Field efficacy of the combination of famoxadone and metalaxyl-M against Plasmopara viticola and the residue dynamics of the two fungicides in grape
-
摘要: 为明确噁唑菌酮与精甲霜灵复配在防治葡萄霜霉病上的可行性及安全性,对噁唑菌酮与精甲霜灵进行了室内联合毒力测定、田间药效及残留试验。结果表明:噁唑菌酮与精甲霜灵按质量比1 : 1复配,对葡萄霜霉病的联合毒力表现为增效作用,EC50值为2.52 mg/L,共毒系数 (CTC) 为154.53。30% 噁唑菌酮 • 精甲霜灵悬浮剂 (噁唑菌酮与精甲霜灵质量比1 : 1) 按有效成分120~200 mg/kg剂量喷雾施药3次,施药间隔7 d,最佳防效可达83.9%;其有效成分200 mg/kg剂量下的防效显著优于对照药剂68.75% 噁唑 • 锰锌水分散粒剂有效成分687.5 mg/kg剂量的防效;有效成分120和150 mg/kg剂量下的防效显著优于对照药剂68% 精甲霜灵 • 锰锌水分散粒剂有效成分1360 mg/kg剂量的防效。在0.1~5 mg/kg添加水平下,噁唑菌酮和精甲霜灵在葡萄中的平均回收率分别为91%~107%和92%~107%,相对标准偏差(RSD)小于5.7%;噁唑菌酮与精甲霜灵在葡萄中的消解规律均符合一级反应动力学方程,半衰期分别为8.9~12.8 d和7.4~10.0 d,均属易消解性农药。研究表明,噁唑菌酮与精甲霜灵质量比1 : 1复配所得30% 噁唑菌酮 • 精甲霜灵悬浮剂防治葡萄霜霉病具有高效、低残留、易降解及使用安全的特点,具有一定的开发价值。Abstract: To clarify the feasibility and safety of using the combination of famoxadone and metalaxyl-M against Plasmopara viticola in grape, the indoor co-toxicity test, field control efficacy test and residue behavior test were carried out. The results showed that the type of joint effect was synergistic on P. viticola when the ratio of famoxadone and metalaxyl-M was 1 : 1, with the EC50 value was 2.52 mg/L and the co-toxicity coefficient was 154.53. The best field control efficacy of 30% famoxadone + metalaxyl-M SC (at the mass ratio of 1 : 1) against P. viticola was 83.9% after 3 times of application at the dosage of 120-200 mg a.i./kg with interval of 7 d. The control effect of 30% famoxadone + metalaxyl-M SC at the dosage of 200 mg a.i./kg was significantly better than that of 68.75% famoxadone + mancozeb WG at the dosage of 687.5 mg a.i./kg, and the control effect of 30% famoxadone + metalaxyl-M SC at the dosage of 120 and 150 mg a.i./kg was significantly better than 68% metalaxyl-M + mancozeb WG at the dosage of 1360 mg a.i./kg. At the spiking levels of 0.1, 0.5 ,1.0 and 5.0 mg/kg, the average recoveries of famoxadone and metalaxyl-M in grape were 91%-107% and 92%-107%, respectively, with RSD less than 5.7%. The dissipation of famoxadone and metalaxyl-M in grape fitted to the first order kinetics and the half-lives were 8.9-12.8 d and 7.4-10.0 d, respectively, indicating that they were easily dissipated pesticides. The results suggested that the formulation of 30% famoxadone + metalaxyl-M SC (at the mass ratio of 1 : 1) could be an effective fungicide for controlling P. viticola, with the characteristics of high efficiency, low residual, easily degraded, and safe for use, and have certain future developmental value.
