[1] |
FURTH D G. Recent advances in the knowledge of Mexican Alticinae (Coleoptera, Chrysomelidae)[J]. Zookeys, 2017(720): 23-46.
|
[2] |
翟宗昭, 葛斯琴, 杨星科. 跳甲的食性及食性分化 [J]. 昆虫学报, 2005, 48(3): 407-417.ZHAI Z Z, GE S Q, YANG X K. Feeding habits and host plant differentiation of flea beetles [J]. Acta Entomol Sin, 2005, 48(3): 407-417.
|
[3] |
WEI J, SEGRAVES K A, LI W Z, et al. Gut bacterial communities and their contribution to performance of specialist Altica flea beetles[J]. Microb Ecol, 2020, 80(4): 946-959. doi: 10.1007/s00248-020-01590-x
|
[4] |
FURTH D G. Diversity of Alticinae in oaxaca, Mexico: A preliminary study (Coleoptera, Chrysomelidae)[J]. Zookeys, 2013(332): 1-32.
|
[5] |
MASON J, ALFORD A M, KUHAR T P. Flea beetle (Coleoptera: Chrysomelidae) populations, effects of feeding injury, and efficacy of insecticide treatments on eggplant and cabbage in southwest Virginia[J]. J Econ Entomol, 2020, 113(2): 887-895. doi: 10.1093/jee/toz355
|
[6] |
ANOOJ S S, RAGHAVENDRA K V, SHASHANK P R, et al. An emerging pest of radish, striped flea beetle Phyllotreta striolata (Fabricius), from Northern India: incidence, diagnosis and molecular analysis[J]. Phytoparasitica, 2020, 48(5): 743-753. doi: 10.1007/s12600-020-00825-4
|
[7] |
BURRACK H J, REEVES R B. Tobacco flea beetle susceptibility to foliar insecticides, 2010[J]. Arthropod Manage Tests, 2011, 36(L11): 1.
|
[8] |
BRIAR S S, SHRESTHA G, SHARMA A, et al. Effect of nitrogen fertilization on flea beetle (Phyllotreta cruciferae) and cabbage seedpod weevil (Ceutorhynchus obstrictus) injury and crop yield in dry land canola[J]. Phytoparasitica, 2019, 47(5): 637-645. doi: 10.1007/s12600-019-00762-x
|
[9] |
KUHAR T P, STIVERS-YOUNG L J, HOFFMANN M P, et al. Control of corn flea beetle and Stewart's wilt in sweet corn with imidacloprid and thiamethoxam seed treatments[J]. Crop Prot, 2002, 21(1): 25-31. doi: 10.1016/S0261-2194(01)00056-4
|
[10] |
周利琳, 司升云, 王攀, 等. 武汉百合科蔬菜新害虫: 葱黄寡毛跳甲[J]. 长江蔬菜, 2020(21): 53-54.ZHOU L L, SI S Y, WANG P, et al. New pests of Liliaceae vegetables in Wuhan: Luperomorpha suturalis Chen[J]. Changjiang Veg, 2020(21): 53-54.
|
[11] |
张静, 陈利标, 闫超, 等. 2%噻虫胺·氟氯氰菊酯颗粒剂对黄曲条跳甲的防治效果[J]. 热带作物学报, 2019, 40(8): 1606-1610. doi: 10.3969/j.issn.1000-2561.2019.08.022ZHANG J, CHEN L B, YAN C, et al. The effect of 2% clothianidin and cyfluthrin granule against Phyllotreta striolata[J]. Chin J Trop Crop, 2019, 40(8): 1606-1610. doi: 10.3969/j.issn.1000-2561.2019.08.022
|
[12] |
ANDERSEN C L, HAZZARD R, VAN DRIESCHE R, et al. Alternative management tactics for control of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica rapa in Massachusetts[J]. J Econ Entomol, 2006, 99(3): 803-810. doi: 10.1093/jee/99.3.803
|
[13] |
李霜霜, 钟春燕. 黄曲条跳甲化学防治研究现状[J]. 南方农业, 2019, 13(18): 18-19.LI S S, ZHONG C Y. Research of chemical control of striped flea beetle Phyllotreta striolata (Fabricius)[J]. South Chin Agr, 2019, 13(18): 18-19.
