Determination of chlorantraniliprole, cyantraniliprole and its metabolites residues in litchi using QuEChERS and high performance liquid chromatography-tandem mass spectrometry
-
摘要: 采用高效液相色谱-串联质谱(HPLC-MS/MS)技术,结合改良的QuEChERS法,建立了同时测定荔枝中氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38残留的分析方法。样品用乙腈提取,以N-丙基乙二胺(PSA)和十八烷基键合硅胶(C18)组合吸附剂净化,采用C18反相色谱柱分离,以V(甲酸水溶液) : V(乙腈)=15 : 85为流动相,采用电喷雾正离子扫描(ESI+),多反应监测(MRM)模式,外标法定量。结果表明:3种目标化合物在0.005~1 mg/L范围内线性关系良好(r>0.99);方法的定量限(LOQs)为0.0005~0.01 mg/kg;在0.0005~0.5 mg/kg添加水平下,氯虫苯甲酰胺、溴氰虫酰胺及代谢物在荔枝全果和果肉中的平均回收率为76%~98%,相对标准偏差(RSD)为2.5%~9.6%。应用该方法对广州市场中的20批次荔枝样品进行检测,结果显示,氯虫苯甲酰胺检出量为0.001~0.01 mg/kg,溴氰虫酰胺及其代谢物J9Z38未检出。该方法简便、高效、快速,可用于荔枝样品中双酰胺类农药的同时检测。Abstract: An analytical method was established for simultaneous determination of chlorantraniliprole, cyantraniliprole and its metabolite J9Z38 in litchi by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) combined with a modified QuEChERS procedure. The target compounds were extracted from the samples with acetonitrile and then cleaned up with primary secondary amine (PSA) and octadecylsilane (C18). The analytes were separated on a C18 column using V (formic acid aqueous solution) : V (acetonitrile)=15 : 85 as mobile phase and analyzed in multiple reaction monitoring (MRM) mode with positive electrospray ionization (ESI+). Quantitative analysis was performed by external standard method using matrix-matched calibration curves. The results showed that the linearity of the target compounds was good (r >0.99) in the range of 0.005-1 mg/L. The limits of quantification (LOQs) were 0.0005-0.01 mg/kg. The average recoveries of the three pesticides in litchi (whole fruit and pulp) ranged from 76% to 98% at the spiked levels of 0.0005-0.5 mg/kg, with the relative standard deviations of 2.5% to 9.6%. The method was applied for the detection of twenty commercial litchi samples in Guangzhou City. The results showed that the residues of chlorantraniliprole were 0.001-0.01 mg/kg, and neither cyantraniliprole nor its metabolite J9Z38 were found. The proposed method is convenient, effective and rapid, and is suitable for the simultaneous determination of chlorantraniliprole, cyantraniliprole and its metabolite in litchi.
-
图 3 不同色谱柱对氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38的分离效果 (0.05 mg/L)
A: Agilent Infinity Lab Poroshell-120 SB-C18 (75 mm × 2.1 mm, 2.7 μm); B: Agilent Zorbax Extend-C18 (150 mm × 4.6 mm, 5.0 μm); C: Agilent Zorbax SB-Aq-C18 (150 mm × 4.6 mm, 5.0 μm); D: 岛津 Shim-pack GIST-HP C18 (100 mm × 2.1 mm, 3.0 μm); E: 岛津 Shim-pack GIST-HP C18 (150 mm × 2.1 mm, 3.0 μm).
