[1] |
BAI C, ZHANG S, HUANG L, et al. Starch-based hydrogel loading with carbendazim for controlled-release and water absorption[J]. Carbohydr Polym, 2015, 125: 376-383. doi: 10.1016/j.carbpol.2015.03.004
|
[2] |
XU X, BAI B, WANG H, et al. A near-infrared and temperature-responsive pesticide release platform through core-shell polydopamine@PNIPAm nanocomposites[J]. ACS Appl Mater Inter, 2017, 9(7): 6424-6432. doi: 10.1021/acsami.6b15393
|
[3] |
杨光. 农业农村部:我国农药利用率已达到38.8%[J]. 农药市场信息, 2018, 11: 11.YANG G. Ministry of Agriculture and Rural Affairs: China's pesticide utilization rate has reached 38.8%[J]. Pestic Mark News, 2018, 11: 11.
|
[4] |
郭明程. 环境响应性农药控释剂的制备及生物效应研究[D]. 北京: 中国农业大学, 2016.GUO M C. Preparation and biological efficacy evaluation of stimuli-responsive controlled release formulation of pesticide[D]. Beijing: China Agricultural University, 2016.
|
[5] |
WANG S, JIA Z X, ZHOU X Y, et al. Preparation of a biodegradable poly(vinyl alcohol)-starch composite film and its application in pesticide controlled release[J]. J Appl Polym Sci, 2017, 134(28): 45051. doi: 10.1002/app.45051
|
[6] |
NURUZZAMAN M, RAHMAN M M, LIU Y, et al. Nanoencapsulation, nano-guard for pesticides: a new window for safe application[J]. J Agric Food Chem, 2016, 64(7): 1447-1483. doi: 10.1021/acs.jafc.5b05214
|
[7] |
冯建国, 郁倩瑶, 孙陈铖, 等. 农药控释剂的研究与应用进展[J]. 中国农业大学学报, 2016, 21(8): 67-76.FENG J G, YU Q Y, SUN C C, et al. Progress in research and application of formulations for controlled release of pesticide[J]. J China Agric Univ, 2016, 21(8): 67-76.
|
[8] |
ROY A, BAJPAI J, BAJPAI A K. Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch[J]. Carbohydr Polym, 2009, 76(2): 222-231. doi: 10.1016/j.carbpol.2008.10.013
|
[9] |
郭明程, 陈立萍, 张佳, 等. 环境响应性载体材料在农药控释中的应用研究进展[J]. 农药学学报, 2018, 20(3): 270-278.GUO M C, CHEN L P, ZHANG J, et al. Recent progress on stimuli-responsive materials as pesticides controlled release carriers[J]. Chin J Pestic Sci, 2018, 20(3): 270-278.
|
[10] |
何顺, 高云昊, 万虎, 等. 基于介孔二氧化硅纳米粒子的农药可控释放研究进展[J]. 农药学学报, 2016, 18(4): 416-423.HE S, GAO Y H, WAN H, et al. Recent progress in the application of mesoporous silica nanoparticles to controlled pesticides delivery system[J]. Chin J Pestic Sci, 2016, 18(4): 416-423.
