• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植保无人飞机施药防治烟草棉铃虫的可行性和添加助剂倍达通的作用

刘晓慧 郭建 侯秋强 刘春明 杜亚辉 石鑫 袁亮亮 黄坤 杨代斌 袁会珠 闫晓静

刘晓慧, 郭建, 侯秋强, 刘春明, 杜亚辉, 石鑫, 袁亮亮, 黄坤, 杨代斌, 袁会珠, 闫晓静. 植保无人飞机施药防治烟草棉铃虫的可行性和添加助剂倍达通的作用[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0169
引用本文: 刘晓慧, 郭建, 侯秋强, 刘春明, 杜亚辉, 石鑫, 袁亮亮, 黄坤, 杨代斌, 袁会珠, 闫晓静. 植保无人飞机施药防治烟草棉铃虫的可行性和添加助剂倍达通的作用[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0169
LIU Xiaohui, GUO Jian, HOU Qiuqiang, LIU Chunming, DU Yahui, SHI Xin, YUAN Liangliang, HUANG Kun, YANG Daibin, YUAN Huizhu, YAN Xiaojing. Fesibility of plant protection unmanned aerial vehicles for controling tobacco bollworm (Helicoverpa armigera) and the effect of adjuvant Beidatong[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0169
Citation: LIU Xiaohui, GUO Jian, HOU Qiuqiang, LIU Chunming, DU Yahui, SHI Xin, YUAN Liangliang, HUANG Kun, YANG Daibin, YUAN Huizhu, YAN Xiaojing. Fesibility of plant protection unmanned aerial vehicles for controling tobacco bollworm (Helicoverpa armigera) and the effect of adjuvant Beidatong[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0169

植保无人飞机施药防治烟草棉铃虫的可行性和添加助剂倍达通的作用

doi: 10.16801/j.issn.1008-7303.2021.0169
基金项目: 中国烟草总公司云南省公司重点项目(2021530000241020).
详细信息
    作者简介:

    刘晓慧,lxh1377639400@163.com

    通讯作者:

    闫晓静,yanxiaojing@caas.cn

  • 中图分类号: S49;S435.72

Fesibility of plant protection unmanned aerial vehicles for controling tobacco bollworm (Helicoverpa armigera) and the effect of adjuvant Beidatong

Funds: the Key Projects of China National Tobacco Corporation Yunnan Branch(2021530000241020)
  • 摘要: 为明确采用植保无人飞机施药方式防治烟草病虫害的可行性,对比分析了采用多旋翼植保无人飞机与背负式电动喷雾器喷施5%甲氨基阿维菌素苯甲酸盐水分散粒剂(WG)防治烟草棉铃虫Helicoverpa armigera的田间效果和添加助剂倍达通对多旋翼植保无人飞机喷施药剂对棉铃虫的田间防治效果的影响。结果表明:采用植保无人飞机喷施5%甲基阿维菌素苯甲酸盐WG对棉铃虫的防治效果随着施药后时间的延长逐渐增加。施药后7 d,制剂用量为60、75、90 g/hm2的防治效果分别为71.31%、64.00%和93.93%。在制剂用量为75 g/hm2下,添加10 mL/L的助剂倍达通可使植保无人飞机作业对棉铃虫的防效从64.00%提高到92.59%,背负式电动喷雾器施药后7 d的防效为94.30%。研究结果表明,在相同施药剂量(75 g/hm2)下,采用背负式喷雾器喷施药剂对棉铃虫的防治效果好于采用多旋翼植保无人飞机。然而,通过添加10 mL/L的助剂倍达通或提高20%用药量,采用植保无人飞机施药可达到与采用背负式喷雾器施药相同的防治效果。该研究结果可为进一步提升植保无人飞机防治烟草病虫害的施药技术和加快植保无人飞机在烟草植保中的推广应用提供支撑和参考。
  • 图  1  植保无人飞机作业情况

    Figure  1.  Operation status of plant protection unmanned aerial vehicle (UAV)

    图  2  背负式电动喷雾器作业情况

    Figure  2.  Operation status of knapsack electric sprayer

    图  3  不同处理的烟草植株破叶率的变化

    注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂 ,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机 喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施90 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P<0.05)。

    Figure  3.  The leaf breaking rates in tobacco plants with different treatments

    Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 ml/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays 90 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P<0.05).