Figure 3. Separation efficiency of different chromatographic columns for chlorantraniliprole, cyantraniliprole and its metabolite J9Z38 (0.05 mg/L)
表 1 氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38的质谱参数
Table 1. Mass spectra parameters of chlorantraniliprole, cyantraniliprole and its metabolite J9Z38
化合物
Compound母离子
Precursor ion,
m/z子离子
Product ion,
m/z碰撞能量
Collision energy/
V保留时间
Retention time/
min氯虫苯甲酰胺
chlorantraniliprole484 285.9* −12 5.5 453.35 −14 溴氰虫酰胺
cyantraniliprole475.3 285.95* −10 5.1 444.1 −19 代谢物J9Z38
Metabolite J9Z38457.1 188* −27 6.3 299 −35 注(Note):*定量离子(Quantitative ion)。 表 2 吸附剂用量对氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38回收率的影响(n = 3)
Table 2. Effect of adsorbent dosage on the recovery of chlorantraniliprole, cyantraniliprole and its metabolite J9Z38 (n = 3)
吸附剂组合
Adsorbent combination回收率 Recovery/% 代谢物J9Z38
Metabolite J9Z38溴氰虫酰胺
cyantraniliprole氯虫苯甲酰胺
chlorantraniliproleMWCNT 5 mg 4±1.1 10±0.8 14±0.9 MWCNT 10 mg 2±0.8 3±0.6 5±0.4 PSA 50 mg + 5 mg GCB 16±2.4 32±1.0 43±1.6 PSA 50 mg + 10 mg GCB 8±1.4 19±2.7 25±2.1 PSA 50 mg + 20 mg GCB 5±2.9 12±5.0 18±7.1 PSA 50 mg + C18 50 mg + 5 mg GCB 17±1.1 36±0.6 46±0.5 PSA 50 mg + C18 50 mg + 10 mg GCB 9±1.6 19±1.7 29±2.6 PSA 50 mg + C18 50 mg + 20 mg GCB 4±0.6 10±0.4 16±0.4 PSA 25 mg + C18 25 mg + 5 mg GCB 28±2.6 31±3.8 45±1.4 PSA 25 mg + C18 25 mg + 10 mg GCB 7±3.5 17±2.1 24±2.7 C18 25 mg + 5 mg GCB 23±3.9 33±1.2 44±1.8 C18 25 mg + 10 mg GCB 19±4.3 20±2.1 27±3.5 PSA 25 mg + 5 mg GCB 15±2.0 34±1.4 44±4.2 PSA 25 mg + 10 mg GCB 7±2.5 17±1.7 24±2.4 PSA 100 mg + C18 50 mg 95±2.5 81±1.9 81±3.2 PSA 50 mg + C18 100 mg 81±1.4 80±2.1 82±3.5 PSA 50 mg + C18 50 mg 87±1.6 84±1.1 91±2.7 注:表中数据为平均值 ± 标准差。Note: Data of the table are mean ± SD. 表 3 不同色谱柱下氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38线性方程及基质效应
Table 3. Linear equation and matrix effects of chlorantraniliprole, cyantraniliprole and its metabolite J9Z38 using different chromatographic columns
色谱柱类型
Chromatographic column化合物
Compound基质
Matrix线性方程
Linear equation相关系数
r基质效应
Matrix effect/%A 氯虫苯甲酰胺 chlorantraniliprole 溶剂 Solvent y=1.56609 × 107x + 113324 0.9997 — 果肉 Flesh y=1.36692 × 106x + 3949.26 0.9999 −91.3 全果 Whole fruit y=1.16033 × 106x + 7783.01 0.9997 −92.6 溴氰虫酰胺 cyantraniliprole 溶剂 Solvent y=5.25996 × 106x + 43758.2 0.9995 — 果肉 Flesh y=151406x + 1780.56 0.9997 −97.1 全果 Whole fruit y=148975x−1068.72 0.9979 −97.2 代谢物 J9Z38 Metabolite J9Z38 溶剂 Solvent y=1.03342 × 106x−6121.65 0.9978 — 果肉 Flesh y=577299x + 7626.68 0.9996 −44.1 全果 Whole fruit y=392552x−3513.27 0.9971 −62.1 B 氯虫苯甲酰胺 chlorantraniliprole 溶剂 Solvent y=1.15242 × 107x + 59844.7 0.9987 — 果肉 Flesh y=1.22073 × 107x + 160325 0.9984 5.9 全果 Whole fruit y=8.29595 × 106x + 144793 0.9992 −28.0 溴氰虫酰胺 cyantraniliprole 溶剂 Solvent y=2.93376 × 106x + 15813.9 0.9988 — 果肉 Flesh y=2.59718 × 106x + 35846.4 0.9981 −11.5 全果 Whole fruit y=1.57836 × 106x + 18578.6 0.9988 −46.2 代谢物 J9Z38 Metabolite J9Z38 溶剂 Solvent y=519147x + 2091.2 0.9994 — 果肉 Flesh y=539501x + 4769.44 0.9994 3.9 全果 Whole fruit y=176071x + 3453.94 