-
Key words:
- famoxadone /
- metalaxyl-M /
- Plasmopara viticola /
- co-toxicity /
- control efficacy /
- residue /
- dissipation /
- safety
-
表 1 噁唑菌酮与精甲霜灵单剂及复配对葡萄霜霉病菌的毒力
Table 1. Joint-toxicity and individual toxicity of famoxadone and metalaxyl-M to the toxicity of Plasmopara viticola
药剂
Fungicide毒力回归方程
Toxicity regression
equation (y=)相关系数
Correlation coefficient, rEC50 (90% CL)/
(mg/L)EC90/(mg/L) 共毒系数
Co-toxicity
coefficient,
CTC精甲霜灵
metalaxyl-M4.1837 + 1.5202x 0.9980 3.44 (3.19~3.72) 23.99 — 噁唑菌酮
famoxadone4.2220 + 1.1960x 0.9982 4.47 (4.15~4.81) 52.72 — m (精甲霜灵) : m (噁唑菌酮) =
m (metalaxyl-M) : m (famoxadone) =4 : 1 4.3367 + 1.4274x 0.9992 2.92 (2.78~3.06) 23.04 123.81 2 : 1 4.3931 + 1.4092x 0.9987 2.7 (2.54~2.87) 21.89 138.34 1 : 1 4.4621 + 1.3413x 0.9994 2.52 (2.41~2.63) 22.72 154.53 1 : 2 4.4018 + 1.3150x 0.9994 2.85 (2.73~2.98) 26.88 142.68 1 : 4 4.3631 + 1.2732x 0.9991 3.16 (3.01~3.33) 32.12 133.38 表 2 噁唑菌酮与精甲霜灵复配对葡萄霜霉病的田间防治效果
Table 2. Field control efficacy of the mixture of famoxadone and metalaxyl-M for controlling grape downy mildew
药剂
Fungicide有效
成分
用量
Dose, a.i./
(mg/kg)四川 Sichuan 北京 Beijing 第 3 次药后 7 d
7 d after the 3rd spray第 3 次药后1 4 d
14 d after the 3rd spray第 3 次药后 7 d
7 d after the 3rd spray第 3 次药后 14 d
14 d after the 3rd spray病情指数
Disease index防效
Control efficacy/%病情指数
Disease index防效
Control efficacy/%病情指数
Disease index防效
Control efficacy/%病情指数
Disease index防效
Control efficacy/%30% 噁唑菌酮 • 精甲霜灵悬浮剂
famoxadone + metalaxyl-M
30% SC200 1.0 82.2 ± 2.3 a 1.2 83.9 ± 2.8 a 2.2 80.6 ± 1.1 a 3.7 75.2 ± 2.1 a 150 1.3 75.7 ± 2.9 b 1.6 78.0 ± 2.1 b 3.2 69.5 ± 2.9 b 4.7 65.8 ± 2.5 b 120 1.9 64.6 ± 3.8 c 2.3 67.3 ± 2.3 c 4.4 59.8 ± 1.3 c 6.2 56.7 ± 2.1 c 68.75% 噁唑 • 锰锌水分散粒剂
famoxadone + mancozeb
68.75% WG687.5 1.7 78.3 ± 1.8 b 0.9 77.6 ± 2.6 b 1.8 71.2 ± 1.3 b 3.0 69.3 ± 2.8 b 68% 精甲霜灵 • 锰锌水分散
粒剂
metalaxyl-M + mancozeb
68% WG1360 1.9 65.4 ± 3.1 c 1.1 63.2 ± 2.8 c 4.4 60.1 ± 2.8 c 6.3 55.3 ± 2.8 c 清水对照 CK 5.4 7.1 10.7 13.8 注:同列数据后不同小写字母表示差异显著 (P < 0.05)。Notes: Different lowercase letters indicate significant difference among the same column data (P < 0.05). 表 3 噁唑菌酮和精甲霜灵在葡萄中的残留消解动态
Table 3. Dissipation dynamics of famoxadone and metalaxyl-M in grape samples
试验地点
Site药剂
Fungicide消解动态方程
Dissipation kinetic equation相关系数
Correlation coefficient, r半衰期
Half-life/d四川 Sichuan 噁唑菌酮 famoxadone ct=3.541 8e-0.054t 0.9008 12.8 精甲霜灵 metalaxyl-M ct=2.107 3e-0.094t 0.9767 7.4 北京 Beijing 噁唑菌酮 famoxadone ct=5.687 3e-0.078t 0.9518 8.9 精甲霜灵 metalaxyl-M ct=2.273 1e-0.069t 0.9309 10.0 -
[1] 刘梅, 黄金宝, 李兴红, 等. 多种杀菌剂对葡萄霜霉病的田间防效[J]. 中国植保导刊, 2020, 40(10): 88-90. doi: 10.3969/j.issn.1672-6820.2020.10.017LIU M, HUANG J B, LI X H, et al. Field efficacy of various fungicides against grape downy mildew[J]. China Plant Prot, 2020, 40(10): 88-90. doi: 10.3969/j.issn.1672-6820.2020.10.017 [2] PALMIERI M C, PERAZZOLLI M, MATAFORA V, et al. Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew[J]. J Exp Bot, 2012, 63(17): 6237-6251. doi: 10.1093/jxb/ers279 [3] ROUXEL M, MESTRE P, BAUDOIN A, et al. Geographic distribution of cryptic species of Plasmopara viticola causing downy mildew on wild and cultivated grape in eastern North America[J]. Phytopathology, 2014, 104(7): 692-701. doi: 10.1094/PHYTO-08-13-0225-R [4] 王国珍, 樊仲庆, 麻冬梅, 等. 贺兰山东麓酿酒葡萄霜霉病流行规律及预报技术[J]. 植物保护, 2004, 30(4): 54-56. doi: 10.3969/j.issn.0529-1542.2004.04.016WANG G Z, FAN Z Q, MA D M, et al. Studies on epidemical regularity and prediction technology of grape downy mildew disease in Eastern Helan Mountain[J]. Plant Prot, 2004, 30(4): 54-56. doi: 10.3969/j.issn.0529-1542.2004.04.016 [5] GESSLER C, PERTOT I, PERAZZOLLI M. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management[J]. Phytopathol Mediterr, 2011, 50: 3-44. [6] 毕秋艳, 杨晓津, 马志强, 等. 葡萄霜霉病有效药剂筛选及药效评价[J]. 植物保护, 2014, 40(3): 199-203. doi: 10.3969/j.issn.0529-1542.2014.03.039BI Q Y, YANG X J, MA Z Q, et al. Evaluation of fungicides for control of grape downy mildew caused by Plasmopara viticola[J]. Plant Prot, 2014, 40(3): 199-203. doi: 10.3969/j.issn.0529-1542.2014.03.039 [7] ZHENG Y J, SHAPIRO R, MARSHALL W J, et al. Synthesis and structural analysis of the active enantiomer of famoxadone, a potent inhibitor of cytochrome bc1[J]. Bioorg Med Chem Lett, 2000, 10(10): 1059-1062. doi: 10.1016/S0960-894X(00)00164-5 [8] 农业部农药检定所. 新编农药手册 [M]. 2版. 北京: 中国农业出版社, 2013.Institute for the Control of Agrochemicals. A new pesticide manual[M]. 2nd Ed. Beijing: China Agricultural Press, 2013. [9] 刘西莉, 马安捷, 林吉柏, 等. 精甲霜灵与外消旋体甲霜灵对掘氏疫霉菌的抑菌活性比较[J]. 农药学学报, 2003, 5(3): 45-49. doi: 10.3321/j.issn:1008-7303.2003.03.007LIU X L, MA A J, LIN J B, et al. The comparison of inhibitory action between stereoisomers of metalaxyl[J]. Chin J Pestic Sci, 2003, 5(3): 45-49. doi: 10.3321/j.issn:1008-7303.2003.03.007 [10] 陈莉, 贾春虹, 戴荣彩, 等. 精甲霜灵水分散粒剂在葡萄和土壤中的残留试验[J]. 农药, 2008, 47(3): 195-197.CHEN L, JIA C H, DAI R C, et al. Residual dynamic analysis of metalaxyl-M in watermelon and soil[J]. Agrochemicals, 2008, 47(3): 195-197. [11] 农药室内生物测定试验准则: NY/T 1156.7—2006[S]. 北京: 中国农业出版社, 2006.Pesticides guidelines for laboratory bioactivity test: NY/T 1156.7—2006[S]. Beijing: China Agricultural Press, 2006. [12] 农药田间药效试验准则: GB/T 17980.122—2004[S]. 