    图  4  不同处理的虫株率的变化

    注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂 ,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机 喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施90 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P<0.05)。

    Figure  4.  The insect strain rates with different treatments

    Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 ml/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays 90 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P<0.05).

    图  5  两种植保器械对烟草棉铃虫防效的比较

    注:处理1表示采用植保无人飞机喷施60 g/hm2的药剂;处理2表示植保无人飞机喷施75 g/hm2的药剂 ,处理3表示植保无人飞机喷施 75 g/hm2的药剂和倍达通 10 mL/L;处理4表示植保无人飞机 喷施90 g/hm2的药剂;处理5表示背负式电动喷雾器喷施90 g/hm2的药剂。图中数据为平均值,不同小写字母表示各处理间的差异显著性(P<0.05)。

    Figure  5.  The comparison of control effects of two plant protection instruments on tobacco H. armigera

    Note: Treatment 1 means that the UAV is used to spray 60 g/hm2 of chemicals; Treatment 2 means that UAV is used to spray 75 g/hm2 of pesticide; Treatment 3 means that the UAV is used to spray 75 g/hm2 of pesticide and 10 ml/L of Beidatong. Treatment 4 means that the UAV sprays 90 g/hm2 of pesticide; Treatment 5 means that the knapsack electric sprayer sprays 90 g/hm2 of pesticide. The data in the figure are the mean value, and different lowercase letters indicate significant differences between treatments (P<0.05).

    表  1  5%甲氨基阿维菌素苯甲酸盐WG防治烟草棉铃虫药效试验处理设计

    Table  1.   Treatments of the control efficacy experiments of emamectin benzoate 50 g/kg WG against H. armigera

    处理
    Treatment
    施药器械
    Instrument
    制剂剂量
    Dose/(g/hm2)
    助剂
    (倍达通)
    Adjuvant
    (Beidatong)/(ml/L)
    风速
    Wind speed/
    (m/s)
    温度/湿度
    Temperature/
    Humidity
    处理面积
    Processing
    area/hm2
    1植保无人飞机
    (大疆 T20)
    UAV (DJI-T20)
    6003.1022 ℃/72%0.30
    27501.3423 ℃/70%0.26
    375102.1026 ℃/69%0.29
    49002.8127 ℃/69%0.26
    53WBD-20 背负式电动喷雾器
    3WBD-20 Knapsack electrostatic sprayer
    7504.0530 ℃/68%0.02
    CK0.36
    下载: 导出CSV
  • [1] 刘林州, 李建华, 陈会杰, 等. 许昌烟草病虫害发生情况及防治对策[J]. 安徽农业科学, 2019, 47(5): 157-158,161. doi: 10.3969/j.issn.0517-6611.2019.05.043

    LIU L Z, LI J H, CHEN H J, et al. Occurrence and control strategies of tobacco pests and diseases damage in Xuchang[J]. J Anhui Agric Sci, 2019, 47(5): 157-158,161. doi: 10.3969/j.issn.0517-6611.2019.05.043
    [2] 陈瑞泰, 朱贤朝, 王智发, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997, 18(4): 1-7.

    CHEN R T, ZHU X C, WANG Z F, et al. A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces(regions) in China[J]. Chin Tob Sci, 1997, 18(4): 1-7.
    [3] 杨绍俊, 彭坚强, 肖志新, 等. 保山植烟区“三虫三病”发生规律动态调查[J]. 热带农业科学, 2017, 37(3): 47-51.

    YANG S J, PENG J Q, XIAO Z X, et al. Survey of dynamic occurrence of “three insects, three diseases” in tobacco producing areas of Baoshan, Yunnan[J]. Chin J Trop Agric, 2017, 37(3): 47-51.
    [4] 闫晓静, 褚世海, 杨代斌, 等. 给农业插上科技的翅膀: 植保无人机低容量喷雾技术助力农药减施增效[J]. 植物保护学报, 2021, 48(3): 469-476.

    YAN X J, CHU S H, YANG D B, et al. Agriculture on the wings of science and technology: plant protection unmanned aerial vehicle (UAV) low-volume spraying technology reduces pesticide use and boosts control efficacy[J]. J Plant Prot, 2021, 48(3): 469-476.
    [5] 陈金, 刘品超, 黄国强, 等. 基于无人机遥感的烟田监测技术应用现状[J]. 现代农业科技, 2018(4): 211-212.

    CHEN J, LIU P C, HUANG G Q, et al. Application status of monitoring technology of tobacco field based on UAV remote sensing[J]. Mod Agric Sci Technol, 2018(4): 211-212.
    [6] 孟秀军, 谷连军, 王森. 无人机遥感在烟田监测中的应用: 以湖南省宁乡县黄材镇烟田监测为例[J]. 北京测绘, 2018, 32(10): 1169-1173.

    MENG X J, GU L J, WANG S. Research on application of UAV RS techniques in the tobacco monitoring: Huangcai town in Ningxiang Country, Hunan Province tobacco monitoring as an example[J]. Beijing Surv Mapp, 2018, 32(10): 1169-1173.
    [7] 农药田间药效试验准则(一)杀虫剂防治棉铃虫: GB/T 17980.1—2000[S]. 北京: 中国标准出版社, 2000.

    Pesticide-Guidelines for the field efficacy trials (Ⅰ). Insecticides against borer pests of Lepidoptera on rice: GB/T 17980.1—2000[S]. Beijing: China Standard Press, 2000.
    [8] 郭梅燕, 陈玉国, 王雪芬, 等. 生物农药在烟田烟青虫/棉铃虫防治中的应用效果[J]. 烟草科技, 2020, 53(7): 19-25.

    GUO M Y, CHEN Y G, WANG X F, et al. Application of biopesticides on Helicoverpa assulta and Helicoverpa armigera in tobacco fields[J]. Tob Sci Technol, 2020, 53(7): 19-25.
    [9] 商艳兰. 小麦主要害虫发生规律与无人机施药防治效果研究[D]. 泰安: 山东农业大学, 2016.

    SHANG Y L. Study on occurrence regularity of main insect pests on wheat and control effectiveness by useing unmanned helicopter[D]. Taian: Shandong Agricultural University, 2016.
    [10] 焦雨轩, 薛新宇, 丁素明, 等. 不同植保机械施药对棉蚜防效的影响[J]. 农机化研究, 2022, 44(3): 159-164.

    JIAO Y X, XUE X Y, DING S M, et al. Effects of different plant protection machinery on aphid control[J]. J Agric Mech Res, 2022, 44(3): 159-164.
    [11] 伏荣桃, 陈诚, 王剑, 等. 植保无人机对水稻病虫害防治条件与防效的研究[J]. 中国农业科技导报, 2021, 23(4): 103-109.

    FU R T, CHEN C, WANG J, et al. Control conditions and effects of plant protection unmanned aerial vehicle (UAV) on diseases and insect pests of rice[J]. J Agric Sci Technol, 2021, 23(4): 103-109.
    [12] 郭华伟, 姚惠明, 唐美君, 等. 植保无人机喷施虫螨腈防治茶小绿叶蝉效果评价[J]. 中国茶叶, 2021, 43(4): 41-44. doi: 10.3969/j.issn.1000-3150.2021.04.010

    GUO H W, YAO H M, TANG M J, et al. Evaluation of the effect of chlorfenapyr sprayed by plant protection UAV on Empoasca onukii Matsuda[J]. China Tea, 2021, 43(4): 41-44. doi: 10.3969/j.issn.1000-3150.2021.04.010
    [13] 荀栋, 张兢, 何可佳, 等. TH80-1植保无人机施药对水稻主要病虫害的防治效果研究[J]. 湖南农业科学, 2015(8): 39-42.

    XUN D, ZHANG J, HE K J, et al. Control efficacies of TH80-1 plant protection UAV spraying method on main diseases and insect pests of rice[J]. Hunan Agric Sci, 2015(8): 39-42.
    [14] QIN W C, QIU B J, XUE X Y, et al. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers[J]. Crop Prot, 2016, 85: 79-88. doi: 10.1016/j.cropro.2016.03.018
    [15] 薛新宇, 秦维彩, 孙竹, 等. N-3型无人直升机施药方式对稻飞虱和稻纵卷叶螟防治效果的影响[J]. 植物保护学报, 2013, 40(3): 273-278.