|
[11] |
CAMPOS E V R, OLIVEIRA J L D, FRACETO L F, et al. Polysaccharides as safer release systems for agrochemicals[J]. Agron Sustain Dev, 2015, 35(1): 47-66. doi: 10.1007/s13593-014-0263-0
|
[12] |
KASHYAP P L, XIANG X, HEIDEN P. Chitosan nanoparticle based delivery systems for sustainable agriculture[J]. Int J Biol Macromol, 2015, 77: 36-51. doi: 10.1016/j.ijbiomac.2015.02.039
|
[13] |
卢陈君, 沈梅锋, 李建法. 天然高分子基载体对农药控制释放作用的研究进展[J]. 生物质化学工程, 2011, 45(4): 51-55. doi: 10.3969/j.issn.1673-5854.2011.04.010LU C J, SHEN M F, LI J F. Effects of natural polymers carriers on pesticides release control: A review[J]. Biomass Bioenerg, 2011, 45(4): 51-55. doi: 10.3969/j.issn.1673-5854.2011.04.010
|
[14] |
LI Y, YANG D, LU S, et al. Modified lignin with anionic surfactant and its application in controlled release of avermectin[J]. J Agric Food Chem, 2018, 66(13): 3457-3464. doi: 10.1021/acs.jafc.8b00393
|
[15] |
COSTA P, SOUSA LOBO J M. Modeling and comparison of dissolution profiles[J]. Eur J Pharm Sci, 2001, 13(2): 123-133. doi: 10.1016/S0928-0987(01)00095-1
|
[16] |
ENGLAND C G, MILLER M C, KUTTAN A, et al. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles[J]. Eur J Pharm Biopharm, 2015, 92: 120-129. doi: 10.1016/j.ejpb.2015.02.017
|
[17] |
HIGUCHI T. Rate of release of medicaments from ointment bases containing drugs in suspension[J]. J Pharm Sci, 1961, 50(10): 874-875. doi: 10.1002/jps.2600501018
|
[18] |
KORSMEYER R W, GURNY R, DOELKER E, et al. Mechanisms of solute release from porous hydrophilic polymers[J]. Int J Pharm, 1983, 15(1): 25-35. doi: 10.1016/0378-5173(83)90064-9
|
[19] |
RITGER P L, PEPPAS N A. A simple equation for description of solute release Ⅱ. Fickian and anomalous release from swellable devices[J]. J Controlled Release, 1987, 5(1): 37-42. doi: 10.1016/0168-3659(87)90035-6
|
[20] |
ROMANO N, KUMAR V. Starch gelatinization on the physical characteristics of aquafeeds and subsequent implications to the productivity in farmed aquatic animals[J]. Rev Aquacult, 2019, 11(4): 1271-1284. doi: 10.1111/raq.12291
|
[21] |
ZHU Z F, YU C Y, WANG L P. Effect of starch sources on the release rates of herbicides encapsulated[J]. Wuhan Univ J Nat Sci, 2006, 11(2): 423-426. doi: 10.1007/BF02832136
|
[22] |
祝志峰, 卓仁禧. 淀粉囊化农药控释缓释技术[J]. 高分子通报, 2003(2): 8-14. doi: 10.3969/j.issn.1003-3726.2003.02.002ZHU Z F, ZHUO R X. Controlled release and sustained release of starch encapsulated pesticide[J]. Polym Bull, 2003(2): 8-14. doi: 10.3969/j.issn.1003-3726.2003.02.002
|
[23] |
WIENHOLD B J, GISH T J. Chemical properties influencing rate of release of starch encapsulated herbicides: implications for modifying environmental fate[J]. Chemosphere, 1994, 28(5): 1035-1046. doi: 10.1016/0045-6535(94)90019-1
|
[24] |
SINGH B, SHARMA D K, KUMAR R, et al. Controlled release of the fungicide thiram from starch-alginate-clay based formulation[J]. Appl Clay Sci, 2009, 45(1): 76-82.
|
[25] |
GIROTO A S, DE CAMPOS A, PEREIRA E I, et al. Study of a nanocomposite starch-clay for slow-release of herbicides: evidence of synergistic effects between the biodegradable matrix and exfoliated clay on herbicide release control[J]. J Appl Polym Sci, 2014, 131(23): 205-212.