0.9979 −66.1 C 氯虫苯甲酰胺 chlorantraniliprole 溶剂 Solvent y=1.22326 × 107x + 66452.3 0.9999 — 果肉 Flesh y=1.25802 × 107x + 270196 0.9963 2.8 全果 Whole fruit y=8.05065 × 106x + 121095 0.9999 −34.1 溴氰虫酰胺 cyantraniliprole 溶剂 Solvent y=4.30801 × 106x + 42111.2 0.9999 — 果肉 Flesh y=3.33573 × 106x + 74203.7 0.9959 −22.6 全果 Whole fruit y=2.32339 × 106x + 16241 0.9999 −46.1 代谢物 J9Z38 Metabolite J9Z38 溶剂 Solvent y=645920x + 916.731 0.9999 — 果肉 Flesh y=714497x + 16419.3 0.9959 10.6 全果 Whole fruit y=424131x + 3202.63 0.9999 −34.3 注 (Note): A: Agilent Infinity Lab Poroshell-120 SB-C18 (75 mm × 2.1 mm, 2.7 μm); B: Agilent Zorbax Extend-C18 (150 mm × 4.6 mm, 5.0 μm); C: Agilent Zorbax SB-Aq-C18 (150 mm × 4.6 mm, 5.0 μm). 表 4 氯虫苯甲酰胺、溴氰虫酰胺及代谢物J9Z38在荔枝中的添加回收率、相对标准偏差及定量限 (n=5)
Table 4. Recoveries, RSDs, and LOQ of chlorantraniliprole, cyantraniliprole and its metabolite J9Z38 in litchi pulp and whole fruits (n=5)
化合物
Compound基质
Matrix添加水平
Spiked
level/
(mg/kg)回收率
Recoveries/
%相对
标准偏差
RSD/
%定量限
LOQ/
(mg/kg)氯虫苯甲酰胺
chlorantraniliprole果肉
Flesh0.0005 80 4.7 0.0005 0.01 87 8.6 0.1 96 5.8 0.5 97 5.4 全果
Whole fruit0.0005 78 8.1 0.0005 0.01 96 6.7 0.1 93 5.3 0.5 84 5.0 溴氰虫酰胺
cyantraniliprole果肉
Flesh0.005 78 5.1 0.005 0.01 88 5.6 0.1 98 3.9 0.5 91 3.5 全果
Whole fruit0.005 76 7.3 0.005 0.01 92 8.5 0.1 95 5.1 0.5 81 2.5 代谢物J9Z38
Metabolite J9Z38果肉
Flesh0.01 88 6.4 0.01 0.1 95 5.6 0.5 92 6.0 全果
Whole fruit0.01 95 9.6 0.01 0.1 92 8.1 0.5 86 6.8 -
[1] 王燕, 王惠聪, 周志昆, 等. 荔枝的功能及活性成分研究现状[J]. 果树学报, 2009, 26(4): 546-552.WANG Y, WANG H C, ZHOU Z K, et al. An overview of research on litchi functional role and its active substances[J]. J Fruit Sci, 2009, 26(4): 546-552. [2] 黄菲, 张瑞芬, 刘慧娟, 等. 荔枝多糖级分的溶液性质研究[J]. 食品安全质量检测学报, 2015, 6(5): 1770-1775.HUANG F, ZHANG R F, LIU H J, et al. Study on the solution properties of polysaccharide fractions from litchi pulp[J]. J Food Saf Qual, 2015, 6(5): 1770-1775. [3] 殷畅, 毕莹莹, 韩丽君, 等. 双酰胺类杀虫剂作用机制及其先导优化研究进展[J]. 世界农药, 2021, 43(2): 15-33.YIN C, BI Y Y, HAN L J, et al. Research progress on action mechanism and lead optimization of diamide insecticides[J]. World Pestic, 2021, 43(2): 15-33. [4] 刘宴弟, 孙丽娜, 张怀江, 等. 二酰胺类杀虫剂作用机制和抗性机理研究综述[J]. 中国植保导刊, 2020, 40(11): 65-68,79. doi: 10.3969/j.issn.1672-6820.2020.11.014LIU Y D, SUN L N, ZHANG H J, et al. Advances in research on the mechanism of action and resistance of diamide insecticides[J]. China Plant Prot, 2020, 40(11): 65-68,79. doi: 10.3969/j.issn.1672-6820.2020.11.014 [5] SCHWARZ T, SNOW T A, SANTEE C J, et al. QuEChERS multiresidue method validation and mass spectrometric assessment for the novel anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole[J]. J Agric Food Chem, 2011, 59(3): 814-821. doi: 10.1021/jf103468d [6] MALHAT F M. Determination of chlorantraniliprole residues in grape by high-performance liquid chromatography[J]. Food Anal Methods, 2012, 5(6): 1492-1496. doi: 10.1007/s12161-012-9400-z [7] JACOBSON A L, KENNEDY G G. The effect of three rates of cyantraniliprole on the transmission of tomato spotted wilt virus by Frankliniella occidentalis and