Sensitivity of Monilinia fructicola to boscalid and cross-resistance to four succinate dehydrogenase inhibitors
-
摘要: 采用菌丝生长速率法测定了樱桃褐腐病菌Monilinia fructicola对啶酰菌胺的敏感性,同时研究了不同敏感性菌株的生物学性状,探究了琥珀酸脱氢酶B亚基的氨基酸突变与其对啶酰菌胺产生抗性的相关性,并分析了樱桃褐腐病菌对啶酰菌胺与其他3种琥珀酸脱氢酶抑制剂 (SDHIs)氯苯醚酰胺、氟唑菌苯胺和氟吡菌酰胺之间的交互抗性。结果表明:啶酰菌胺对樱桃褐腐病菌具有较好的抑制活性和治疗作用,但樱桃褐腐病菌已对其产生了一定的抗性,且抗性菌株具有较高的适合度。褐腐病菌SDHB亚基上的氨基酸点突变与其对啶酰菌胺的抗性之间无明显联系。交互抗药性分析表明,啶酰菌胺与氯苯醚酰胺、氟唑菌苯胺和氟吡菌酰胺之间均存在交互抗性。为了延缓抗药性的发生和发展,在樱桃褐腐病防治过程中啶酰菌胺应与SDHIs之外的其他类型杀菌剂进行合理的混用或轮用。Abstract: The sensitivity of Monilinia fructicola to boscalid was determined by the mycelial growth rate method. Meanwhile, the study investigated the biological characteristics of isolates with different sensitivities, the correlation between the amino acid mutations of SDHB protein with resistance to boscalid, and the cross-resistance of M. fructicola between boscalid and other 3 tested succinate dehydrogenase inhibitors (SDHIs), Y12196, penflufen and fluopyram. The results showed that boscalid had a good inhibitory activity and therapeutic effect against M. fructicola. However, M. fructicola has developed a certain degree of resistance, and the resistant isolates have comparable fitness with the sensitive ones. The sequence analysis of SDHB gene showed that the amino acid point mutations of M. fructicola SDHB subunits were not significantly correlated with the resistance to boscalid. The cross-resistance studies indicated that there was cross-resistance between boscalid and the other three SDHIs, Y12196, penflufen, and fluopyram. In order to retard the occurrence and exacerbation of resistance, the rational mixes or rotations of boscalid with other kinds of fungicides rather than SDHIs are recommended during the prevention and control of cherry brown rot disease.
-
Key words:
- cherry brown rot /
- boscalid /
- sensitivity /
- succinate dehydrogenase inhibitors /
- cross-resistance
-
表 1 用于扩增美澳型核果链核盘菌SDHB基因的引物
Table 1. Primers used for the amplification of SDHB in M. fructicola
编号
Serial number序列
Sequence (5′-3′)长度
Length/bp目的基因
Target geneCQ110 ATCTCTCCGCACCACCAG 884 SDHB CQ111 CTTGATCTCCGCAATCGCC 表 2 啶酰菌胺对樱桃褐腐病的防治效果
Table 2. The control effects of boscalid on cherry brown rot
菌株
Isolate啶酰菌胺质量浓度
Mass concentration of boscalid/(µg/mL)防治效果
Control efficacy/%Mf19-3-8S 10 0.01±7.17 d 50 76.75±8.70 b 100 100.00±0.00 a Mf19-3-1LR 10 −1.09±4.61 d 50 100.00±0.00 a 100 100.00±0.00 a Mf19-1-7LR 10 10.64±5.21 d 50 88.30±10.53 ab 100 100.00±0.00 a Mf19-5-10MR 10 6.74±1.59 d 50 33.71±5.73 c 100 88.76±9.67 ab 注:S代表啶酰菌胺敏感菌株,LR代表啶酰菌胺低抗菌株,MR代表啶酰菌胺中抗菌株。*同列数据后不同字母表示该列所有处理的防治效果在P=0.05水平显著性差异。“±” 代表3次重复的防治效果之间的标准误差。Note: The superscript letter "S" adjacent to the isolate number represents boscalid-sensitivity. "LR" represents boscalid low-resistance. "MR" represents boscalid medium-resistance. *The values in a column followed by different lowercase letters indicate the control efficacy of all treatments is significantly different at the P =0.05 level. "±" represents the standard error between three repetitions of control efficacy. 表 3 对啶酰菌胺不同敏感性的樱桃褐腐病菌的生物学特性
Table 3. Biological characteristics of M. fructicola with different sensitivities to boscalid
菌株
Isolate平均生长速率
Average growth rate/(mm/d)产孢量
Sporulation quantity/
( × 106 个/mL)孢子萌发率
Spore germination rate/%0.5 h 1.5 h 2.5 h Mf19-4-7S 10.27±0.17 a 1.05±0.86 cde 23.44±4.94 b 52.28±1.46 bc 86.81±2.93 ab Mf19-3-7S 9.71±0.67 c 0.75±0.55 de 11.81±0.95 b 32.90±5.00 c 62.91±8.28 c Mf19-3-8S 10.25±0.29 ab 0.40±0.51 e 74.55±12.77 a 96.67±5.60 a 100.00±3.12 a Mf19-1-7LR 9.96±0.88 bc 2.50±1.26 a 17.83±5.05 b 60.43±4.60 b 90.28±1.12 ab Mf19-3-1LR 10.27±0.17 a 2.05±1.03 abc 6.86±4.73 b 42.18±3.33 bc 80.46±0.00 bc Mf19-4-6MR 9.97±0.53 bc 0.07±0.17 f — — — Mf19-5-9MR 10.21±0.33 ab 2.05±0.37 ab 13.85±3.03 b 62.25±2.64 b 83.80±1.96 ab Mf19-5-10MR 10.21±0.44 ab 1.55±0.80 bcd 0.95±1.17 b 36.22±4.90 c 80.66±3.65 bc 注:S代表啶酰菌胺敏感菌株,LR代表啶酰菌胺低抗菌株,MR代表啶酰菌胺中抗菌株。*同列数据后不同字母表示在P=0.05水平显著性差异。“±” 代表3次重复的平均生长速率、产孢量及孢子萌发率的标准误。Note: The superscript letter "S" adjacent to the isolate number represents boscalid-sensitivity. "LR" represents boscalid low-resistance. "MR" represents boscalid medium-resistance. *Values in a column followed by different lowercase letters are significantly different at P = 0.05 level. "±" represents the standard error among three repetitions of average growth rates, sporulation quantities, and spore germination rates. 表 4 樱桃褐腐病菌对啶酰菌胺的EC50及氨基酸突变位点
Table 4. EC50 of boscalid and amino acid mutation sites in M. fructicola
菌株
IsolateEC50/(µg/mL) 氨基酸突变
Mutation of amino acidMf19-3-7S 1.05 — Mf19-3-8S 1.30 I117V,R237P Mf19-3-10S 1.34 — Mf19-4-7S 2.65 A133V,R237P Mf19-4-10S 1.02 — Mf19-1-7LR 10.17 — Mf19-3-1LR 5.68 A133V,R237P Mf19-4-6MR 25.14 — Mf19-5-9MR 17.761 A133V,R237P Mf19-5-10MR 30.59 A133V,R237P 注:S代表啶酰菌胺敏感菌株,LR代表啶酰菌胺低抗菌株,MR代表啶酰菌胺中抗菌株。“—” 表示该菌株中未发生氨基酸突变。Note: The superscript letter "S" adjacent to the isolate number represents boscalid-sensitivity. "LR" represents boscalid low-resistance. "MR" represents boscalid medium-resistance. "—" means that no amino acid point mutations had occurred in this strain. -
[1] MA Z, YOSHIMURA M A, MICHAILIDES T J. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California[J]. Appl Environ Microbiol, 2003, 69(12): 7145-7152. doi: 10.1128/AEM.69.12.7145-7152.2003 [2] LUO C X, COX K D, AMIRI A, et al. Occurrence and detection of the DMI resistance-associated genetic element ‘Mona’ in Monilinia fructicola[J]. Plant Dis, 2008, 92(7): 1099-1103. doi: 10.1094/PDIS-92-7-1099 [3] 陈淑宁. 桃褐腐病菌和炭疽病菌对DMI杀菌剂的抗性研究[D]. 武汉: 华中农业大学, 2017.CHEN S N. Study on the resistance to DMI fungicides in Monilinia fructicola and Colletotrichum spp. from peach[D]. Wuhan: Huazhong Agricultural University, 2017. [4] 钱晓龙. 桃褐腐病菌Cyt b基因intron3与G143A突变的相关性研究[D]. 武汉: 华中农业大学, 2014.QIAN X L. Correlation study about CYT B gene intron3 and the G143A mutation in Monilinia fructicola[D]. Wuhan: Huazhong Agricultural University, 2014. [5] MA Z H, YOSHIMURA M A, HOLTZ B A, et al. Characterization and PCR-based detection of benzimidazole-resistant isolates of Monilinia laxa in California[J]. Pest Manag Sci, 2005, 61(5): 449-457. doi: 10.1002/ps.982 [6] 张艳婷, 仇智灵, 李阿根, 等. 浙江省樱桃褐腐病病原菌种类及其对常见药剂的抗性检测[J]. 果树学报, 2020, 37(9): 1394-1403.ZHANG Y T, QIU Z L, LI A G. Species of pathogens causing cherry brown rot and their resistance to common fungicides in Zhejiang Province[J]. J Fruit Sci, 2020, 37(9): 1394-1403. [7] CHEN S N, SHANG Y, WANG Y, et al. Sensitivity of Monilinia fructicola from peach farms in China to four fungicides and characterization of isolates resistant to carbendazim and azoxystrobin[J]. Plant Dis, 2014, 98(11): 1555-1560. doi: 10.1094/PDIS-11-13-1145-RE [8] LUO Y, REYES H, MORGAN D, et al. Strategies to reduce risk of benzimidazole resistance in Monilinia fructicola populations by using real-time PCR[J]. Phytopathology, 2008, 98(6): S95-S95. [9] 罗朝喜. 果树褐腐病的研究现状及其展望[J]. 植物病理学报, 2017, 47(2): 145-153.LUO C X. Advances and prospects on researches of brown rot disease on fruits[J]. Acta Phytopathol Sin, 2017, 47(2): 145-153. [10] 詹家绥, 吴娥娇, 刘西莉, 等. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007ZHAN J S, WU E J, LIU X L, et al. Molecular basis of resistance of phytopathogenic fungi to several site-specific fungicides[J]. Sci Agric Sin, 2014, 47(17): 3392-3404. doi: 10.3864/j.issn.0578-1752.2014.17.007 [11] 樊锦艳, 朱小琼, 国立耘, 等. 褐腐病菌三种分子鉴定方法的比较[J]. 植物保护学报, 2007, 34(3): 289-295. doi: 10.3321/j.issn:0577-7518.2007.03.013FAN J Y, ZHU X Q, GUO L Y, et al. Comparison of three molecular identification methods for Monilinia species on stone and pome fruits[J]. Acta Phytophylacica Sin, 2007, 34(3): 289-295. doi: 10.3321/j.issn:0577-7518.2007.03.013 [12] AVENOT H, SELLAM A, MICHAILIDES T. Characterization of mutations in the membrane-anchored subunits AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid[J]. Plant Pathol, 2009, 58(6): 1134-1143. doi: 10.1111/j.1365-3059.2009.02154.x [13] ISHII H, FOUNTAINE J, MIYAMOTO T, et al. Occurrence of a mutation in the succinate dehydrogenase gene found in some isolates of cucumber Corynespora leaf spot fungus resistant to boscalid[J]. Jpn J Phytopathol, 2008, 74(7): 38-39. [14] STAMMLER G, BRIX H D, GLÄTTLI A, et al. Biological properties of the carboxamide boscalid including recent studies on its mode of action[C]. Proceedings XVI International Plant Protection Congress Glasgow, 2007, 40-45. [15] 周洁. 桃褐腐病菌对琥珀酸脱氢酶抑制剂抗性分子机理的研究[D]. 武汉: 华中农业大学, 2014.ZHOU J. Molecular mechanism of resistance to succinate dehydrogenase inhibitors in Monilinia fructicola[D]. Wuhan: Huazhong Agricultural University, 2014. [16] 纪兆林, 谈彬, 朱薇, 等. 我国不同产区桃褐腐病病原鉴定与分析[J]. 微生物学通报, 2019, 46(4): 869-878.JI Z L, TAN B, ZHU W, et al. Identification and analysis of the peach brown rot pathogens from different peach-growing areas in China[J]. Microbiol China, 2019, 46(4): 869-878. [17] 徐汉虹. 植物化学保护学[M]. 北京: 中国农业出版社, 2007: 340.XU H H. Plant chemical protection[M]. Beijing: China Agriculture Press, 2007: 340. [18] 宋化稳, 徐娜娜, 高德良, 等. 16种杀菌剂对桃褐腐病菌菌丝生长和孢子萌发的抑制作用比较[J]. 现代农药, 2020, 19(6): 49-54. doi: 10.3969/j.issn.1671-5284.2020.06.007SONG H W, XU N N, GAO D L, et al. Comparison of inhibitory effects of sixteen fungicides on mycelial growth and spore germination of Monilinia fructicola[J]. Mod Agrochem, 2020, 19(6): 49-54. doi: 10.3969/j.issn.1671-5284.2020.06.007 [19] LU X H, ZHU S S, BI Y, et al. Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb[J]. Phytopathology, 2010, 100(11): 1162-1168. doi: 10.1094/PHYTO-12-09-0351 [20] 周俞辛, 于俊杰, 俞咪娜, 等. 