|
[26] |
ZHONG B, WANG S, DONG H, et al. Halloysite tubes as nanocontainers for herbicide and its controlled release in biodegradable poly(vinyl alcohol)/starch film[J]. J Agric Food Chem, 2017, 65(48): 10445-10451. doi: 10.1021/acs.jafc.7b04220
|
[27] |
WILPISZEWSKA K, SPYCHAJ T, PA?DZIOCH W. Carboxymethyl starch/montmorillonite composite microparticles: properties and controlled release of isoproturon[J]. Carbohydr Polym, 2016, 136: 101-106. doi: 10.1016/j.carbpol.2015.09.021
|
[28] |
LI D, LIU B, YANG F, et al. Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin[J]. Carbohydr Polym, 2016, 136: 341-349. doi: 10.1016/j.carbpol.2015.09.050
|
[29] |
RAVI KUMAR M N V. A review of chitin and chitosan applications[J]. React Funct Polym, 2000, 46(1): 1-27. doi: 10.1016/S1381-5148(00)00038-9
|
[30] |
SONG L C, YANG Y L, XIE H B, et al. Cellulose dissolution and in situ grafting in a reversible system using an organocatalyst and carbon dioxide[J]. ChemSusChem, 2015, 8(19): 3217-3221. doi: 10.1002/cssc.201500378
|
[31] |
ZHANG L H, SHI W T, WANG J Q, et al. Unique gelation and rheological properties of the cellulose/CO2-based reversible ionic liquid/DMSO solutions[J]. Carbohydr Polym, 2019, 222: 115024. doi: 10.1016/j.carbpol.2019.115024
|
[32] |
SONG H, LUO Z, ZHAO H, et al. High tensile strength and high ionic conductivity bionanocomposite ionogels prepared by gelation of cellulose/ionic liquid solutions with nano-silica[J]. RSC Adv, 2013, 3(29): 11665-11675. doi: 10.1039/c3ra40387d
|
[33] |
ZHOU J P, ZHANG L N. Structure and properties of blend membranes prepared from cellulose and alginate in NaOH/urea aqueous solution[J]. J Polym Sci Part B: Polym Phys, 2001, 39(4): 451-458. doi: 10.1002/1099-0488(20010215)39:4<451::AID-POLB1018>3.0.CO;2-J
|
[34] |
LU F, ZHANG C, KANG H, et al. Extensional rheology of cellulose/NaOH/urea/H2O solutions[J]. Cellulose, 2016, 23(5): 2877-2885. doi: 10.1007/s10570-016-1002-2
|
[35] |
AONO H, TATSUMI D, MATSUMOTO T. Scaling analysis of cotton cellulose/LiCl·DMAc solution using light scattering and rheological measurements[J]. J Polym Sci Part B: Polym Phys, 2006, 44(15): 2155-2160. doi: 10.1002/polb.20879
|
[36] |
DOGAN H, HILMIOGLU N D. Dissolution of cellulose with NMMO by microwave heating[J]. Carbohydr Polym, 2009, 75(1): 90-94. doi: 10.1016/j.carbpol.2008.06.014
|
[37] |
WANG S, LU A, ZHANG L. Recent advances in regenerated cellulose materials[J]. Prog Polym Sci, 2016, 53: 169-206. doi: 10.1016/j.progpolymsci.2015.07.003
|
[38] |
PANG L, GAO Z, ZHANG S, et al. Preparation and anti-UV property of modified cellulose membranes for biopesticides controlled release[J]. Ind Crops Prod, 2016, 89: 176-181. doi: 10.1016/j.indcrop.2016.05.014
|
[39] |
黄姗, 崔励. 抗紫外线染料研究进展[J]. 染料与染色, 2010, 47(6): 1-4.HUANG S, CUI L. Development of anti-UV dyes[J]. Dyest Color, 2010, 47(6): 1-4.
|
[40] |
徐华, 林粤顺, 周红军, 等. 毒死蜱/乙基纤维素微胶囊的制备及其缓释性能[J]. 化工进展, 2017, 36(12): 4622-4627.XU H, LIN Y S, ZHOU H J, et al. Preparation and sustained-release properties of chlorpyrifos/ethyl cellulose microcapsules[J]. Chem Ind Eng Prog, 2017, 36(12): 4622-4627.
|
[41] |
SOPE A F, VILLAVERDE J, MAQUEDA C, et al. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system[J]. J Hazard Mater, 2011, 195: 298-305. doi: 10.1016/j.jhazmat.2011.08.039
|
[42] |
FAN T, FENG J, MA C, et al. Preparation and characterization of porous microspheres and applications in controlled-release of abamectin in water and soil[J]. J Porous Mater, 2014, 21(1): 113-119. doi: 10.1007/s10934-013-9754-7
|
[43] |
PANG L, GAO Z, FENG H, et al. Synthesis of a fluorescent ethyl cellulose membrane with application in monitoring 1-naphthylacetic acid from controlled release formula[J]. Carbohydr Polym, 2017, 176: 160-166. doi: 10.1016/j.carbpol.2017.07.057
|
[44] |
LI J, LU J, LI Y. Carboxylmethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide[J]. J Appl Polym Sci, 2009, 112(1): 261-268. doi: 10.1002/app.29416
|
[45] |
SARKAR D J, SINGH A. Base triggered release of insecticide from bentonite reinforced citric acid crosslinked carboxymethyl cellulose hydrogel composites[J]. Carbohydr Polym, 2017, 156: 303-311. doi: 10.1016/j.carbpol.2016.09.045
|
[46] |
GUO M, ZHANG W, DING G, et al. Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica-epichlorohydrin-carboxymethylcellulose[J]. RSC Adv, 2015, 5(113): 93170-93179. doi: 10.1039/C5RA17901G
|
[47] |
LI M, WANG Z, LI B. Adsorption behaviour of congo red by cellulose/chitosan hydrogel beads regenerated from ionic liquid[J]. Desalin Water Treat, 2016, 57(36): 16970-16980.
|
[48] |
YANG D, WANG Y, HE L, et al. Carboxyl-functionalized ionic liquid assisted preparation of flexible, transparent, and luminescent chitosan films as vapor luminescent sensor[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19709-19715. doi: 10.1021/acsami.6b06325
|
[49] |
SILVA S S, MANO J F, REIS R L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications[J]. Green Chem, 2017, 19(5): 1208-1220. doi: 10.1039/C6GC02827F
|
[50] |
张林朴, 王冠华, 连小丽, 等. 海藻酸钠/壳聚糖复合凝胶的制备与细胞毒性评价[J]. 中国组织工程研究, 2014, 18(21): 3310-3315. doi: 10.3969/j.issn.2095-4344.2014.21.006ZHANG L P, WANG G H, LIAN X L, et al. Preparation and cytotoxicity evaluation of chitosan-sodium alginate composite gel[J]. Chin J Tissue Eng Res, 2014, 18(21): 3310-3315. doi: 10.3969/j.issn.2095-4344.2014.21.006
|
[51] |
WU J, WANG Y, YANG H, et al. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles[J]. Carbohydr Polym, 2017, 175: 170-177. doi: 10.1016/j.carbpol.2017.07.058
|
[52] |
谢宇, 胡金刚, 魏娅, 等. 离子凝胶法制备壳聚糖纳米微粒[J]. 应用化工, 2009, 38(2): 171-173. doi: 10.3969/j.issn.1671-3206.2009.02.005XIE Y, HU J G, WEI Y, et al. Preparation of chitosan nanoparticles by the ion gel[J]. Appl Chem Ind, 2009, 38(2): 171-173. doi: 10.3969/j.issn.1671-3206.2009.02.005
|
[53] |
肖新才, 官亚兰, 王振环, 等. “水包水”法制备壳聚糖-多聚磷酸钠微囊[J]. 中南民族大学学报(自然科学版), 2013, 32(1): 42-46.XIAO X C, GUAN Y L, WANG Z H, et al. Preparation of chitosan/tripolyphosphate microcapsules by the method of water-in-water[J]. J South-Cent Univ Natl (Nat Sci Ed), 2013, 32(1): 42-46.
|
[54] |
GRILLO R, PEREIRA A E S, NISHISAKA C S, et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control[J]. J Hazard Mater, 2014, 278: 163-171. doi: 10.1016/j.jhazmat.2014.05.079
|
[55] |
CHAUHAN N, DILBAGHI N, GOPAL M, et al. Development of chitosan nanocapsules for the controlled release of hexaconazole[J]. Int J Biol Macromol, 2017, 97: 616-624. doi: 10.1016/j.ijbiomac.2016.12.059
|
[56] |
SILVA M D S, COCENZA D S, GRILLO R, et al. Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies[J]. J Hazard Mater, 2011, 190(1): 366-374.
|
[57] |
KUMAR S, CHAUHAN N, GOPAL M, et al. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid[J]. Int J Biol Macromol, 2015, 81: 631-637. doi: 10.1016/j.ijbiomac.2015.08.062
|
[58] |
MARUYAMA C R, GUILGER M, PASCOLI M, et al. Corrigendum: nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr[J]. Sci Rep, 2016, 6: 23854. doi: 10.1038/srep23854
|
[59] |
PEREIRA A E S, SILVA P M, OLIVEIRA J L, et al. Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid[J]. Colloid Surfaces B, 2017, 150: 141-152. doi: 10.1016/j.colsurfb.2016.11.027
|
[60] |
赵瑞, 郑欣钰, 任杰, 等. 壳聚糖交联接枝改性研究进展[J]. 高分子通报, 2019(5): 43-50.ZHAO R, ZHENG X J, REN J, et al. Advances in the modification of chitosan crosslinked branches[J]. Polym Bull, 2019(5): 43-50.
|
[61] |
欧敏华, 张永德, 罗学刚, 等. 静电自组装壳聚糖载药空心微胶囊的制备及释放性能[J]. 化工进展, 2017, 36(5): 1848-1854.OU M H, ZHANG Y D, LUO X G, et al. Preparation and release properties of electrostatic self-assembled chitosan-loaded hollow microcapsules[J]. Chem Ind Eng Prog, 2017, 36(5): 1848-1854.
|
[62] |
HE S, ZHANG W, LI D, et al. Preparation and characterization of double-shelled avermectin microcapsules based on copolymer matrix of silica-glutaraldehyde-chitosan[J]. J Mater Chem B, 2013, 1(9): 1270-1278. doi: 10.1039/c2tb00234e
|
[63] |
TAO S, PANG R, CHEN C, et al. Synthesis, characterization and slow release properties of o-naphthylacetyl chitosan[J]. Carbohydr Polym, 2012, 88(4): 1189-1194. doi: 10.1016/j.carbpol.2012.01.076
|
[64] |
LIU Y, SUN Y, HE S, et al. Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications[J]. Int J Biol Macromol, 2013, 57: 213-217. doi: 10.1016/j.ijbiomac.2013.03.024
|
[65] |
PAN Z, GAO Y, HENG L, et al. Amphiphilic N-(2,3-dihydroxypropyl)-chitosan-cholic acid micelles for paclitaxel delivery[J]. Carbohydr Polym, 2013, 94(1): 394-399. doi: 10.1016/j.carbpol.2013.01.013
|
[66] |
ZHANG C, DING Y, YU L, et al. Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives[J]. Colloid Surfaces B, 2007, 55(2): 192-199. doi: 10.1016/j.colsurfb.2006.11.031
|
[67] |
LAO S B, ZHANG Z X, XU H H, et al. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone[J]. Carbohydr Polym, 2010, 82(4): 1136-1142. doi: 10.1016/j.carbpol.2010.06.044
|
[68] |
XU C, CAO L, ZHAO P, et al. Synthesis and characterization of stimuli-responsive poly (2-dimethylamino-ethylmethacrylate)-grafted chitosan microcapsule for controlled pyraclostrobin release[J]. Int J Mol Sci, 2018, 19(3): 854. doi: 10.3390/ijms19030854
|
[69] |
CHEN T, WANG R, XU L Q, et al. Carboxymethyl chitosan-functionalized magnetic nanoparticles for disruption of biofilms of Staphylococcus aureus and Escherichia coli[J]. Ind Eng Chem Res, 2012, 51(40): 13164-13172. doi: 10.1021/ie301522w
|
[70] |
郭睿, 刘爱玉, 郭煜, 等. 响应面法优化羧甲基壳聚糖的制备工艺[J]. 精细化工, 2016, 33(8): 872-879.GUO R, LIU A Y, GUO Y, et al. Process optimization for preparation of carboxymethyl chitosan by response surface methodology[J]. Fine Chem, 2016, 33(8): 872-879.
|
[71] |
XU C L, CAO L D, ZHAO P Y, et al. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release[J]. Chem Eng J, 2018, 348: 244-254. doi: 10.1016/j.cej.2018.05.008
|
[72] |
TENG Z, LUO Y, WANG Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3[J]. Food Chem, 2013, 141(1): 524-532. doi: 10.1016/j.foodchem.2013.03.043
|
[73] |
洪英, 钟泽辉, 郑朝位, 等. 纳米羧甲基壳聚糖抗菌纸的制备及其力学性能研究[J]. 包装工程, 2015, 36(19): 50-53.HONG Y, ZHONG Z H, ZHENG C W, et al. Preparation and mechanical performance of antibacterial paper coated by nano-carboxymethyl-chitosan[J]. Packag Eng, 2015, 36(19): 50-53.
|
[74] |
LI J, YAO J, LI Y, et al. Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel[J]. J Environ Sci Health Part B, 2012, 47(8): 795-803. doi: 10.1080/03601234.2012.676421
|
[75] |
GAO C, LIU T, DANG Y, et al. pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate[J]. Carbohydr Polym, 2014, 111: 964-970. doi: 10.1016/j.carbpol.2014.05.012
|
[76] |
LIU K H, CHEN B R, CHEN S Y, et al. Self-assembly behavior and doxorubicin-loading capacity of acylated carboxymethyl chitosans[J]. J Phys Chem B, 2009, 113(35): 11800-11807. doi: 10.1021/jp902103p
|
[77] |
YE Z, GUO J, WU D, et al. Photo-responsive shell cross-linked micelles based on carboxymethyl chitosan and their application in controlled release of pesticide[J]. Carbohydr Polym, 2015, 132: 520-528. doi: 10.1016/j.carbpol.2015.06.077
|
[78] |
SUN C, SHU K, WANG W, et al. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core[J]. Int J Pharm, 2014, 463(1): 108-114. doi: 10.1016/j.ijpharm.2013.12.050
|
[79] |
YU Z Y, SUN X, SONG H X, et al. Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides[J]. Mater Sci Appl, 2015, 6: 591-604.
|
[80] |
LOU R, MA R, LIN K-T, et al. Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles[J]. ACS Sustain Chem Eng, 2019, 7(12): 10248-10256. doi: 10.1021/acssuschemeng.8b05816
|
[81] |
LIU E, LI M, DAS L, et al. Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid[J]. ACS Sustain Chem Eng, 2018, 6(5): 6612-6623. doi: 10.1021/acssuschemeng.8b00384
|
[82] |
乔悦, 甘洪宇, 李响, 等. 木质素降解技术研究进展[J]. 化工科技, 2019, 27(4): 84-88.QIAO Y, GAN H Y, LI X, et al. Research on degradation of lignin[J]. Sci Technol Chem Ind, 27(4): 84-88.
|
[83] |
曾梅, 戴爱军, 赵蒙, 等. 木质素改性水煤浆添加剂研究现状及发展趋势[J]. 洁净煤技术, 2014, 20(5): 49-52.ZENG M, DAI A J, ZHAO M, et al. Research status and development trend of modified lignin additives for coal water mixture[J]. Clean Coal Technol, 2014, 20(5): 49-52.
|
[84] |
LAURICHESSE S, AV ROUS L. Chemical modification of lignins: towards biobased polymers[J]. Prog Polym Sci, 2014, 39(7): 1266-1290. doi: 10.1016/j.progpolymsci.2013.11.004
|
[85] |
DENG Y, ZHAO H, QIAN Y, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Ind Crops Prod, 2016, 87: 191-197. doi: 10.1016/j.indcrop.2016.03.056
|
[86] |
WANG X, ZHAO J. Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials[J]. J Agric Food Chem, 2013, 61(16): 3789-3796. doi: 10.1021/jf4004658
|
[87] |
PANG Y, LI X, WANG S, et al. Lignin-polyurea microcapsules with anti-photolysis and sustained-release performances synthesized via pickering emulsion template[J]. React Funct Polym, 2018, 123: 115-121. doi: 10.1016/j.reactfunctpolym.2017.12.018
|
[88] |
周宝文, 哈成勇, 莫建强, 等. 木质素磺酸盐表面活性剂的研究和应用进展[J]. 高分子通报, 2013(5): 76-82.ZHOU B W, HA C Y, MO J Q, et al. Process of researches and applications on lignosulfonate surfactants[J]. Polym Bull, 2013(5): 76-82.