Frankliniella fusca (Thysanoptera: Thripidae) to Capsicum annuum[J]. Crop Prot, 2011, 30(4): 512-515. doi: 10.1016/j.cropro.2010.12.004 [8] DONG F, LIU X, XU J, et al. Determination of cyantraniliprole and its major metabolite residues in vegetable and soil using ultra-performance liquid chromatography/tandem mass spectrometry[J]. Biomed Chromatogr, 2012, 26(3): 377-383. [9] LU Z, ZHANG Z, FANG N, et al. Simultaneous determination of five diamide insecticides in food matrices using carbon nanotube multiplug filtration cleanup and ultrahigh-performance liquid chromatography-tandem mass spectrometry[J]. J Agric Food Chem, 2019, 67(39): 10977-10983. doi: 10.1021/acs.jafc.9b02806 [10] CHEN J, LU Z, LI M, et al. The mechanism of sublethal chlorantraniliprole exposure causing silkworm pupation metamorphosis defects[J]. Pest Manag Sci, 2020, 76(8): 2838-2845. doi: 10.1002/ps.5836 [11] GOMES I N, VIEIRA K I C, GONTIJO L M, et al. Honeybee survival and flight capacity are compromised by insecticides used for controlling melon pests in Brazil[J]. Ecotoxicology, 2020, 29(1): 97-107. doi: 10.1007/s10646-019-02145-8 [12] 林涛, 游泳, 郑丽祯, 等. 三种双酰胺类杀虫剂制剂对环境非靶标生物的急性毒性[J]. 农药学学报, 2015, 17(6): 757-762. doi: 10.3969/j.issn.1008-7303.2015.06.018LIN T, YOU Y, ZHENG L Z, et al. Acute toxicity of three diamide insecticide preparations to environmental non-target organisms[J]. Chin J Pestic Sci, 2015, 17(6): 757-762. doi: 10.3969/j.issn.1008-7303.2015.06.018 [13] 吴丹亚, 潘洁. 固相萃取-高效液相色谱法同时测定蔬菜中氯虫苯甲酰胺等5种农药残留量[J]. 浙江农业科学, 2021, 62(1): 129-132.WU D Y, PAN J. Simultaneous determination of five pesticide residues including chlorantraniliprole in vegetables by solid phase extraction and high-performance liquid chromatography[J]. J Zhejiang Agric Sci, 2021, 62(1): 129-132. [14] 宋文芳. 高效液相色谱法同时测定辣椒中氯虫苯甲酰胺和溴氰虫酰胺的残留[J]. 现代食品, 2020(7): 172-174.SONG W F. Determination for residues of chlorantraniliprole and cyantraniliprole in pepper by HPLC method[J]. Mod Food, 2020(7): 172-174. [15] 吴春霞, 张秋萍, 许红睿, 等. QuEChERS-超高效液相色谱-串联三重四极杆质谱联用法快速测定蔬菜中吡虫啉等四种杀虫剂残留[J]. 食品安全质量检测学报, 2020, 11(3): 909-914.WU C X, ZHANG Q P, XU H R, et al. Rapid determination of 4 pesticide residues in vegetables by QuEChERS and ultra performance liquid chromatography tandem mass spectrometry[J]. J Food Saf Qual, 2020, 11(3): 909-914. [16] 梁秀美, 张维一, 张微, 等. QuEChERS-HPLC-MS/MS法同时测定水果中38种农药的残留量[J]. 食品科学, 2020, 41(8): 288-296. doi: 10.7506/spkx1002-6630-20191018-199LIANG X M, ZHANG W Y, ZHANG W, et al. Simultaneous determination of residues of 38 pesticides in fruits by QuEChERS combined with high performance liquid chromatography-tandem mass spectrometry[J]. Food Sci, 2020, 41(8): 288-296. doi: 10.7506/spkx1002-6630-20191018-199 [17] 杨松, 王瑶, 禾丽菲, 等. QuEChERS-气相色谱-串联质谱法分析鲜茶叶中6种杀虫剂的残留及消解动态[J]. 分析试验室, 2019, 38(12): 1459-1464.YANG S, WANG Y, HE L F, et al. Residue and dissipation dynamics of six insecticides in fresh tea by QuEChERS-gas chromatography tandem mass spectrometry[J]. Chin J Anal Lab, 2019, 38(12): 1459-1464. [18] 韩帅兵, 张耀中, 于淼, 等. 超高效液相色谱-串联质谱法测定水中双酰胺类杀虫剂的残留量[J]. 