水稻恶苗病菌田间抗咪鲜胺菌株的适合度及其交互抗性[J]. 农药学学报, 2016, 18(6): 703-709.ZHOU Y X, YU J J, YU M N, et al. Fitness and cross-resistance of Fusarium fujikuroi strains resistant to prochloraz from field[J]. Chin J Pestic Sci, 2016, 18(6): 703-709. [21] 阎昱韬, 孙炳学, 陈长军, 等. 啶酰菌胺不同抗性类型多主棒孢的生物学特性[J]. 农药学学报, 2020, 22(06): 973-983.YAN Y T, SUN B X, CHEN C J, et al. Biological characteristics of Corynespora cassiicola with different types of resistance to boscalid[J]. Chin J Pestic Sci, 2020, 22(06): 973-983. [22] 贾爽爽. 我国葡萄灰霉菌对主要杀菌剂的抗药突变型分布与多药抗性机制研究[D]. 北京: 中国农业科学院, 2020.JIA S S. Study on the distribution of resistant mutation to main fungicides and the mechanism of multi-drug resistance of Botrytis cinerea in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. [23] 魏佳爽, 袁善奎, 向冰峰, 等. 番茄灰霉病菌(Botrytis cinerea)对3种杀菌剂的抗性监测及交互抗药性研究[J]. 现代农药, 2021, 20(1): 46-49. doi: 10.3969/j.issn.1671-5284.2021.01.010WEI J S, YUAN S K, XIANG B F, et al. Resistance monitoring and cross-resistance study of Botrytis cinerea to three fungicides[J]. Mod Agrochem, 2021, 20(1): 46-49. doi: 10.3969/j.issn.1671-5284.2021.01.010 [24] 汪金莲, 邱业先, 张宗华, 等. 培养条件对桃褐腐病菌生长和产孢能力的影响[J]. 江西农业大学学报, 2000, 22(4): 516-518. doi: 10.3969/j.issn.1000-2286.2000.04.011WANG J L, QIU Y X, ZHANG Z H, et al. Effects of cultural conditions on growth and sporulation of Monilinia laxa (Aderh Ruhl. ) honey[J]. Acta Agric Univ Jiangxiensis, 2000, 22(4): 516-518. doi: 10.3969/j.issn.1000-2286.2000.04.011 [25] VELOUKAS T, KALOGEROPOULOU P, MARKOGLOU A, et al. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdh B and the cyt b G143A mutations[J]. Phytopathology, 2014, 104(4): 347-356. doi: 10.1094/PHYTO-07-13-0208-R [26] CHEN F P, FAN J R, ZHOU T, et al. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants[J]. Plant Dis, 2012, 96(3): 416-422. doi: 10.1094/PDIS-06-11-0495 [27] 雷飞斌, 汪汉成, 代园凤, 等. 贵州省烟草赤星病菌对啶酰菌胺的敏感性基线[J]. 农药学学报, 2021, 23(4): 812-816.LEI F B, WANG H C, DAI Y F, et al. Sensitivity baseline to boscalid of Alternaria alternata causing tobacco brown spot in Guizhou Province[J]. Chin J Pestic Sci, 2021, 23(4): 812-816. [28] AVENOT H F, SELLAM A, KARAOGLANIDIS G, et al. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with Boscalid resistance in Alternaria alternata from California pistachio[J]. Phytopathology, 2008, 98(6): 736-742. doi: 10.1094/PHYTO-98-6-0736 [29] 华乃震. SDHI类杀菌剂啶酰菌胺[J]. 世界农药, 2018, 40(5): 9-15.HUA N Z. A review of SDHI fungicide dinotrimide[J]. World Pestic, 2018, 40(5): 9-15. [30] 赵建江, 王文桥, 马志强等. 啶酰菌胺与吡唑醚菌酯混配对灰葡萄孢的增效作用[J]. 农药, 2016, 55(3): 211-213.ZHAO J J, WANG W Q, MA Z Q, et al. Synergistic interaction of mixtures of boscalid with pyraclostrobin against Botrytis cinerea[J]. Agrochemicals, 2016, 55(3): 211-213. [31] 赵建江, 王文桥, 马志强等. 啶酰菌胺与吡唑醚菌酯混配对番茄叶霉病菌的联合毒力[J]. 北方园艺, 2016(19): 135-137.ZHAO J J, WANG W Q, MA Z Q, et al. Common toxicity of boscalid and pyraclostrobin against Fulvia fulva[J]. North Hortic, 2016(19): 135-137. [32] 牛慧慧. 啶酰菌胺与烯肟菌酯复配对灰葡萄孢毒力增效作用及机理初探[D]. 保定: 河北农业大学, 2019.NIU H H. Preliminary study on synergistic activity and mechanisms of mixtures of boscalid and enestroburin against Botrytis cinerea[D]. Baoding: Hebei Agricultural University, 2019. -