|
[89] |
赵玉波. 蔗渣木质素磺酸盐结构与性能的研究[D]. 南京: 南京林业大学, 2005.ZHAO Y B. Study on the structure and property of bagasse’s lignosulfonate[D]. Nanjing: Nanjing Forestry University, 2005.
|
[90] |
LI Y, ZHOU M, PANG Y, et al. Lignin-based microsphere: Preparation and performance on encapsulating the pesticide avermectin[J]. ACS Sustain Chem Eng, 2017, 5(4): 3321-3328. doi: 10.1021/acssuschemeng.6b03180
|
[91] |
LIU Z, QIE R, LI W, et al. Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives[J]. New J Chem, 2017, 41(8): 3190-3195. doi: 10.1039/C6NJ03795J
|
[92] |
周明松, 刘庆芳, 王素雅, 等. 静电自组装法制备阿维菌素微胶囊[J]. 精细化工, 2017, 34(5): 519-524.ZHOU M S, LIU Q F, WANG S Y, et al. The microcapsules of abamectin were prepared by electrostatic self-assembly[J]. Fine Chem, 2017, 34(5): 519-524.
|
[93] |
卢晶, 张琼, 方桂珍, 等. 二甲基烯丙基木质素季铵盐-海藻酸钠两性聚电解质的制备及表征[J]. 功能材料, 2015, 46(22): 22123-22127. doi: 10.3969/j.issn.1001-9731.2015.22.025LU J, ZHANG Q, FANG G Z, et al. Preparation and characterization performance of dimethylallyl quaternary ammonium salts of lignin-sodium alginate polyampholyte[J]. J Funct Mater, 2015, 46(22): 22123-22127. doi: 10.3969/j.issn.1001-9731.2015.22.025
|
[94] |
卢晶, 罗华超, 张琼, 等. 木质素季铵盐-海藻酸钠聚合物负载阿维菌素粉体的制备及抗紫外光性能分析[J]. 生物质化学工程, 2015, 49(3): 17-22. doi: 10.3969/j.issn.1673-5854.2015.03.004LU J, LUO H C, Zhang Q, et al. Preparation of lignin quaternary ammonium salt-sodium alginate polymer loaded abamectin powder and analysis of UV resistance[J]. Biomass Bioenerg, 2015, 49(3): 17-22. doi: 10.3969/j.issn.1673-5854.2015.03.004
|
[95] |
田金玲, 任世学, 方桂珍. 三甲基木质素季铵盐/膨润土缓释剂的制备及性能[J]. 林产化学与工业, 2015, 35(5): 71-78. doi: 10.3969/j.issn.0253-2417.2015.05.012TIAN J L, REN S X, FANG G Z. Preparation and properties of quaternary ammonium trimethyl lignin/bentonite sustained-release agent[J]. Chem Ind For Prod, 2015, 35(5): 71-78. doi: 10.3969/j.issn.0253-2417.2015.05.012
|
[96] |
侯莲霞, 刘彦辉, 田金玲, 等. 啶虫脒/木质素两性表面活性剂/膨润土缓释剂的制备及性能[J]. 生物质化学工程, 2015, 49(6): 11-16. doi: 10.3969/j.issn.1673-5854.2015.06.003HOU L X, LIU Y H, TIAN J L, et al. Preparation and properties of diamidine/lignin amphoteric surfactant/bentonite sustained release age[J]. Biomass Bioenerg, 2015, 49(6): 11-16. doi: 10.3969/j.issn.1673-5854.2015.06.003
|
[97] |
ZHOU M, XIONG Z, YANG D, et al. Preparation of slow release nanopesticide microspheres from benzoyl lignin[J]. Holzforschung, 2018, 72(7): 599-607. doi: 10.1515/hf-2017-0155
|
[98] |
李北兴, 张大侠, 张灿光, 等. 微囊化技术研究进展及其在农药领域的应用[J]. 农药学学报, 2014, 16(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01LI B X, ZHANG D X, ZHANG C G, et al. Research advances and application prospects of microencapsulation techniques in pesticide[J]. Chin J Pestic Sci, 2014, 16(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01
|