农药科学与管理, 2021, 42(2): 38-43. doi: 10.3969/j.issn.1002-5480.2021.02.007HAN S B, ZHANG Y Z, YU M, et al. Determination of diamide insecticides residues in water by high performance liquid chromatography-tandem mass spectrometry[J]. Pestic Sci Admin, 2021, 42(2): 38-43. doi: 10.3969/j.issn.1002-5480.2021.02.007 [19] 黄美玲, 林毅楠, 周杨, 等. 液相色谱串联质谱法测定油料作物中3种双酰胺类杀虫剂残留量[J]. 食品安全质量检测学报, 2020, 11(15): 5099-5106.HUANG M L, LIN Y N, ZHOU Y, et al. Determination of 3 kinds of diamide insecticides in oil crops by liquid chromatography-tandem mass spectrometry[J]. J Food Saf Qual, 2020, 11(15): 5099-5106. [20] 孙程鹏, 许炳雯, 高娜, 等. Sin-QuEChERS结合超高效液相色谱串联质谱法同时检测果蔬中5种双酰胺类杀虫剂[J]. 食品安全质量检测学报, 2020, 11(6): 1784-1791.SUN C P, XU B W, GAO N, et al. Simultaneous determination of 5 kinds of diamide insecticides in fruits and vegetables by Sin-QuEChERS with ultra performance liquid chromatography tandem mass spectrometry[J]. J Food Saf Qual, 2020, 11(6): 1784-1791. [21] 史梦竹, 李建宇, 刘文静, 等. 6种杀虫剂在上海青中的残留消解动态及膳食风险评估[J]. 食品安全质量检测学报, 2021, 12(2): 646-652.SHI M Z, LI J Y, LIU W J, et al. Residue dynamics and dietary intake risk assessment of 6 kinds of pesticides in Brassica rapa var. chinensis[J]. J Food Saf Qual, 2021, 12(2): 646-652. [22] 李安英, 张少军, 陈勇达, 等. 溴氰虫酰胺和吡蚜酮在南瓜中的残留消解动态[J]. 中国蔬菜, 2021(1): 79-83.LI A Y, ZHANG S J, CHEN Y D, et al. Residues and digestion dynamics of cyantraniliprole and pymetrozine in pumpkin[J]. China Veg, 2021(1): 79-83. [23] 毕思远, 曹涛, 朱志强, 等. SPE-HPLC/MS法监测蓝莓等浆果中氟啶虫酰胺和溴氰虫酰胺残留[J]. 食品工业, 2020, 41(9): 289-292.BI S Y, CAO T, ZHU Z Q, et al. SPE-HPLC/MS method for detection of flonicamid and cyantraniliprole pesticides residues in blueberry and other berries[J]. Food Ind, 2020, 41(9): 289-292. [24] 丁金凤, 徐春梅, 张薇, 等. QuEChERS-超高效液相色谱-串联质谱法测定玉米植株和土壤中溴氰虫酰胺及其代谢物残留[J]. 农药学学报, 2018, 20(1): 83-89.DING J F, XU C M, ZHANG W, et al. Determination of cyantraniliprole and its metabolite in maize plant and soil by QuEChERS and ultra-performance liquid chromatography tandem mass spectrometry[J]. Chin J Pestic Sci, 2018, 20(1): 83-89. [25] KMELLÁR B, FODOR P, PAREJA L, et al. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2008, 1215(1/2): 37-50. [26] 宾婕, 王以鑫, 胡建林, 等. QuEChERS-UPLC-MS/MS法快速测定香茅草中33种农药残留量[J]. 药物分析杂志, 2021, 41(3): 471-479.BIN J, WANG Y X, HU J L, et al. Rapid determination of 33 pesticide residues in Xiangmao grass by QuEChERS UPLC-MS/MS[J]. Chin J Pharmaceut Anal, 2021, 41(3): 471-479. [27] Directorate General for Health and Food Safety. Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/11813/2017[S]. European Commission, 2017.(2021-10-7). https://ec.europa.eu/food/sites/food/ files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf. [28] European Commission. EU-pesticides-database [DB/OL]. [2021-06-25]. https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr [29] The Japan Food Chemical Research Foundation. Maximum residue limits (MRLs) list of agricultural chemicals in foods[DB/OL]. (2021-06-25). https://db.ffcr.or.jp/front/pesticide_detail?id=54000Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods -