Effects of imazethapyr on the physiological characteristics and yield components of foxtail millet
-
摘要: 为探究咪唑乙烟酸对抗性及常规谷子品种生理特性及产量构成的影响及其抗性机理,以抗咪唑乙烟酸谷子品种冀谷35和常规谷子品种冀谷38、冀谷41、晋谷21、晋谷59、长农44、龙谷39和中谷9为研究对象,采用盆栽及田间试验比较其苗期生理特性和产量构成对咪唑乙烟酸的响应。盆栽试验结果显示:咪唑乙烟酸按有效成分93.5 g/hm2施用,显著降低了常规谷子品种幼苗期地上部分鲜重(降幅达21.60%~72.83%)及叶绿素a (45.20%~92.12%)、叶绿素b (18.10%~93.36%)、类胡萝卜素(42.58%~84.21%)和总叶绿素的含量(45.73%~92.38%);叶绿素荧光参数表观光合电子传递速率和最大光化学产量分别下降20.4%~37.0%和6.9%~24.8%,非光化学淬灭系数和调节性能量耗散的量子产量分别显著上升了101.0%~322.1%和113.7%~319.7%。而对抗性品种冀谷35的地上部分鲜重、叶绿素含量及叶绿素荧光参数均无显著影响。咪唑乙烟酸显著降低了常规谷子品种的过氧化氢酶(CAT)活性,降幅达19.70%~56.58%,增加叶片丙二醛(MDA)含量达16.70%~68.80%,提高抗性谷子品种冀谷35的CAT活性达52.48%,但对其MDA含量无显著影响。抗性品种冀谷35经咪唑乙烟酸处理后乙酰乳酸合成酶(ALS)活性变化较小,而常规品种冀谷38的ALS从药后13 d起,活性较对照开始显著下降。田间试验结果显示:苗期喷施咪唑乙烟酸显著降低了常规谷子品种谷穗的穗长、穗粗、穗重、穗粒重及理论产量;显著增加了抗性谷子品种冀谷35的穗重、穗粒重及理论产量,增幅为7.8%~8.6%。研究表明,冀谷35通过维持体内靶标酶ALS活性稳定,增强对过氧化氢的清除能力,减轻膜脂过氧化,使其对咪唑乙烟酸具有高抗药性。Abstract: To explore the effects of imazethapyr on the physiological characteristics and yield components of imazethapyr-resistant and conventional foxtail millet varieties and the resistance mechanism, an imazethapyr-resistant variety Jigu35 and 7 conventional varieties Jigu38, Jigu41, Jingu21, Jingu59, Changnong44, Longgu39, and Zhonggu9 were used to compare the physiological characteristics and yield components in response to imazethapyr by pot and filed experiments. The results of the pot experiment showed that for conventional varieties, the aboveground fresh weight, the contents of chlorophyll a, chlorophyll b, carotenoid, and total chlorophyll in leaves were significantly decreased after active ingredient 93.5 g (a.i.)/hm2 imazethapyr treatment by 21.60%-72.83%, 45.20%-92.12%, 18.10%-93.36%, 42.58%-84.21%, and 45.73%-92.38%, respectively. The apparent photosynthetic electron transfer rate and maximum photochemical yield of chlorophyll fluorescence parameters decreased by 20.4%-37.0% and 6.9%-24.8%, respectively. The non-photochemical quenching coefficient and the quantum yield of regulatory energy dissipation significantly increased by 101.0%-322.1% and 113.7%-319.7%, respectively, while the imazethapyr-resistant variety Jigu35 were not changed significantly. The catalase (CAT) activity of Jigu35 was significantly increased by 52.48%, while it was decreased by 19.70%-56.58% for conventional foxtail millet varieties. The contents of malondialdehyde (MDA) of conventional varieties were significantly increased by 16.70%-68.80%, but had no significant effect on resistant variety Jigu35. The acetolactate synthase (ALS) activity of the resistant variety Jigu35 was slightly changed after the treatment of imazethapyr. The ALS activity of the conventional variety Jigu38, it was significantly decreased from the 13th day of treatment compared with the control. The field experiment showed that spraying imazethapyr at the seedling stage significantly reduced the ear length, ear diameter, ear weight, ear grain weight, and theoretical yield of conventional varieties. Different from conventional varieties, the ear weight, ear grain weight, and theoretical yield of resistant variety Jigu35 were significantly increased by 7.8%-8.6%. This indicated that the Jigu35 has a strong resistance to imazethapyr by maintaining the stability of ALS activity, increasing CAT activity, enhancing the removal of H2O2, and reducing the membrane lipid peroxidation.
-
图 2 咪唑乙烟酸对抗性及常规品种谷子地上部分鲜重的影响
JG35:冀谷35;JG21:晋谷21;JG59:晋谷59;JG38:冀谷38;JG41:冀谷41;LG39:龙谷39;CN44:长农44;ZG9:中谷9。同一品种间不同小写字母表示经独立样本t检验在α=0.05水平差异显著。
Figure 2. Effects of imazethapyr on aboveground fresh weight of the resistant and the conventional varieties of foxtail millet
JG35: Jigu35; JG21: Jin’gu21; JG59: Jin’gu59; JG38: Jigu38; JG41: Jigu41; LG39: Longgu39; CN44: Changnong44; ZG9: Zhonggu9. Different lowercase letters indicate a significant difference between the treatments for the same variety at α=0. 05 level by independent sample t-test.
图 3 咪唑乙烟酸对抗性及常规品种谷子叶片光合色素含量的影响
JG35:冀谷35;JG21:晋谷21;JG59:晋谷59;JG38:冀谷38;JG41:冀谷41;LG39:龙谷39;CN44:长农44;ZG9:中谷9。同一品种间不同小写字母表示经独立样本t检验在α=0. 05水平差异显著。
Figure 3. Effects of imazethapyr on the contents of photosynthetic pigments in leaves of the resistant and the conventional varieties of foxtail millet
JG35: Jigu35; JG21: Jin’gu21; JG59: Jin’gu59; JG38: Jigu38; JG41: Jigu41; LG39: Longgu39; CN44: Changnong44; ZG9: Zhonggu9. Different lowercase letters indicate a significant difference between the treatments for the same variety at α=0. 05 level by independent sample t-test.
图 4 咪唑乙烟酸对抗性及常规品种谷子叶片抗氧化保护酶活性和丙二醛 (MDA) 含量的影响
JG35:冀谷35;JG21:晋谷21;JG59:晋谷59;JG38:冀谷38;JG41:冀谷41;LG39:龙谷39;CN44:长农44;ZG9:中谷9。同一品种间不同小写字母表示经独立样本t检验在α=0. 05水平差异显著。
Figure 4. Effects of imazethapyr on antioxidant protective enzyme activity and MDA content in the leaves of the resistant and the conventional varieties of foxtail millet
JG35: Jigu35; JG21: Jin’gu21; JG59: Jin’gu59; JG38: Jigu38; JG41: Jigu41; LG39: Longgu39; CN44: Changnong44; ZG9: Zhonggu9. Different lowercase letters indicate a significant difference between the treatments for the same variety at α=0. 05 level by independent sample t-test.
图 5 咪唑乙烟酸对抗性品种冀谷35 (A) 及常规品种冀谷38 (B) 谷子叶片乙酰乳酸合成酶 (ALS) 活性的影响
同一品种间不同小写字母表示经独立样本t检验在α=0. 05水平差异显著。
Figure 5. Effects of imazethapyr on ALS activity in the leaves of the resistant variety JG35 (A) and the conventional variety Jigu38 (B) of foxtail millet
Different lowercase letters indicate a significant difference between the treatments for the same variety at α=0. 05 level by independent sample t-test.
图 6 咪唑乙烟酸对抗性及常规品种谷子生理及产量构成指标影响的主成分分析 (A:物种变量;B:样方变量)
ETR:表观光合电子传递速率;Fv/Fm:最大光化学产量;Y(NPQ):调节性能量耗散的量子产量;Y(NO):非调节性能量耗散的量子产量;NPQ:非光化学淬灭系数;qP:光化学淬灭系数;SOD:超氧化物歧化酶;POD:过氧化物酶;CAT:过氧化氢酶;MDA:丙二醛;Chla:叶绿素a;Chlb:叶绿素b;Car:类胡萝卜素;FW:鲜重;EL:穗长;ED:穗粗;EW:穗重;EGW:穗粒重;1 000-GW:千粒重。JG35:冀谷35;JG21:晋谷21;JG59:晋谷59;JG38:冀谷38;JG41:冀谷41;LG39:龙谷39;CN44:长农44;ZG9:中谷9。
Figure 6. Principal component analysis of the effects of imazethapyr on physiological and yield components of the resistant and the conventional varieties of foxtail millet (A: Species variable; B: Samples variable)
ETR: apparent combined electron transfer rate; Fv/Fm: maximum photochemical yield; Y(NPQ): The quantum yield of regulatory energy dissipation; Y(NO): The quantum yield of non-regulatory energy dissipation; NPQ: Non-photochemical quenching coefficient; qP: Photochemical quenching coefficient; SOD: superoxide dismutase; POD: peroxidase; CAT: catalase; MDA: malondialdehyde; Chla: chlorophyll a; Chlb: chlorophyll b; Car: carotenoid; FW: Fresh weight; EL: Ear length; ED: Ear diameter; EW: Ear weight; EGW: Ear grain weight; 1 000-GW: 1 000-grain weight. JG35: Jigu35; JG21: Jin’gu21; JG59: Jin’gu59; JG38: Jigu38; JG41: Jigu41; LG39: Longgu39; CN44: Changnong44; ZG9: Zhonggu9.
表 1 咪唑乙烟酸对抗性及常规品种谷子叶片叶绿素荧光参数的影响
Table 1. Effects of imazethapyr on chlorophyll fluorescence parameters in leaves of the resistant and the conventional varieties of foxtail millet
品种
Variety表观光合电子传递速率
ETR/(μmol·m−2·s−1)最大光化学产量
Fv/Fm调节性能量耗散的量子产量
Y(NPQ)对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr冀谷35 JG35 54.37±1.22 a 57.13±0.72 a 0.74±0.01 a 0.76±0.00 a 0.06±0.01 a 0.05±0.01 a 晋谷21 JG21 56.20±0.31 a 44.50±0.55 b 0.76±0.00 a 0.70±0.00 b 0.07±0.00 b 0.18±0.02 a 晋谷59 JG59 54.33±0.52 a 34.23±1.75 b 0.75±0.01 a 0.56±0.01 b 0.05±0.00 b 0.14±0.00 a 冀谷38 JG38 52.07±1.87 a 39.93±2.04 b 0.71±0.02 a 0.66±0.01 b 0.08±0.01 b 0.19±0.05 a 冀谷41 JG41 53.37±1.05 a 42.47±0.20 b 0.76±0.00 a 0.70±0.00 b 0.10±0.02 b 0.21±0.00 a 龙谷39 LG39 47.20±1.30 a 36.10±2.21 b 0.66±0.00 a 0.59±0.02 b 0.09±0.01 b 0.19±0.02 a 长农44 CN44 56.93±0.37 a 39.90±1.25 b 0.75±0.00 a 0.70±0.02 b 0.06±0.00 b 0.25±0.02 a 中谷9 ZG9 51.40±0.51 a 36.67±0.67 b 0.70±0.00 a 0.62±0.00 b 0.08±0.01 b 0.21±0.00 a 品种
Variety非调节性能量耗散的量子产量
Y(NO)光化学淬灭系数
qP非光化学淬灭系数
NPQ对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr冀谷35 JG35 0.34±0.01 a 0.32±0.02 a 0.85±0.01 a 0.86±0.02 a 0.17±0.01 a 0.15±0.03 a 晋谷21 JG21 0.31±0.00 a 0.32±0.01 a 0.87±0.01 a 0.83±0.00 b 0.23±0.01 b 0.57±0.07 a 晋谷59 JG59 0.35±0.01 b 0.48±0.01 a 0.84±0.00 a 0.76±0.00 b 0.14±0.01 b 0.29±0.07 a 冀谷38 JG38 0.34±0.02 a 0.36±0.03 a 0.87±0.01 a 0.80±0.02 b 0.24±0.04 b 0.57±0.19 a 冀谷41 JG41 0.31±0.01 a 0.32±0.00 a 0.86±0.00 a 0.80±0.01 b 0.32±0.07 b 0.67±0.01 a 龙谷39 LG39 0.39±0.00 a 0.41±0.00 a 0.86±0.01 a 0.81±0.03 a 0.23±0.04 b 0.46±0.03 a 长农44 CN44 0.31±0.00 a 0.31±0.00 a 0.89±0.00 a 0.80±0.01 b 0.19±0.01 b 0.81±0.08 a 中谷9 ZG9 0.35±0.01 b 0.39±0.00 a 0.87±0.00 a 0.80±0.01 b 0.24±0.04 b 0.54±0.01 a 注:表中数据为平均值±标准误。同一品种间不同小写字母表示经独立样本t检验在α=0.05水平差异显著。Note: Data are mean ± SE. Different lowercase letters indicate that the difference is significant between the treatments for the same variety at the level of α=0.05 by the independent sample t-test. 表 2 咪唑乙烟酸对抗性及常规品种谷子产量构成的影响
Table 2. Effects of imazethapyr on yield composition of the resistant and the conventional varieties of foxtail millet
品种
Variety穗长
Ear length/cm穗粗
Ear diameter/mm穗重
Ear weight/g对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr冀谷35 JG35 19.63±0.26 a 18.97±0.12 a 26.72±0.34 b 28.55±0.20 a 18.63±0.45 b 20.24±0.32 a 晋谷21 JG21 27.93±0.73 a 12.20±0.25 b 31.43±0.59 a 15.70±0.25 b 36.25±1.01 a 3.66±0.14 b 晋谷59 JG59 21.03±0.46 a 12.60±0.31 b 29.46±0.12 a 20.16±0.59 b 31.97±0.78 a 6.89±0.74 b 冀谷38 JG38 24.17±0.34 a 13.63±0.26 b 31.31±0.87 a 18.98±0.31 b 22.24±0.34 a 5.63±0.41 b 冀谷41 JG41 20.50±0.50 a 14.67±0.27 b 18.98±0.31 b 16.53±0.26 b 24.11±0.14 a 7.82±0.58 b 龙谷39 LG39 23.77±0.38 a 11.93±0.35 b 33.72±0.30 a 14.86±0.76 b 37.80±1.70 a 4.97±0.17 b 长农44 CN44 22.57±0.67 a 14.40±0.40 b 28.55±0.68 a 19.93±0.18 b 26.86±1.03 a 9.45±0.67 b 中谷9 ZG9 25.37±0.57 a 13.67±0.50 b 27.36±0.20 a 18.61±0.19 b 24.44±0.79 a 4.07±0.36 b 品种
Variety穗粒重
Ear grain weight/g千粒重
1000-grain weight/g理论产量
Theoretical yield/(kg/hm2)对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr对照
CK咪唑乙烟酸
imazethapyr冀谷35 JG35 15.13±0.06 b 16.31±0.19 a 2.58±0.09 a 2.32±0.06 a 3176.60±12.62 b 3425.10±39.31 a 晋谷21 JG21 28.49±0.68 a 2.66±0.04 b 3.04±0.01 a 2.63±0.10 b 5128.20±122.62 a 478.20±7.94 b 晋谷59 JG59 26.88±0.82 a 5.37±0.77 b 2.43±0.12 a 2.50±0.05 a 4837.80±147.10 a 967.20±139.06 b 冀谷38 JG38 14.52±1.20 a 3.82±0.34 b 2.43±0.17 a 2.57±0.07 a 3049.90±251.81 a 801.50±71.07 b 冀谷41 JG41 18.68±0.65 a 6.08±0.43 b 2.82±0.05 a 2.76±0.05 a 3361.80±117.46 a 1093.80±78.13 b 龙谷39 LG39 28.94±0.93 a 3.85±0.18 b 2.94±0.05 a 2.82±0.04 a 5209.80±166.96 a 692.40±32.36 b 长农44 CN44 21.25±0.87 a 7.77±0.65 b 2.87±0.01 a 2.74±0.10 a 3824.40±157.21 a 1398.00±117.69 b 中谷9 ZG9 19.78±0.73 a 2.66±0.23 b 3.07±0.06 a 2.13±0.09 b 3560.40±130.63 a 478.80±41.52 b 注:表中数据为平均值±标准误差。同一品种间不同小写字母表示经独立样本t检验在α=0.05水平差异显著。Note: Data are mean ± SE. Different lowercase letters indicate that the difference is significant between the treatments for the same variety at the level of α=0.05 by the independent sample t-test. -
[1] ZHANG R, LIU J, CHAI Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5): 480-485. doi: 10.1038/s41477-019-0405-0 [2] 侯珍, 丛聪, 郭文磊, 等. 不同小麦品种对双氟磺草胺的耐药性差异及机理[J]. 农药学学报, 2012, 14(3): 260-266. doi: 10.3969/j.issn.1008-7303.2012.03.04HOU Z, CONG C, GUO W L, et al. Difference and mechanism of tolerance of various wheat varieties to florasulam[J]. Chin J Pestic Sci, 2012, 14(3): 260-266. doi: 10.3969/j.issn.1008-7303.2012.03.04 [3] 谢娜, 毕亚玲, 李凌绪, 等. 不同玉米品种对氯吡嘧磺隆的耐药性差异及其机制[J]. 植物保护学报, 2012, 39(6): 567-572.XIE N, BI Y L, LI L X, et al. Difference of tolerance and mechanism of various maize varieties to halosulfuron-methyl[J]. Acta Phytophylacica Sinica, 2012, 39(6): 567-572. [4] DOMÍNGUEZ-MENDEZ R, ALCÁNTARA-DE LA CRUZ R, ROJANO-DELGADO A M, et al. Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat[J]. Sci Rep, 2017, 7: 14839. doi: 10.1038/s41598-017-13874-3 [5] WANG J, ZHONG X M, LV X L, et al. Photosynthesis and physiology responses of paired near-isogenic lines in waxy maize (Zea mays L.) to nicosulfuron[J]. Photosynthetica, 2018, 56(4): 1059-1068. doi: 10.1007/s11099-018-0816-6 [6] 刘欢. 燕麦田高效除草剂的筛选及其对燕麦和土壤安全性的影响研究[D]. 兰州: 甘肃农业大学, 2014.LIU H. Screening of efficient herbicides in oat field and its effects on oat and soil safety[D]. Lanzhou: Gansu Agricultural University, 2014. [7] WANG J, ZHONG X, ZHU K, et al. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.)[J]. Environ Sci Pollut Res Int, 2018, 25(19): 19012-19027. doi: 10.1007/s11356-018-2105-0 [8] 胡海军, 史振声, 吕香玲, 等. 烟嘧磺隆对糯玉米光合特性和叶绿素荧光参数的影响[J]. 玉米科学, 2014, 22(3): 77-80.HU H J, SHI Z S, LÜ X L, et al. Effect of herbicide nicosulfuron on photosynthesis traits and chlorophyll fluorescence parameters of wax maize[J]. J Maize Sci, 2014, 22(3): 77-80. [9] 鞠国栋. 谷田除草剂的应用现状及展望[J]. 河北农业科学, 2018, 22(5): 4-7.JU G D. Application and forecast of herbicides in millet field[J]. J Hebei Agric Sci, 2018, 22(5): 4-7. [10] 陈玉洁, 束长龙, 刘新刚, 等. 咪唑乙烟酸降解菌的分离、鉴定及降解特性研究[J]. 农药学学报, 2011, 13(4): 387-393. doi: 10.3969/j.issn.1008-7303.2011.04.10CHEN Y J, SHU C L, LIU X G, et al. Isolation, identification and characterization of a Shewanella hafniensis strain capable of degrading imazethapyr[J]. Chin J Pestic Sci, 2011, 13(4): 387-393. doi: 10.3969/j.issn.1008-7303.2011.04.10 [11] DUGGLEBY R G, MCCOURT J A, GUDDAT L W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase[J]. Plant Physiol Biochem, 2008, 46(3): 309-324. doi: 10.1016/j.plaphy.2007.12.004 [12] 张婷, 师志刚, 王根平, 等. 咪唑乙烟酸对冀谷33生长发育的影响及对后茬作物的安全性[J]. 中国农业科学, 2015, 48(24): 4916-4923. doi: 10.3864/j.issn.0578-1752.2015.24.006ZHANG T, SHI Z G, WANG G P, et al. Effect of imazethapyr on millet Jigu 33 growth and its safety on succeeding crops[J]. Sci Agric Sin, 2015, 48(24): 4916-4923. doi: 10.3864/j.issn.0578-1752.2015.24.006 [13] 李新安, 李广领, 谢兰芬, 等. 咪唑乙烟酸残留对后茬作物油菜生理指标的影响[J]. 农药, 2015, 54(9): 671-673.LI X A, LI G L, XIE L F, et al. Effects of imazethapyr residue on physiological indices of succeeding crop of rapeseed[J]. Agrochemicals, 2015, 54(9): 671-673. [14] 丁伟, 曹丽娟, 程茁. 咪唑乙烟酸对大豆根瘤固氮酶和硝酸还原酶活性的影响[J]. 中国农业科学, 2010, 43(20): 4192-4197. doi: 10.3864/j.issn.0578-1752.2010.20.009DING W, CAO L J, CHENG Z. Effect of imazethapyr on nodule nitrogenase and nitrate reductase activity in soybean[J]. Sci Agric Sin, 2010, 43(20): 4192-4197. doi: 10.3864/j.issn.0578-1752.2010.20.009 [15] 范方军, 王芳权, 李文奇, 等. 抗咪草烟水稻资源的筛选[J]. 中国稻米, 2018, 24(6): 108-109. doi: 10.3969/j.issn.1006-8082.2018.06.027FAN F J, WANG F Q, LI W Q, et al. Screening of imazethapyr-resistant rice resources[J]. China Rice, 2018, 24(6): 108-109. doi: 10.3969/j.issn.1006-8082.2018.06.027 [16] 毕俊国, 谭金松, 刘毅, 等. 抗咪唑啉酮类除草剂水稻种质的筛选鉴定[J]. 植物遗传资源学报, 2020, 21(4): 804-808.BI J G, TAN J S, LIU Y, et al. Screening and identification of rice germplasm resistant to imidazolinone herbicide[J]. J Plant Genet Resour, 2020, 21(4): 804-808. [17] WANG J, LI S, LAN L, et al. De novo genome assembly of a foxtail millet cultivar huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance[J]. BMC Plant Biol, 2021, 21(1): 271. doi: 10.1186/s12870-021-03003-8 [18] 刘艳丽, 张立新, 田伯红. 抗咪唑乙烟酸夏谷新品种沧谷8号的选育及丰产栽培技术[J]. 作物研究, 2021, 35(2): 180-182.LIU Y L, ZHANG L X, TIAN B H. Breeding and high yield cultivation techniques of a new imidazole resistant summer millet variety Canggu8[J]. Crop Res, 2021, 35(2): 180-182. [19] 张永虎, 温蕊, 张丽平. 4种除草剂对谷子田间杂草防除效果分析[J]. 北方农业学报, 2017, 45(6): 79-84. doi: 10.3969/j.issn.2096-1197.2017.06.15ZHANG Y H, WEN R, ZHANG L P. Effects of four herbicides on weed control efficiency of millet[J]. J North Agric, 2017, 45(6): 79-84. doi: 10.3969/j.issn.2096-1197.2017.06.15 [20] 张昌朋. 除草剂咪唑乙烟酸对土壤微生物多样性影响及环境行为研究[D]. 北京: 中国农业科学院, 2010.ZHANG C P. Effects of herbicide imazethapyr on soil microbial diversity and environmental behavior[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. [21] 邹琦. 植物生理生化实验指导[M]. 北京: 中国农业出版社, 2000: 36-39.ZOU Q, Plant physiology biochemistry experiment instruction[M]. Beijing: China Agriculture Press, 2000: 36-39. [22] 杨慧杰, 原向阳, 郭平毅, 等. 油菜素内酯对阔世玛胁迫下谷子叶片光合荧光特性及糖代谢的影响[J]. 中国农业科学, 2017, 50(13): 2508-2518. doi: 10.3864/j.issn.0578-1752.2017.13.010YANG H J, YUAN X Y, GUO P Y, et al. Effects of brassinolide on photosynthesis, chlorophyll fluorescence characteristics and carbohydrates metabolism in leaves of foxtail millet(Setaria italica) under Sigma broad stress[J]. Sci Agric Sin, 2017, 50(13): 2508-2518. doi: 10.3864/j.issn.0578-1752.2017.13.010 [23] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Anal Biochem, 1971, 44(1): 276-287. doi: 10.1016/0003-2697(71)90370-8 [24] CASTILLO F J, PENEL C, GREPPIN H. Peroxidase release induced by ozone in Sedum album leaves: involvement of Ca[J]. Plant Physiol, 1984, 74(4): 846-851. doi: 10.1104/pp.74.4.846 [25] BERGMEYER H U. Methods of enzymatic analysis[M]. Weinheim, Germany: Verlag Chemie Press, 1983: 673-680. [26] 马英桃. 桃过敏原蛋白NSLTP的基因多样性和双单抗夹心ELISA测定方法[D]. 