• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同植保器械在水稻不同生育期喷施农药的沉积率及雾滴参数

张永强 王飞钊 谢锦钿 张景欣 林壁润 杨祁云 沈会芳 孙大元 蒋成爱 蒲小明

张永强, 王飞钊, 谢锦钿, 张景欣, 林壁润, 杨祁云, 沈会芳, 孙大元, 蒋成爱, 蒲小明. 不同植保器械在水稻不同生育期喷施农药的沉积率及雾滴参数[J]. 农药学学报, 2022, 24(2): 376-384. doi: 10.16801/j.issn.1008-7303.2021.0155
引用本文: 张永强, 王飞钊, 谢锦钿, 张景欣, 林壁润, 杨祁云, 沈会芳, 孙大元, 蒋成爱, 蒲小明. 不同植保器械在水稻不同生育期喷施农药的沉积率及雾滴参数[J]. 农药学学报, 2022, 24(2): 376-384. doi: 10.16801/j.issn.1008-7303.2021.0155
ZHANG Yongqiang, WANG Feizhao, XIE Jintian, ZHANG Jingxin, LIN Birun, YANG Qiyun, SHEN Huifang, SUN Dayuan, JIANG Cheng'ai, PU Xiaoming. Pesticide deposition rates and droplet parameters of different plant protection instruments applied at different growth stages of rice[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 376-384. doi: 10.16801/j.issn.1008-7303.2021.0155
Citation: ZHANG Yongqiang, WANG Feizhao, XIE Jintian, ZHANG Jingxin, LIN Birun, YANG Qiyun, SHEN Huifang, SUN Dayuan, JIANG Cheng'ai, PU Xiaoming. Pesticide deposition rates and droplet parameters of different plant protection instruments applied at different growth stages of rice[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 376-384. doi: 10.16801/j.issn.1008-7303.2021.0155

不同植保器械在水稻不同生育期喷施农药的沉积率及雾滴参数

doi: 10.16801/j.issn.1008-7303.2021.0155
基金项目: 广东省现代农业产业绿色发展共性关键技术研发创新团队建设项目 (2021KJ112);广东省自然科学基金研究团队项目 (2015A030312002);广东省烟草科技项目 (201802,201908).
详细信息
    作者简介:

    张永强,zhangyongqiang@gd-tianhe.com

    通讯作者:

    蒲小明,puxm1981@126.com.

  • 中图分类号: S252.3

Pesticide deposition rates and droplet parameters of different plant protection instruments applied at different growth stages of rice

Funds: the Construction Project of Modern Agricultural Science and Technology Innovation Alliance of Guangdong Province (2021KJ112), the Teamwork Project of Guangdong Natural Science Foundation (2015A030312002) and Guangdong Tobacco Science and Technology Projects (201802,201908).
  • 摘要: 评估不同植保器械的农药喷施效率为水稻上农药减量控害和统防统治工作提供理论技术支撑。本研究参照NY/T 2677—2015《农药沉积率测定方法》,在广东省南雄市全安镇晚造直播水稻田开展农药喷施试验,分析了分别采用手动喷雾器、电动喷雾器和植保无人飞机喷施的农药沉积率及雾滴参数。结果表明:在同一水稻生育期使用不同植保器械喷施的农药沉积率差异显著,表现为植保无人飞机>电动喷雾器>手动喷雾器。在水稻苗期使用手动喷雾器、电动喷雾器和植保无人飞机的平均农药沉积率分别为18.33%、24.58%和35.84%,在水稻封行期的结果分别为24.72%、35.28%和45.15%,在水稻破口期的结果分别为32.39%、40.29%和52.42%。同一植保器械在水稻不同生育期喷施农药的沉积率也存在显著差异,表现为破口期>封行期>苗期。不同冠层的沉积量结果显示:采用植保无人飞机喷施的药液沉积量由上至下递减,采用手动和电动喷雾器喷施的药液主要沉积在水稻植株的上层和中层。植保无人飞机喷施药液的雾滴显著小于手动和电动喷雾器处理,且均匀度更好,同时植保无人飞机喷雾雾滴分散度优于手动和电动喷雾器处理。相对于传统施药器械,使用植保无人飞机喷施显著提高了农药沉积率和药液雾化效果。
  • 图  1  水稻不同生育期使用3种植保器械喷施农药的沉积率比较

    *表示P值0.05水平差异显著,**表示P值0.01水平差异显著,***表示P值0.001水平差异显著;数据点中的标尺线为均值与范围。

    Figure  1.  The comparison of pesticide deposition rates of different-stage rice plants sprayed with three kinds of instruments

    Asterisks indicate a significant difference in a t-test (*P<0.05, **P<0.01, ***P<0.001). Bars in the point data mean median with range.

    图  2  水稻不同生育期使用3种器械喷施药液在水稻田间不同层的沉积分布

    注:A为苗期,B为封行期,C为破口期;ns表示差异不显著,*表示P值0.05水平差异显著,**表示P值0.01水平差异显著,***表示P值0.001水平差异显著,****表示P值0.0001水平差异显著;数据点中的标尺线为均值与范围。

    Figure  2.  The deposition distributions of different-stage rice plants sprayed with three kinds of instruments in the rice field

    Note:A means the seedling stage, B means the closure stage, and C means the rupturing stage. The ns indicates no difference in a t-test; asterisks indicate a significant difference in a t-test (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001); bars in the point data mean median with range.

    图  3  水稻不同生育期使用3种器械喷施药液在不同层卡纸上雾滴情况 (标尺=1 cm)

    注:A为苗期,B为封行期,C为破口期。

    Figure  3.  The droplets status on cardboards of different-stage rice plants sprayed with three kinds of instruments in the field (bar=1 cm)

    Note:A means the seedling stage, B means the closure stage, and C means the rupturing stage.

    图  4  水稻不同生育期使用3种器械喷施药液在不同层卡纸上雾滴面积比较

    注:A为苗期,B为封行期,C为破口期;ns表示差异不显著,*表示P值0.05水平差异显著,**表示P值0.01水平差异显著,***表示P值0.001水平差异显著,数据点中的标尺线为均值与范围。

    Figure  4.  The comparison of droplets area on cardboards of different-stage rice plants sprayed with three kinds of instruments

    Note:A means the seedling stage, B means the closure stage, and C means the rupturing stage. The ns indicates no difference in a t-test; asterisks indicate a significant difference in a t-test (*P<0.05, **P<0.01, ***P<0.001); bars in the data mean median with range.

    图  5  水稻不同生育期使用3种器械喷施药液在不同层卡纸上雾滴密度比较

    注:A为苗期,B为封行期,C为破口期;ns表示差异不显著,*表示P值0.05水平差异显著,**表示P值0.01水平差异显著,***表示P值0.001水平差异显著,数据点中的标尺线为均值与范围。

    Figure  5.  The comparison of droplets density on cardboards of different-stage rice plants sprayed with three kinds of instruments

    Note:A means the seedling stage, B means the closure stage, and C means the rupturing stage. The ns indicates no difference in a t-test; asterisks indicate a significant difference in a t-test (*P<0.05, **P<0.01, ***P<0.001); bars in the point data mean median with range.

    表  1  不同处理参数

    Table  1.   The parameters of different treatments

    水稻生育期
    Growth stages of rice
    植保器械
    Plant protection instrument
    农药制剂用量
    Dosage of preparation/(mL/hm2)
    诱惑红用量
    Dosage of allure red/(g/hm2)
    喷液量
    Spray volume/(L/hm2)
    苗期 Seedling stage 手动喷雾器 Manual sprayer 750 625 600
    电动喷雾器 Electric sprayer 750 625 600
    植保无人飞机 UAV 900 225 21
    封行期 Closure stage 手动喷雾器 Manual sprayer 750 625 750
    电动喷雾器 Electric sprayer 750 625 750
    植保无人飞机 UAV 900 225 24
    破口期 Rupturing stage 手动喷雾器 Manual sprayer 750 625 750
    电动喷雾器 Electric sprayer 750 625 750
    植保无人飞机 UAV 900 225 24
    下载: 导出CSV

    表  2  不同处理雾滴大小变异系数

    Table  2.   The coefficient variation (CV) of droplets size in different treatments

    植保器械
    Plant protection
    instrument
    水稻生育期
    Stages of
    rice
    不同层位置
    The position of
    different layers
    变异系数
    CV/%
    手动喷雾器
    Manual sprayer
    苗期
    Seedling stage
    上层 Upper 69.42
    下层 Lower 76.60
    封行期
    Closure stage
    中层 Middle 41.37
    下层 Lower 59.78
    破口期
    Rupturing stage
    中层 Middle 57.82
    下层 Lower 70.29
    平均值
    Average
    62.55
    电动喷雾器
    Electric sprayer
    苗期
    Seedling stage
    上层 Upper 62.11
    下层 Lower 47.81
    封行期
    Closure stage
    中层 Middle 55.90
    下层 Lower 49.52
    破口期
    Rupturing stage
    中层 Middle 54.04
    下层 Lower 50.30
    平均值
    Average
    53.28
    植保无人飞机
    UAV
    苗期
    Seedling stage
    上层 Upper 30.62
    下层 Lower 28.01
    封行期
    Closure stage
    上层 Upper 41.95
    中层 Middle 26.96
    下层 Lower 35.88
    破口期
    Rupturing stage
    上层 Upper 36.18
    中层 Middle 35.11
    下层 Lower 27.49
    平均值
    Average
    32.78
    下载: 导出CSV
  • [1] 农药沉积率测定方法: NY/T 2677—2015[S]. 北京: 中国农业出版社, 2015.Test methods of pesticide deposition rate: NY/T 2677—2015[S]. Beijing: Chinese Agriculture Press, 2015.
    [2] METCALF R L. Changing role of insecticides in crop protection[J]. Annu Rev Entomol, 1980, 25(1): 219-256. doi: 10.1146/annurev.en.25.010180.001251
    [3] VERCRUYSSE F, STEURBAUT W, DRIEGHE S, et al. Off target ground deposits from spraying a semi-dwarf orchard[J]. Crop Prot, 1999, 18(9): 565-570. doi: 10.1016/S0261-2194(99)00060-5
    [4] DEKEYSER D, FOQUÉ D, DUGA A T, et al. Spray deposition assessment using different application techniques in artificial orchard trees[J]. Crop Prot, 2014, 64: 187-197. doi: 10.1016/j.cropro.2014.06.008
    [5] 苏小记, 王雅丽, 魏静, 等. 9种植保机械防治小麦穗蚜的农药沉积率与效果比较[J]. 西北农业学报, 2018, 27(1): 149-154. doi: 10.7606/j.issn.1004-1389.2018.01.020

    SU X J, WANG Y L, WEI J, et al. Pesticide deposition percentage and control effect of nine kinds of crop protection machineries against wheat aphid[J]. Acta Agric Boreali Occidentalis Sin, 2018, 27(1): 149-154. doi: 10.7606/j.issn.1004-1389.2018.01.020
    [6] 顾中言, 陈明亮, 许小龙, 等. 表面活性剂TX-10对溶液表面张力及水稻植株持液量的影响[J]. 江苏农业学报, 2006, 22(4): 394-397. doi: 10.3969/j.issn.1000-4440.2006.04.015

    GU Z Y, CHEN M L, XU X L, et al. Effects of surfactant TX-10 on surface tension of solutions and solution retention on rice plant[J]. Jiangsu J Agric Sci, 2006, 22(4): 394-397. doi: 10.3969/j.issn.1000-4440.2006.04.015
    [7] 孔肖, 王国宾, 嵇俭, 等. 七种植保机械在玉米田喷雾作业的雾滴沉积分布及农药利用率研究[C]//绿色生态可持续发展与植物保护——中国植物保护学会第十二次全国会员代表大会暨学术年会论文集. 长沙, 2017: 257-263.

    KONG X, WANG G B, JI J, et al. Study on droplet deposition distribution and pesticide utilization rate of seven planting machinery in maize field[C]//Sustainable Development of Green Ecology and Plant Protection-Proceedings of the 12th National Congress and Annual Meeting of the Chinese Society for Plant Protection, Changsha, 2017: 257-263.
    [8] 陈晓, 刘德江, 王果, 等. 喷雾参数及助剂类型对植保无人飞机在棉花中期喷雾雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(2): 347-352.

    CHEN X, LIU D J, WANG G, et al. Effect of spray parameters and adjuvant type on droplet deposition deposition of plant protection unmanned aerial vehicle in mid-growth-cotton field[J]. Chin J Pestic Sci, 2020, 22(2): 347-352.
    [9] 张鹏九, 高越, 刘中芳, 等. 采用果园喷雾施药机械施药时农药有效沉积率的计算方法[J]. 农药学学报, 2020, 22(2): 277-284.

    ZHANG P J, GAO Y, LIU Z F, et al. Method for calculation of pesticide deposition rate using spraying machinery in the orchard[J]. Chin J Pestic Sci, 2020, 22(2): 277-284.
    [10] 王浩祺, 王萌, 罗兰等. 白菜田不同药械的雾滴分布与农药沉积率[J]. 农业技术与装备, 2021(1): 46-48. doi: doi:10.3969/j.issn.1673-887X.2021.01.019

    WANG H Q, WANG M, LUO L, et al. Utilization rates and droplets distribution of different sprayers in Chinese cabbage fields[J]. AgriTech & Equi, 2021(1): 46-48. doi: doi:10.3969/j.issn.1673-887X.2021.01.019
    [11] 农业农村部新闻办. 我国三大粮食作物化肥农药利用率双双达40%以上化肥农药零增长目标实现[J]. 农产品市场, 2021(3): 152-153.

    Information Office of the Ministry of Agriculture and Rural Affairs. The utilization rate of chemical fertilizers and pesticides of China's three major grain crops had both reached more than 40%, and the goal of zero growth of chemical fertilizers and pesticides had been achieved[J]. Agric Prod Mark, 2021(3): 152-153.
    [12] 何雄奎. 中国植保机械与施药技术研究进展[J]. 农药学学报, 2019, 21(Z1): 921-930.

    HE X K. Research and development of crop protection machinery and chemical application technology in China[J]. Chin J Pestic Sci, 2019, 21(Z1): 921-930.
    [13] 张军勇, 袁立贺. 农药利用率低的原因及改进措施[J]. 农业工程技术, 2018, 38(8): 39.

    ZHANG J Y, YUAN L H. Reasons of low pesticide utilization rate and improvement measures[J]. Agric Eng Technol, 2018, 38(8): 39.
    [14] 徐德进, 徐广春, 徐鹿, 等. 喷雾参数对自走式喷杆喷雾机稻田喷雾农药利用率及雾滴沉积分布的影响[J]. 农药学学报, 2020, 22(2): 324-332.

    XU D J, XU G C, XU L, et al. Effects of spray parameters on pesticide utilization efficiency and droplet deposition distribution in paddy field of self-propelled boom sprayer[J]. Chin J Pestic Sci, 2020, 22(2): 324-332.
    [15] 周奋启, 袁林泽, 康晓霞, 等. 不同植保机械施药对水稻病虫防治效果的研究[J]. 湖北农业科学, 2017, 56(2): 268-272.

    ZHOU F Q, YUAN L Z, KANG X X, et al. Research on control effect of rice diseases and pests using different machinery spray pesticides[J]. Hubei Agric Sci, 2017, 56(2): 268-272.
    [16] 袁会珠, 郭永旺, 薛新宇, 等. 植保无人机的推广应用对于提高我国农药沉积率的作用[J]. 农业工程技术, 2018, 38(9): 46-50.

    YUAN H Z, GUO Y W, XU X Y, et al. Promotion and application of plant protection unmanned aerial vehicle for improving pesticide utilization rate in China[J]. Agri Engi Tech, 2018, 38(9): 46-50.
    [17] 徐春春, 纪龙, 陈中督, 等. 2020年我国水稻产业形势分析及2021年展望[J]. 中国稻米, 2021, 27(2): 1-4. doi: 10.3969/j.issn.1006-8082.2021.02.001

    XU C C, JI L, CHEN Z D, et al. Analysis of China's rice industry in 2020 and the outlook for 2021[J]. China Rice, 2021, 27(2): 1-4. doi: 10.3969/j.issn.1006-8082.2021.02.001
    [18] GAO S, WANG G, ZHOU Y, et al. Water-soluble food dye of Allura Red as a tracer to determine the spray deposition of pesticide on target crops[J]. Pest Manag Sci, 2019, 75(10): 2592-2597. doi: 10.1002/ps.5430
    [19] 邱占奎, 袁会珠, 楼少巍, 等. 水溶性染色剂诱惑红和丽春红-G作为农药沉积分布的示踪剂研究[J]. 农药, 2007, 46(5): 323-325. doi: 10.3969/j.issn.1006-0413.2007.05.011

    QIU Z K, YUAN H Z, LOU S W, et al. The research of water soluble dyes of allura red and ponceau-G as tracers for determing pesticide spray distribution[J]. Agrochemicals, 2007, 46(5): 323-325. doi: 10.3969/j.issn.1006-0413.2007.05.011
    [20] 何玲, 王国宾, 胡韬, 等. 喷雾助剂及施液量对植保无人机喷雾雾滴在水稻冠层沉积分布的影响[J]. 植物保护学报, 2017, 44(6): 1046-1052.

    HE L, WANG G B, HU T, et al. Influences of spray adjuvants and spray volume on the droplet depositiondistribution with unmanned aerial vehicle (UAV) spraying on rice[J]. J Plant Prot. 2017, 44(6): 1046-1052.
    [21] 蒲小明, 陈锐明, 周松丁, 等. 电动和手动喷雾器水稻田喷雾农药利用率及雾滴分布比较[J]. 广东农业科学, 2020, 47(1): 105-114.

    PU X M, CHEN R M, ZHOU S D, et al. Comparison of utilization rates and droplets distribution of pesticides sprayed by electric and manual sprayers in rice fields[J]. Guangdong Agric Sci, 2020, 47(1): 105-114.
    [22] 王明. 水稻田喷雾技术的农药沉积利用率测定与评估模型构建[D]. 北京: 中国农业科学院, 2019.

    WANG M. Determination and evaluation model of pesticide deposition rate for utilization by Folia spray in rice field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [23] 徐德进, 顾中言, 徐广春, 等. 喷雾方式对农药雾滴在水稻群体内沉积分布的影响[J]. 中国农业科学, 2014, 47(1): 69-79. doi: 10.3864/j.issn.0578-1752.2014.01.008

    XU D J, GU Z Y, XU G C, et al. Influence of spray method on the deposit and distribution of spray droplets in rice field[J]. Sci Agric Sin, 2014, 47(1): 69-79. doi: 10.3864/j.issn.0578-1752.2014.01.008
    [24] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Prot, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018
    [25] 李燕芳, 周振标, 谭耀华, 等. 植保无人飞机喷施30%苯甲·丙环唑微乳剂防治水稻主要病害[J]. 植物保护, 2021, 47(2): 249-253.

    LI Y F, ZHOU Z B, TAN Y H, et al. Control effect of spraying difenoconazole·propiconazole 30% ME by plant protection UAV on rice diseases[J]. Plant Prot, 2021, 47(2): 249-253.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  31
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-17
  • 录用日期:  2021-10-13
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-04-10

目录

    /

    返回文章
    返回