    XUE X Y, QIN W C, SUN Z, et al. Effects of N-3 UAV spraying methods on the efficiency of insecticides against planthoppers and Cnaphalocrocis medinalis[J]. Acta Phytophvlacica Sin, 2013, 40(3): 273-278.
    [16] 宁国云, 许琴芳, 柏超. 植保无人机施药防治水稻病虫害试验[J]. 浙江农业科学, 2018, 59(5): 765-766.

    NING G Y, XU Q F, BO C. Experiment of the spraying pesticide effect by plant protection UAV[J]. J Zhejiang Agric Sci, 2018, 59(5): 765-766.
    [17] 卢小平, 肖冬芽, 甘贱根, 等. 4种施药器械对水稻基部病虫害的防效比较及经济效益分析[J]. 江西农业学报, 2018, 30(5): 61-64.

    LU X P, XIAO D Y, GAN J G, et al. Control effect comparison and economic benefit analysis of using four kinds of spray equipments to control rice stem-base diseases and insect pests[J]. Acta Agric Jiangxi, 2018, 30(5): 61-64.
    [18] 高圆圆, 张玉涛, 张宁, 等. 小型无人机低空喷洒在小麦田的雾滴沉积分布及对小麦吸浆虫的防治效果初探[J]. 作物杂志, 2013(2): 139-142.

    GAO Y Y, ZHANG Y T, ZHANG N, et al. Primary studies on spray droplets distribution and control effects of aerial spraying using unmanned aerial vehicle(UAV) against wheat midge[J]. Crops, 2013(2): 139-142.
    [19] 蒙艳华, 兰玉彬, 李继宇, 等. 单旋翼油动植保无人机防治小麦蚜虫参数优选[J]. 中国植保导刊, 2017, 37(12): 66-71.

    MENG Y H, LAN Y B, LI J Y, et al. Optimization of operation parameters of single-rotor gas-powered UAV for controlling wheat aphid[J]. China Plant Prot, 2017, 37(12): 66-71.
    [20] 张龙, 陈树茂, 马金龙, 等. 多旋翼植保无人机在小麦田的雾滴分布及对小麦蚜虫的防治效果初探[J]. 农药科学与管理, 2018, 39(2): 46-52.

    ZHANG L, CHEN S M, MA J L, et al. Study on droplet distribution of multi rotor unmanned aerial vehicle(UAV) in wheat field and its control effect against wheat aphid[J]. Pestic Sci Adm, 2018, 39(2): 46-52.
    [21] 丁新华, 王娜, 王小武, 等. 小型无人机超低量喷雾防治玉米螟田间药效评价[J]. 新疆农业科学, 2017, 54(3): 479-488. doi: 10.6048/j.issn.1001-4330.2017.03.012

    DING X H, WANG N, WANG X W, et al. Studies on the control effect of ultra-low volume aerial spray using unmanned aerial vehicle(UAV) against the corn borer[J]. Xinjiang Agric Sci, 2017, 54(3): 479-488. doi: 10.6048/j.issn.1001-4330.2017.03.012
    [22] 邵统响, 夏中卫, 魏颖, 等. 无人机防治鲜食玉米灌浆期病虫害效果初探[J]. 现代农药, 2018, 17(2): 51-53. doi: 10.3969/j.issn.1671-5284.2018.02.015

    SHAO T X, XIA Z W, WEI Y, et al. Primary study on the control effects of spraying by unmanned aerial vehicle against maize diseases and pests[J]. Mod Agrochem, 2018, 17(2): 51-53. doi: 10.3969/j.issn.1671-5284.2018.02.015
    [23] 沙帅帅, 王喆, 肖海兵, 等. P20植保无人机作业参数优化及其施药对棉蚜防效评价[J]. 中国棉花, 2018, 45(1): 6-8. doi: 10.11963/1000-632X.ssswl.20171211

    SHA S S, WANG Z, XIAO H B, et al. Optimizing operation parameters of an unmanned aerial vehicle P20 and its application effects for spaying insecticides to control cotton aphid[J]. China Cotton, 2018, 45(1): 6-8. doi: 10.11963/1000-632X.ssswl.20171211
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  8
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 录用日期:  2021-10-18
  • 网络出版日期:  2021-11-08

目录

    /

    返回文章
    返回