杭州: 浙江大学, 2014.MA Y T. Genetic diversity of peach allergen non-specific lipid transfer protein and mono-clonal antibodies based sandwich ELISA measurement[D]. Hangzhou: Zhejiang University, 2014. [27] HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968, 125(1): 189-198. doi: 10.1016/0003-9861(68)90654-1 [28] 赵颖楠, 字雪靖, 王婉, 等. 不同除草剂的田间杂草防效及对糜子生长发育的影响[J]. 应用生态学报, 2020, 31(7): 2415-2421.ZHAO Y N, ZI X J, WANG W, et al. Control effects of different herbicides on weeds as well as their effects on growth and development of broomcorn millet[J]. Chin J Appl Ecol, 2020, 31(7): 2415-2421. [29] YUAN X Y, GUO P Y, QI X, et al. Safety of herbicide Sigma broad on Radix Isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses[J]. Pestic Biochem Physiol, 2013, 106(1-2): 45-50. doi: 10.1016/j.pestbp.2013.04.002 [30] KRAUSE G H, WEIS E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42(1): 313-349. doi: 10.1146/annurev.pp.42.060191.001525 [31] JIMENEZ F, ROJANO-DELGADO A M, FERNÁNDEZ P T, et al. Physiological, biochemical and molecular characterization of an induced mutation conferring imidazolinone resistance in wheat[J]. Physiol Plant, 2016, 158(1): 2-10. doi: 10.1111/ppl.12445 [32] JEFFERIES M L, WILLENBORG C J, TAR'AN B. Response of chickpea cultivars to imidazolinone herbicide applied at different growth stages[J]. Weed Technol, 2016, 30(3): 664-676. doi: 10.1614/WT-D-15-00156.1 [33] REY-CABALLERO J, MENÉNDEZ J, OSUNA M D, et al. Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas[J]. Pestic Biochem Physiol, 2017, 138: 57-65. doi: 10.1016/j.pestbp.2017.03.001 [34] 徐倩玉, 兰玉, 刘嘉欣, 等. 乙酰羟酸合酶抑制剂类除草剂的植物抗性机制[J]. 作物学报, 2019, 45(9): 1295-1302.XU Q Y, LAN Y, LIU J X, et al. Mechanisms underlying plant resistance to the acetohydroxyacid synthase-inhibiting herbicides[J]. Acta Agron Sin, 2019, 45(9): 1295-1302. [35] 李亚东, 董雪, 贺双, 等. 啶磺草胺对新疆主要小麦品种乙酰乳酸合成酶活性的影响[J]. 西北农业学报, 2017, 26(4): 560-567. doi: 10.7606/j.issn.1004-1389.2017.04.010LI Y D, DONG X, HE S, et al. Effects of pyroxsulam on acetolactate aynthetase activity of main wheat varieties in Xinjiang[J]. Acta Agric Boreali Occidentalis Sin, 2017, 26(4): 560-567. doi: 10.7606/j.issn.1004-1389.2017.04.010 [36] 王健. 糯玉米抗烟嘧磺隆生理机制研究[D]. 沈阳: 沈阳农业大学, 2018.WANG J. Study on the physiological mechanism of resistance to nicosulfuron in waxy maize[D]. Shenyang: Shenyang Agricultural University, 2018. [37] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930. doi: 10.1016/j.plaphy.2010.08.016 [38] 徐田军, 吕天放, 赵久然, 等. 除草剂对不同玉米品种生长发育和产量的影响[J]. 中国生态农业学报, 2018, 26(8): 1159-1169.XU T J, LÜ T F, ZHAO J R, et al. Effects of herbicides on growth, development and yield of different maize varieties[J]. Chin J Eco Agric, 2018, 26(8): 1159-1169. [39] GUO M J, WANG Y G, YUAN X Y, et al. Responses of the antioxidant system to fluroxypyr in foxtail millet (Setaria italica L.) at the seedling stage[J]. J Integr Agric, 2018, 17(3): 554-565. doi: 10.1016/S2095-3119(17)61808-2 -