北京: 中国标准出版社, 2004.Pesticide guidelines for the field efficacy trials: GB/T 17980.122—2004[S]. Beijing: Standards Press of China, 2004. [13] 农作物中农药残留试验准则: NY/T 788—2018[S]. 北京: 中国农业出版社, 2018.Guideline for the testing of pesticide residues in crops: NY/T 788—2018[S]. Beijing: China Agricultural Press, 2018. [14] 杨红福, 姚克兵, 缪康, 等. 江苏省防控小麦赤霉病主要药剂及其复配剂药效评价[J]. 中国农学通报, 2014, 30(28): 264-269. doi: 10.11924/j.issn.1000-6850.2014-1603YANG H F, YAO K B, LIAO K, et al. Efficacy evaluation of the prevention and control fungicides and the compounding pesticide of wheat scab in Jiangsu[J]. Chin Agric Sci Bull, 2014, 30(28): 264-269. doi: 10.11924/j.issn.1000-6850.2014-1603 [15] 朱卫刚, 胡伟群, 陈杰. 精甲霜灵和噁霉灵复配对辣椒猝倒病的联合毒力[J]. 农药, 2010, 49(12): 920-921. doi: 10.3969/j.issn.1006-0413.2010.12.022ZHU W G, HU W Q, CHEN J. Combined toxicity of metalaxyl-M mixed hymexazol to Pythium aphanidermatum[J]. Agrochemicals, 2010, 49(12): 920-921. doi: 10.3969/j.issn.1006-0413.2010.12.022 [16] 李宝燕, 王培松, 倪寿山, 等. 不同葡萄品种对霜霉病的抗性鉴定及相关生理生化研究[J]. 果树学报, 2016, 33(2): 217-223.LI B Y, WANG P S, NI S S, et al. Resistance identification and biochemistry of resistance of different grape varieties to downy mildew[J]. J Fruit Sci, 2016, 33(2): 217-223. [17] 寇爽, 孙艳艳, 田兆迎, 等. 4种药剂对北京地区葡萄霜霉病的防效[J]. 中国植保导刊, 2021, 41(1): 86-88.KOU S, SUN Y Y, TIAN Z Y, et al. Efficacy of four fungicides against grape downy mildew in Beijing[J]. China Plant Prot, 2021, 41(1): 86-88. [18] 杨庆喜, 纪明山, 谷祖敏. 氰霜唑及其主要代谢物 CCIM 在番茄和葡萄上的残留行为及膳食暴露风险评估[J]. 农药学学报, 2020, 22(5): 815-822.YANG Q X, JI M S, GU Z M. Residues behavior and dietary exposure risk assessment of cyazofamid and its main metabolite CCIM in tomato and grape[J]. Chin J Pestic Sci, 2020, 22(5): 815-822. [19] 刘茜, 张宪, 陈敏, 等. 嘧菌环胺·异菌脲可湿性粉剂在葡萄和土壤中的残留消解动态及风险评估[J]. 农产品质量与安全, 2021(2): 30-35. doi: 10.3969/j.issn.1674-8255.2021.02.007LIU Q, ZHANG X, CHEN M, et al. Residue dissipation and dietary risk assessment of cyprodinil and iprodione wettable powder in grape and soil[J]. Qual Saf Agro-Prod, 2021(2): 30-35. doi: 10.3969/j.issn.1674-8255.2021.02.007 [20] 颜丽菊, 蒋芯, 李学斌, 等. 异菌脲在杨梅果实中的残留消解动态研究[J]. 中国农学通报, 2017, 33(9): 150-153. doi: 10.11924/j.issn.1000-6850.casb16070094YAN L J, JIANG X, Li X B, et al. Residual degradation dynamics of iprodione in myrica rubra fruits[J]. Chin Agric Sci Bull, 2017, 33(9): 150-153. doi: 10.11924/j.issn.1000-6850.casb16070094 [21] 化学农药环境安全评价试验准则: GB/T 31270.1—2014[S]. 北京: 中国标准出版社, 2014.Test guidelines on environmental safety assessment for chemical pesticide: GB/T 31270.1—2014[S]. Beijing: Standards Press of China, 2014. -