁禧. 淀粉囊化农药控释缓释技术[J]. 高分子通报, 2003(2): 8-14. doi: 10.3969/j.issn.1003-3726.2003.02.002

    ZHU Z F, ZHUO R X. Controlled release and sustained release of starch encapsulated pesticide[J]. Polym Bull, 2003(2): 8-14. doi: 10.3969/j.issn.1003-3726.2003.02.002
    [23] WIENHOLD B J, GISH T J. Chemical properties influencing rate of release of starch encapsulated herbicides: implications for modifying environmental fate[J]. Chemosphere, 1994, 28(5): 1035-1046. doi: 10.1016/0045-6535(94)90019-1
    [24] SINGH B, SHARMA D K, KUMAR R, et al. Controlled release of the fungicide thiram from starch-alginate-clay based formulation[J]. Appl Clay Sci, 2009, 45(1): 76-82.
    [25] GIROTO A S, DE CAMPOS A, PEREIRA E I, et al. Study of a nanocomposite starch-clay for slow-release of herbicides: evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control[J]. J Appl Polym Sci, 2014, 131(23): 205-212.
    [26] ZHONG B, WANG S, DONG H, et al. Halloysite tubes as nanocontainers for herbicide and its controlled release in biodegradable poly(vinyl alcohol)/starch film[J]. J Agric Food Chem, 2017, 65(48): 10445-10451. doi: 10.1021/acs.jafc.7b04220
    [27] WILPISZEWSKA K, SPYCHAJ T, PA?DZIOCH W. Carboxymethyl starch/montmorillonite composite microparticles: properties and controlled release of isoproturon[J]. Carbohydr Polym, 2016, 136: 101-106. doi: 10.1016/j.carbpol.2015.09.021
    [28] LI D, LIU B, YANG F, et al. Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin[J]. Carbohydr Polym, 2016, 136: 341-349. doi: 10.1016/j.carbpol.2015.09.050
    [29] RAVI KUMAR M N V. A review of chitin and chitosan applications[J]. React Funct Polym, 2000, 46(1): 1-27. doi: 10.1016/S1381-5148(00)00038-9
    [30] SONG L C, YANG Y L, XIE H B, et al. Cellulose dissolution and in situ grafting in a reversible system using an organocatalyst and carbon dioxide[J]. ChemSusChem, 2015, 8(19): 3217-3221. doi: 10.1002/cssc.201500378
    [31] ZHANG L H, SHI W T, WANG J Q, et al. Unique gelation and rheological properties of the cellulose/CO2-based reversible ionic liquid/DMSO solutions[J]. Carbohydr Polym, 2019, 222: 115024. doi: 10.1016/j.carbpol.2019.115024
    [32] SONG H, LUO Z, ZHAO H, et al. High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica[J]. RSC Adv, 2013, 3(29): 11665-11675. doi: 10.1039/c3ra40387d
    [33] ZHOU J P, ZHANG L N. Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution[J]. J Polym Sci Part B: Polym Phys, 2001, 39(4): 451-458. doi: 10.1002/1099-0488(20010215)39:4<451::AID-POLB1018>3.0.CO;2-J
    [34] LU F, ZHANG C, KANG H, et al. Extensional rheology of cellulose/NaOH/urea/H2O solutions[J]. Cellulose, 2016, 23(5): 2877-2885. doi: 10.1007/s10570-016-1002-2
    [35] AONO H, TATSUMI D, MATSUMOTO T. Scaling analysis of cotton cellulose/LiCl·DMAc solution using light scattering and rheological measurements[J]. J Polym Sci Part B: Polym Phys, 2006, 44(15): 2155-2160. doi: 10.1002/polb.20879
    [36] DOGAN H, HILMIOGLU N D. Dissolution of cellulose with NMMO by microwave heating[J]. Carbohydr Polym, 2009, 75(1): 90-94. doi: 10.1016/j.carbpol.2008.06.014
    [37] WANG S, LU A, ZHANG L. Recent advances in regenerated cellulose materials[J]. Prog Polym Sci, 2016, 53: 169-206. doi: 10.1016/j.progpolymsci.2015.07.003
    [38] PANG L, GAO Z, ZHANG S, et al. Preparation and anti-UV property of modified cellulose membranes for biopesticides controlled release[J]. Ind Crops Prod, 2016, 89: 176-181. doi: 10.1016/j.indcrop.2016.05.014
    [39] 黄姗, 崔励. 抗紫外线染料研究进展[J]. 染料与染色, 2010, 47(6): 1-4.

    HUANG S, CUI L. Development of anti-UV dyes[J]. Dyest Color, 2010, 47(6): 1-4.
    [40] 徐华, 林粤顺, 周红军, 等. 毒死蜱/乙基纤维素微胶囊的制备及其缓释性能[J]. 化工进展, 2017, 36(12): 4622-4627.

    XU H, LIN Y S, ZHOU H J, et al. Preparation and sustained-release properties of chlorpyrifos/ethyl cellulose microcapsules[J]. Chem Ind Eng Prog, 2017, 36(12): 4622-4627.
    [41] SOPE A F, VILLAVERDE J, MAQUEDA C, et al. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system[J]. J Hazard Mater, 2011, 195: 298-305. doi: 10.1016/j.jhazmat.2011.08.039
    [42] FAN T, FENG J, MA C, et al. Preparation and characterization of porous microspheres and applications in controlled-release of abamectin in water and soil[J]. J Porous Mater, 2014, 21(1): 113-119. doi: 10.1007/s10934-013-9754-7
    [43] PANG L, GAO Z, FENG H, et al. Synthesis of a fluorescent ethyl cellulose membrane with application in monitoring 1-naphthylacetic acid from controlled release formula[J]. Carbohydr Polym, 2017, 176: 160-166. doi: 10.1016/j.carbpol.2017.07.057
    [44] LI J, LU J, LI Y. Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide[J]. J Appl Polym Sci, 2009, 112(1): 261-268. doi: 10.1002/app.29416
    [45] SARKAR D J, SINGH A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites[J]. Carbohydr Polym, 2017, 156: 303-311. doi: 10.1016/j.carbpol.2016.09.045
    [46] GUO M, ZHANG W, DING G, et al. Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica-epichlorohydrin-carboxymethylcellulose[J]. RSC Adv, 2015, 5(113): 93170-93179. doi: 10.1039/C5RA17901G
    [47] LI M, WANG Z, LI B. Adsorption behaviour of congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid[J]. Desalin Water Treat, 2016, 57(36): 16970-16980.
    [48] YANG D, WANG Y, HE L, et al. Carboxyl-functionalized ionic liquid assisted preparation of flexible, transparent, and luminescent chitosan films as vapor luminescent sensor[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19709-19715. doi: 10.1021/acsami.6b06325
    [49] SILVA S S, MANO J F, REIS R L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications[J]. Green Chem, 2017, 19(5): 1208-1220. doi: 10.1039/C6GC02827F
    [50] 张林朴, 王冠华, 连小丽, 等. 海藻酸钠/壳聚糖复合凝胶的制备与细胞毒性评价[J]. 中国组织工程研究, 2014, 18(21): 3310-3315. doi: 10.3969/j.issn.2095-4344.2014.21.006

    ZHANG L P, WANG G H, LIAN X L, et al. Preparation and cytotoxicity evaluation of chitosan-sodium alginate composite gel[J]. Chin J Tissue Eng Res, 2014, 18(21): 3310-3315. doi: 10.3969/j.issn.2095-4344.2014.21.006
    [51] WU J, WANG Y, YANG H, et al. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles[J]. Carbohydr Polym, 2017, 175: 170-177. doi: 10.1016/j.carbpol.2017.07.058
    [52] 谢宇, 胡金刚, 魏娅, 等. 离子凝胶法制备壳聚糖纳米微粒[J]. 应用化工, 2009, 38(2): 171-173. doi: 10.3969/j.issn.1671-3206.2009.02.005

    XIE Y, HU J G, WEI Y, et al. Preparation of chitosan nanoparticles by the ion gel[J]. Appl Chem Ind, 2009, 38(2): 171-173. doi: 10.3969/j.issn.1671-3206.2009.02.005
    [53] 肖新才, 官亚兰, 王振环, 等. “水包水”法制备壳聚糖-多聚磷酸钠微囊[J]. 中南民族大学学报(自然科学版), 2013, 32(1): 42-46.

    XIAO X C, GUAN Y L, WANG Z H, et al. Preparation of chitosan/tripolyphosphate microcapsules by the method of water-in-water[J]. J South-Cent Univ Natl (Nat Sci Ed), 2013, 32(1): 42-46.
    [54] GRILLO R, PEREIRA A E S, NISHISAKA C S, et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control[J]. J Hazard Mater, 2014, 278: 163-171. doi: 10.1016/j.jhazmat.2014.05.079
    [55] CHAUHAN N, DILBAGHI N, GOPAL M, et al. Development of chitosan nanocapsules for the controlled release of hexaconazole[J]. Int J Biol Macromol, 2017, 97: 616-624. doi: 10.1016/j.ijbiomac.2016.12.059
    [56] SILVA M D S, COCENZA D S, GRILLO R, et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies[J]. J Hazard Mater, 2011, 190(1): 366-374.
    [57] KUMAR S, CHAUHAN N, GOPAL M, et al. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid[J]. Int J Biol Macromol, 2015, 81: 631-637. doi: 10.1016/j.ijbiomac.2015.08.062
    [58] MARUYAMA C R, GUILGER M, PASCOLI M, et al. Corrigendum: nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr[J]. Sci Rep, 2016, 6: 23854. doi: 10.1038/srep23854
    [59] PEREIRA A E S, SILVA P M, OLIVEIRA J L, et al. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid[J]. Colloid Surfaces B, 2017, 150: 141-152. doi: 10.1016/j.colsurfb.2016.11.027
    [60] 赵瑞, 郑欣钰, 任杰, 等. 壳聚糖交联接枝改性研究进展[J]. 高分子通报, 2019(5): 43-50.

    ZHAO R, ZHENG X J, REN J, et al. Advances in the modification of chitosan crosslinked branches[J]. Polym Bull, 2019(5): 43-50.
    [61] 欧敏华, 张永德, 罗学刚, 等. 静电自组装壳聚糖载药空心微胶囊的制备及释放性能[J]. 化工进展, 2017, 36(5): 1848-1854.

    OU M H, ZHANG Y D, LUO X G, et al. Preparation and release properties of electrostatic self-assembled chitosan-loaded hollow microcapsules[J]. Chem Ind Eng Prog, 2017, 36(5): 1848-1854.
    [62] HE S, ZHANG W, LI D, et al. Preparation and characterization of double-shelled avermectin microcapsules based on copolymer matrix of silica-glutaraldehyde-chitosan[J]. J Mater Chem B, 2013, 1(9): 1270-1278. doi: 10.1039/c2tb00234e
    [63] TAO S, PANG R, CHEN C, et al. Synthesis, characterization and slow release properties of o-naphthylacetyl chitosan[J]. Carbohydr Polym, 2012, 88(4): 1189-1194. doi: 10.1016/j.carbpol.2012.01.076
    [64] LIU Y, SUN Y, HE S, et al. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications[J]. Int J Biol Macromol, 2013, 57: 213-217. doi: 10.1016/j.ijbiomac.2013.03.024
    [65] PAN Z, GAO Y, HENG L, et al. Amphiphilic N-(2,3-dihydroxypropyl)-chitosan-cholic acid micelles for paclitaxel delivery[J]. Carbohydr Polym, 2013, 94(1): 394-399. doi: 10.1016/j.carbpol.2013.01.013
    [66] ZHANG C, DING Y, YU L, et al. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives[J]. Colloid Surfaces B, 2007, 55(2): 192-199. doi: 10.1016/j.colsurfb.2006.11.031
    [67] LAO S B, ZHANG Z X, XU H H, et al. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone[J]. Carbohydr Polym, 2010, 82(4): 1136-1142. doi: 10.1016/j.carbpol.2010.06.044
    [68] XU C, CAO L, ZHAO P, et al. Synthesis and characterization of stimuli-responsive poly (2-dimethylamino-ethylmethacrylate)-grafted chitosan microcapsule for controlled pyraclostrobin release[J]. Int J Mol Sci, 2018, 19(3): 854. doi: 10.3390/ijms19030854
    [69] CHEN T, WANG R, XU L Q, et al. Carboxymethyl chitosan-functionalized magnetic nanoparticles for disruption of biofilms of Staphylococcus aureus and Escherichia coli[J]. Ind Eng Chem Res, 2012, 51(40): 13164-13172. doi: 10.1021/ie301522w
    [70] 郭睿, 刘爱玉, 郭煜, 等. 响应面法优化羧甲基壳聚糖的制备工艺[J]. 精细化工, 2016, 33(8): 872-879.

    GUO R, LIU A Y, GUO Y, et al. Process optimization for preparation of carboxymethyl chitosan by response surface methodology[J]. Fine Chem, 2016, 33(8): 872-879.
    [71] XU C L, CAO L D, ZHAO P Y, et al. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release[J]. Chem Eng J, 2018, 348: 244-254. doi: 10.1016/j.cej.2018.05.008
    [72] TENG Z, LUO Y, WANG Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3[J]. Food Chem, 2013, 141(1): 524-532. doi: 10.1016/j.foodchem.2013.03.043
    [73] 洪英, 钟泽辉, 郑朝位, 等. 纳米羧甲基壳聚糖抗菌纸的制备及其力学性能研究[J]. 包装工程, 2015, 36(19): 50-53.

    HONG Y, ZHONG Z H, ZHENG C W, et al. Preparation and mechanical performance of antibacterial paper coated by nano-carboxymethyl-chitosan[J]. Packag Eng, 2015, 36(19): 50-53.
    [74] LI J, YAO J, LI Y, et al. Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel[J]. J Environ Sci Health Part B, 2012, 47(8): 795-803. doi: 10.1080/03601234.2012.676421
    [75] GAO C, LIU T, DANG Y, et al. pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate[J]. Carbohydr Polym, 2014, 111: 964-970. doi: 10.1016/j.carbpol.2014.05.012
    [76] LIU K H, CHEN B R, CHEN S Y, et al. Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans[J]. J Phys Chem B, 2009, 113(35): 11800-11807. doi: 10.1021/jp902103p
    [77] YE Z, GUO J, WU D, et al. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide[J]. Carbohydr Polym, 2015, 132: 520-528. doi: 10.1016/j.carbpol.2015.06.077
    [78] SUN C, SHU K, WANG W, et al. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core[J]. Int J Pharm, 2014, 463(1): 108-114. doi: 10.1016/j.ijpharm.2013.12.050
    [79] YU Z Y, SUN X, SONG H X, et al. Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides[J]. Mater Sci Appl, 2015, 6: 591-604.
    [80] LOU R, MA R, LIN K-T, et al. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles[J]. ACS Sustain Chem Eng, 2019, 7(12): 10248-10256. doi: 10.1021/acssuschemeng.8b05816
    [81] LIU E, LI M, DAS L, et al. Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid[J]. ACS Sustain Chem Eng, 2018, 6(5): 6612-6623. doi: 10.1021/acssuschemeng.8b00384
    [82] 乔悦, 甘洪宇, 李响, 等. 木质素降解技术研究进展[J]. 化工科技, 2019, 27(4): 84-88.

    QIAO Y, GAN H Y, LI X, et al. Research on degradation of lignin[J]. Sci Technol Chem Ind, 27(4): 84-88.
    [83] 曾梅, 戴爱军, 赵蒙, 等. 木质素改性水煤浆添加剂研究现状及发展趋势[J]. 洁净煤技术, 2014, 20(5): 49-52.

    ZENG M, DAI A J, ZHAO M, et al. Research status and development trend of modified lignin additives for coal water mixture[J]. Clean Coal Technol, 2014, 20(5): 49-52.
    [84] LAURICHESSE S, AV ROUS L. Chemical modification of lignins: towards biobased polymers[J]. Prog Polym Sci, 2014, 39(7): 1266-1290. doi: 10.1016/j.progpolymsci.2013.11.004
    [85] DENG Y, ZHAO H, QIAN Y, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Ind Crops Prod, 2016, 87: 191-197. doi: 10.1016/j.indcrop.2016.03.056
    [86] WANG X, ZHAO J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials[J]. J Agric Food Chem, 2013, 61(16): 3789-3796. doi: 10.1021/jf4004658
    [87] PANG Y, LI X, WANG S, et al. Lignin-polyurea microcapsules with anti-photolysis and sustained-release performances synthesized via pickering emulsion template[J]. React Funct Polym, 2018, 123: 115-121. doi: 10.1016/j.reactfunctpolym.2017.12.018
    [88] 周宝文, 哈成勇, 莫建强, 等. 木质素磺酸盐表面活性剂的研究和应用进展[J]. 高分子通报, 2013(5): 76-82.

    ZHOU B W, HA C Y, MO J Q, et al. Process of researches and applications on lignosulfonate surfactants[J]. Polym Bull, 2013(5): 76-82.
    [89] 赵玉波. 蔗渣木质素磺酸盐结构与性能的研究[D]. 南京: 南京林业大学, 2005.

    ZHAO Y B. Study on the structure and property of bagasse’s lignosulfonate[D]. Nanjing: Nanjing Forestry University, 2005.
    [90] LI Y, ZHOU M, PANG Y, et al. Lignin-based microsphere: Preparation and performance on encapsulating the pesticide avermectin[J]. ACS Sustain Chem Eng, 2017, 5(4): 3321-3328. doi: 10.1021/acssuschemeng.6b03180
    [91] LIU Z, QIE R, LI W, et al. Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives[J]. New J Chem, 2017, 41(8): 3190-3195. doi: 10.1039/C6NJ03795J
    [92] 周明松, 刘庆芳, 王素雅, 等. 静电自组装法制备阿维菌素微胶囊[J]. 精细化工, 2017, 34(5): 519-524.

    ZHOU M S, LIU Q F, WANG S Y, et al. The microcapsules of abamectin were prepared by electrostatic self-assembly[J]. Fine Chem, 2017, 34(5): 519-524.
    [93] 卢晶, 张琼, 方桂珍, 等. 二甲基烯丙基木质素季铵盐-海藻酸钠两性聚电解质的制备及表征[J]. 功能材料, 2015, 46(22): 22123-22127. doi: 10.3969/j.issn.1001-9731.2015.22.025

    LU J, ZHANG Q, FANG G Z, et al. Preparation and characterization performance of dimethylallyl quaternary ammonium salts of lignin-sodium alginate polyampholyte[J]. J Funct Mater, 2015, 46(22): 22123-22127. doi: 10.3969/j.issn.1001-9731.2015.22.025
    [94] 卢晶, 罗华超, 张琼, 等. 木质素季铵盐-海藻酸钠聚合物负载阿维菌素粉体的制备及抗紫外光性能分析[J]. 生物质化学工程, 2015, 49(3): 17-22. doi: 10.3969/j.issn.1673-5854.2015.03.004

    LU J, LUO H C, Zhang Q, et al. Preparation of lignin quaternary ammonium salt-sodium alginate polymer loaded abamectin powder and analysis of UV resistance[J]. Biomass Bioenerg, 2015, 49(3): 17-22. doi: 10.3969/j.issn.1673-5854.2015.03.004
    [95] 田金玲, 任世学, 方桂珍. 三甲基木质素季铵盐/膨润土缓释剂的制备及性能[J]. 林产化学与工业, 2015, 35(5): 71-78. doi: 10.3969/j.issn.0253-2417.2015.05.012

    TIAN J L, REN S X, FANG G Z. Preparation and properties of quaternary ammonium trimethyl lignin/bentonite sustained-release agent[J]. Chem Ind For Prod, 2015, 35(5): 71-78. doi: 10.3969/j.issn.0253-2417.2015.05.012
    [96] 侯莲霞, 刘彦辉, 田金玲, 等. 啶虫脒/木质素两性表面活性剂/膨润土缓释剂的制备及性能[J]. 生物质化学工程, 2015, 49(6): 11-16. doi: 10.3969/j.issn.1673-5854.2015.06.003

    HOU L X, LIU Y H, TIAN J L, et al. Preparation and properties of diamidine/lignin amphoteric surfactant/bentonite sustained release age[J]. Biomass Bioenerg, 2015, 49(6): 11-16. doi: 10.3969/j.issn.1673-5854.2015.06.003
    [97] ZHOU M, XIONG Z, YANG D, et al. Preparation of slow release nanopesticide microspheres from benzoyl lignin[J]. Holzforschung, 2018, 72(7): 599-607. doi: 10.1515/hf-2017-0155
    [98] 李北兴, 张大侠, 张灿光, 等. 微囊化技术研究进展及其在农药领域的应用[J]. 农药学学报, 2014, 16(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01

    LI B X, ZHANG D X, ZHANG C G, et al. Research advances and application prospects of microencapsulation techniques in pesticide[J]. Chin J Pestic Sci, 2014, 16(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01
  • 加载中
图(8)
计量
  • 文章访问数:  4773
  • HTML全文浏览量:  1313
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 录用日期:  2020-02-04
  • 刊出日期:  2020-08-19

目录

    /

    返回文章
    返回