Synergistic effects of three synergists on herbicides
-
摘要: 为研究3种复配增效剂对灭草松、草铵膦、高效氟吡甲禾灵的增效作用及其增效机制,并筛选出表现较好的增效剂,分别测定了以顺丁烯二酸二异辛酯磺酸钠(渗透剂T)、异构醇醚和油酸甲酯为主要成分的3种复配增效剂以及分别添加了这3种复配增效剂的除草剂的静态表面张力(static surface tension,SST)、动态表面张力(dynamic surface tension,DST)、动态干燥度及接触角,并计算了黏附张力及黏附功。理化性能测试显示:以异构醇醚为主要成分的增效剂在降低除草剂的静态表面张力、加速动态表面张力的降低、减小接触角方面表现出的效果最为显著;以渗透剂T为主要成分的增效剂的效果次之;以油酸甲酯为主要成分的增效剂也略有效果,但最不显著。黏附张力及黏附功的数据表明,添加了以异构醇醚为主要成分的增效剂的除草剂药液在叶片上具有更强的黏附,更易在叶表皮持留、润湿。同时,室内药效评价结果也证实了理化性能表现最好的以异构醇醚为主要成分的增效剂添加于除草剂后具有最好的防治效果。Abstract: To study the synergistic effects and synergistic mechanism of three synergists on bentazon, glufosinate-ammonium and haloxyfop-P-methyl, and screen out the synergist with the best performance, the static surface tension (SST), dynamic surface tension (DST), dynamic dryness and contact angle of herbicides, synergists and synergists-added herbicides were investigated and adhesion force and adhesion work were calculated. The physicochemical performance tests revealed that the synergist based on isomeric alcohol ethoxylates performed best in reducing SST, accelerating the reduction of DST and reducing the contact angle, and the synergist based on penetrant T was the second most effective, while the synergist based on methyl oleate had a slight effect and was the worst. The data of adhesion force and adhesion work showed that the herbicide solution containing isomeric alcohol ethoxylates based synergist had stronger adhesion on the leaves and was easier to retain and wet the leaf epidermis. Meanwhile, the results of the indoor efficacy evaluations also confirmed that the synergist isomeric alcohol ethoxylates that had the best physicochemical performance exhibited the best control efficacy when added to herbicides as the main component of a synergist.
-
表 1 试验设计及药剂处理
Table 1. Experimental design and treatment
处理编号
Number试验药剂
Experimental agents施药剂量
Dosage/(g/hm2)靶标作物
Target crops1 1# (渗透剂 T 类)
1# (penetrant T)750 — 2 2# (异构醇醚类)
2# (isomeric alcohol ethoxylates)750 — 3 3# (油酸甲酯类)
3# (methyl oleate)750 — 4 480 g/L 灭草松 AS
bentazon 480 g/L AS3000 龙葵 Solanum nigrum L. 5 480 g/L 灭草松 AS + 1#
bentazon 480 g/L AS + 1#3000 + 750 龙葵 Solanum nigrum L. 6 480 g/L 灭草松 AS + 2#
bentazon 480 g/L AS + 2#3000 + 750 龙葵 Solanum nigrum L. 7 480 g/L 灭草松 AS + 3#
bentazon 480 g/L AS + 3#3000 + 750 龙葵 Solanum nigrum L. 8 200 g/L 草铵膦 AS
glufosinate-ammonium 200 g/L AS3000 稗草 Echinochloa crusgalli (L.) Beauv
龙葵 Solanum nigrum L.9 200 g/L 草铵膦 AS + 1#
glufosinate-ammonium 200 g/L AS + 1#3000 + 750 稗草 Echinochloa crusgalli (L.) Beauv
龙葵 Solanum nigrum L.10 200 g/L 草铵膦 AS + 2#
glufosinate-ammonium 200 g/L AS + 2#3000 + 750 稗草 Echinochloa crusgalli (L.) Beauv
龙葵 Solanum nigrum L.11 200 g/L 草铵膦 AS + 3#
glufosinate-ammonium 200 g/L AS + 3#3000 + 750 稗草 Echinochloa crusgalli (L.) Beauv
龙葵 Solanum nigrum L.12 10.8% 高效氟吡甲禾灵 EC
haloxyfop-P-methyl 10.8% EC600 稗草 Echinochloa crusgalli (L.) Beauv 13 10.8% 高效氟吡甲禾灵 EC + 1#
haloxyfop-P-methyl 10.8% EC + 1#600 + 750 稗草 Echinochloa crusgalli (L.) Beauv 14 10.8% 高效氟吡甲禾灵 EC + 2#
haloxyfop-P-methyl 10.8% EC + 2#600 + 750 稗草 Echinochloa crusgalli (L.) Beauv 15 10.8% 高效氟吡甲禾灵 EC + 3#
haloxyfop-P-methyl 10.8% EC + 3#600 + 750 稗草 Echinochloa crusgalli (L.) Beauv 表 2 15种处理的静态表面张力数据
Table 2. Static surface tension data of 15 treatments
处理编号
Number静态表面张力
Static surface
tension/
(mN/m)处理编号
Number静态表面张力
Static surface
tension/
(mN/m)1 28.93±0.08 9 27.57±0.04 2 27.86±0.04 10 26.99±0.11 3 39.94±0.12 11 29.47±0.09 4 60.64±0.12 12 38.42±0.08 5 27.23±0.11 13 29.10±0.08 6 27.18±0.08 14 29.28±0.04 7 31.67±0.04 15 36.92±0.08 8 32.31±0.00 表 3 15种处理作用于靶标作物时的接触角
Table 3. Contact angles of 15 treatments on target crops
处理编号
Number稗草
Echinochloa crusgalli (L.) Beauv龙葵
Solanum nigrum L.接触角
Contact angle/°接触角
Contact angle/°1 96.2±3.84 42.6±1.39 2 25.1±0.51 37.2±1.47 3 124.5±1.43 66.5±0.52 4 139.9±1.59 105.7±1.03 5 52.1±1.48 38.5±0.90 6 16.7±1.74 36.5±0.32 7 90.1±1.60 49.7±0.38 8 115.4±0.98 64.0±1.15 9 66.3±1.39 41.4±0.44 10 28.8±2.89 39.1±1.15 11 74.0±0.46 51.0±0.10 12 132.5±0.51 74.6±1.08 13 78.1±2.37 44.0±1.17 14 57.5±0.56 44.5±0.46 15 123.3±1.04 63.3±2.36 表 4 15种处理作用于靶标作物时的黏附张力和黏附功
Table 4. Adhesion forces and adhesion works of 15 treatments on target crops
处理编号
Number稗草
Echinochloa crusgalli
(L.) Beauv龙葵
Solanum nigrum L.黏附张力
Adhesion
force/(mN/m)黏附功
Adhesion
work/(mJ/m2)黏附张力
Adhesion
force/(mN/m)黏附功
Adhesion
work/(mJ/m2)1 −3.12 25.81 21.29 50.22 2 25.24 53.10 22.20 50.06 3 −22.61 17.33 15.94 55.88 4 −46.39 14.25 −16.43 44.21 5 16.72 43.95 21.32 48.55 6 26.04 53.22 21.85 49.03 7 −0.06 31.61 20.49 52.16 8 −13.86 18.45 14.15 46.46 9 11.08 38.65 20.68 48.25 10 23.64 50.63 20.94 47.93 11 8.13 37.60 18.54 48.01 12 −25.97 12.45 10.22 48.64 13 5.99 35.09 20.92 50.02 14 15.72 45.00 20.88 50.16 15 −20.27 16.65 16.58 53.50 表 5 3种增效剂对灭草松、草铵膦、高效氟吡甲禾灵的增效作用(药后23 d)
Table 5. Synergistic effects of three kinds of synergists on bentazon, glufosinate-ammonium and haloxyfop-P-methyl (23 days after application)
处理编号
Number稗草
Echinochloa crusgalli (L.) Beauv龙葵
Solanum nigrum L.鲜重防效
Fresh weight
control efficacy/%鲜重防效
Fresh weight
control efficacy/%4 — 90.24 Cc 5 — 95.09 ABb 6 — 100.0 Aa 7 — 95.63 ABb 8 74.73 ABb 100.0 Aa 9 63.19 Bbc 100.0 Aa 10 88.06 Aa 100.0 Aa 11 61.98 Bbc 100.0 Aa 12 59.25 Bc — 13 65.37 Bbc — 14 64.48 Bbc — 15 59.33 Bc — 注:同列数据后不同小写和大写字母分别表示在5%和1%水平上差异显著。Note: Lowercase and capital letters adjacent to number in the same column showed significant differences at 5% and 1% levels, respectively. -
[1] 高立强, 杨家荣, 张彦龙, 等. 几种除草剂减量施用防除玉米田杂草的效果[J]. 杂草学报, 2020, 38(4): 31-38.GAO L Q, YANG J R, ZHANG Y L, et al. Efficacy of herbicides at reduced doses on weeds in maize field[J]. J Weed Sci, 2020, 38(4): 31-38. [2] 张忠亮, 李相全, 王欢, 等. 六种有机硅助剂对氟磺胺草醚的增效作用及其增效机理初探[J]. 农药学学报, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17ZHANG Z L, LI X Q, WANG H, et al. Preliminary studies on synergism and mechanisms of six organosilicon additives on fomesafen[J]. Chin J Pesctic Sci, 2015, 17(1): 115-118. doi: 10.3969/j.issn.1008-7303.2015.01.17 [3] 封云涛, 李光玉, 郭晓君, 等. 两种表面活性助剂在农药减量化防治小菜蛾中的应用[J]. 农药学学报, 2015, 17(5): 603-609. doi: 10.3969/j.issn.1008-7303.2015.05.15FENG Y T, LI G Y, GUO X J, et al. Study on application of two kinds of surfactant in does-reduced chemical control of Plutella xylostella(Linnaeus)[J]. Chin J Pesctic Sci, 2015, 17(5): 603-609. doi: 10.3969/j.issn.1008-7303.2015.05.15 [4] SONG M, HU D, ZHENG X, et al. Enhancing droplet deposition on wired and curved superhydrophobic leaves[J]. ACS Nano, 2019, 13(7). [5] 李松宇. 助剂对除草剂增效作用的研究[D]. 哈尔滨: 东北农林大学, 2020.LI S Y. Study on synergistic effect of adjuvant on herbicide[D]. Harbin: Northeast Forestry University, 2020. [6] 李彦飞, 冯泽腾, 张小军. 几种农用增效助剂的表面张力及接触角研究[J]. 农药, 2021, 60(3): 172-175.LI Y F, FENG Z T, ZHANG X J. Study on surface tensions and contact angles of several agricultural synergists[J]. Agrochemicals, 2021, 60(3): 172-175. [7] 谢光东. 渗透剂T在农药微乳剂中的应用[J]. 农药, 2004(1): 36-37. doi: 10.3969/j.issn.1006-0413.2004.01.012XIE G D. Use of penetrating agent T in pesticide microemulsions[J]. Agrochemicals, 2004(1): 36-37. doi: 10.3969/j.issn.1006-0413.2004.01.012 [8] 陈玲. 异构脂肪醇醚及其衍生物的合成与性能研究[D]. 无锡: 江南大学, 2012.CHEN L. Study on the synthesis and properties of isomeric fatty alcohol polyoxyethylene ether and their derivatives[D]. Wuxi: Jiangnan University, 2012. [9] 张源, 于伟丽, 张贵森, 等. 油酸甲酯溶剂对高效氯氟氰菊酯水乳剂物理性状及药效的影响[J]. 植物保护学报, 2011, 38(4): 357-362.ZHANG Y, YU W L, ZHANG G S, et al. Effect of methyl oleate solvent on physical characteristics of the spray liquid and the bioactivity of lambda-cyhalothrin emulsion in water[J]. Acta Phytophy Sin, 2011, 38(4): 357-362. [10] 鲁梅. 甲酯化植物油类助剂对除草剂增效作用研究[D]. 泰安: 山东农业大学, 2005.LU M. Studies on enhancement effect of methylated vegetable oil adjuvants on herbicides[D]. Taian: Shandong Agricultural University, 2005. [11] 鲁梅, 王金信, 王利平, 等. 油酸甲酯助剂对除草剂增效作用及其对玉米苗期安全性测定[J]. 植物保护, 2005(5): 83-85. doi: 10.3969/j.issn.0529-1542.2005.05.024LU M, WANG J X, WANG L P, et al. Synergistic effect of methyl oleate on herbicide and its safety determination on maize seedling stage[J]. Plant Prot, 2005(5): 83-85. doi: 10.3969/j.issn.0529-1542.2005.05.024 [12] 表面活性剂 界面张力的测定 拉起液膜法: GB/T 38722—2020[S]. 北京: 中国标准出版社, 2020.Surface active agents-Determination of interfacial tension-Drawing up liquid films: GB/T 38722—2020[S]. Beijing: Standards Press of China, 2020. [13] SONG L Y, WANG R G, NIU K K, et al. Design, synthesis, characterization, and surface activities of comb-like polymeric fluorinated surfactants with short fluoroalkyl chains[J]. Colloids Surfaces A: Physicochem Eng Aspects, 2021, 609: 125666. doi: 10.1016/j.colsurfa.2020.125666 [14] WANG R G, SONG L Y, GUO Y Q, et al. Synthesis and structure-activity relationships of nonionic surfactants with short fluorocarbon chains[J]. J of Mol Liq, 2020, 321(1-3): 114486. [15] 朱㻉瑶, 赵振国. 界面化学基础[M]. 北京: 化学工业出版社, 1996: 205-234.ZHU B Y, ZHAO Z G. Colloid and interface chemistry[M]. Beijing: Chemical Industry Press, 1996: 205-234. [16] 农药室内生物测定试验准则: NY/T 1156.2—2006[S]. 北京: 中国农业出版社, 2006.Pesticide guidelines for indoor bioassay trials: NY/T 1156.2—2006. Beijing: China Agricultural Press, 2006. [17] 田志慧, 盛光勇, 袁国徽, 等. 25%双环磺草酮悬浮剂防除杂草稻的使用策略[J]. 农药学学报, 2020, 22(4): 635-641.TIAN Z H, SHENG G Y, YUAN G H, et al. Application strategy of 25% benzobicyclon SC in controlling weedy rice[J]. Chin J Pesctic Sci, 2020, 22(4): 635-641. [18] 张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019, 21(Z1): 883-894.ZHANG C H, MA Y, DU F P. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chin J Pestic Sci, 2019, 21(Z1): 883-894. [19] ANDERSON W P. Weed science: principles[M]. 2nd. West Publishing Company, 1983: 65-71. [20] 石辉, 王会霞, 李秧秧. 植物叶表面的润湿性及其生态学意义[J]. 生态学报, 2011, 31(15): 4287-429.SHI H, WANG H X, LI Y Y. Wettability on plant leaf surfaces and its ecological significance[J]. Acta Ecol Sin, 2011, 31(15): 4287-429. -