|
[14] |
傅建炜, 尤民生. 寄主植物对黄曲条跳甲抗性相关酶系活性及其频率的影响[J]. 福建农林大学学报, 2004, 33(2): 153-157.FU J W, YOU M S. Effects of host plants on the activity of enzymes related to pesticide resistance of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae)[J]. J Fujian Agric For Univ, 2004, 33(2): 153-157.
|
[15] |
周先治, 吴刚. 福州地区黄曲条跳甲的抗性监测[J]. 福建农林大学学报, 2004, 33(2): 158-161.ZHOU X Z, WU G. Temporal and spatial dynamics of resistance to some commercial insecticides in Phyllotreta Striolata (Fabricius) (Coleoptera: Chrysomelidae) in Fuzhou, China[J]. J Fujian Agric For Univ, 2004, 33(2): 158-161.
|
[16] |
ZIMMER C T, MÜLLER A, HEIMBACH U, et al. Target-site resistance to pyrethroid insecticides in German populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae)[J]. Pestic Biochem Physiol, 2014, 108: 1-7. doi: 10.1016/j.pestbp.2013.11.005
|
[17] |
WILLIS C E, FOSTER S P, ZIMMER C T, et al. Investigating the status of pyrethroid resistance in UK populations of the cabbage stem flea beetle (Psylliodes chrysocephala)[J]. Crop Prot, 2020, 138: 105316. doi: 10.1016/j.cropro.2020.105316
|
[18] |
袁谷城, 边庆花, 王敏, 等. 手性甲基脂肪烃类昆虫素的合成研究进展[J]. 有机化学, 2021, 41(7): 2571-2587. doi: 10.6023/cjoc202103007YUAN G C, BIAN Q H, WANG M, et al. Research progress on the syntheses of chiral methyl-branched aliphatic hydrocarbons insect pheromones[J]. Chin J Org Chem, 2021, 41(7): 2571-2587. doi: 10.6023/cjoc202103007
|
[19] |
PENG C, WEISS M J. Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)[J]. J Chem Ecol, 1992, 18(6): 875-884. doi: 10.1007/BF00988328
|
[20] |
PENG C, BARTELT R J, WEISS M J. Male crucifer flea beetles produce an aggregation pheromone[J]. Physiol Entomol, 1999, 24(1): 98-99. doi: 10.1046/j.1365-3032.1999.00113.x
|
[21] |
戴建青, 韩诗畴, 李军, 等. 黄板加信息素对黄曲条跳甲成虫的田间诱集作用[J]. 南方农业学报, 2013, 44(3): 422-425. doi: 10.3969/j:issn.2095-1191.2013.3.422DAI J Q, HAN S C LI J, et al. Trapping effect of yellow sticky board and semiochemicals on vegetable pests striped flea beetle (Phyllotreta striolata F. )[J]. J South Agric, 2013, 44(3): 422-425. doi: 10.3969/j:issn.2095-1191.2013.3.422
|
[22] |
刘彬, 徐嘉政, 田椿燕, 等. 不同色板及诱芯对黄曲条跳甲的诱集效果[J]. 中国植保导刊, 2021, 41(3): 54-56. doi: 10.3969/j.issn.1672-6820.2021.03.010LIU B, XU J Z, TIAN C Y, et al. Trapping effects of different color plates and luring cores on striped flea beetle (Phyllotreta striolata F. )[J]. China Plant Prot, 2021, 41(3): 54-56. doi: 10.3969/j.issn.1672-6820.2021.03.010
|
[23] |
刘晓梅, 凌冰, 张茂新. 跳甲聚集信息素的研究进展[J]. 环境昆虫学报, 2013, 35(5): 656-663. doi: 10.3969/j.issn.1674-0858.2013.05.16LIU X M, LING B, ZHANG M X. Research progress in aggregation pheromones of Alticinae[J]. J Environ Entomol, 2013, 35(5): 656-663. doi: 10.3969/j.issn.1674-0858.2013.05.16
|
[24] |
BARTELT R J, COSSÉ A A, ZILKOWSKI B W, et al. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles[J]. J Chem Ecol, 2001, 27(12): 2397-2423. doi: 10.1023/A:1013667229345
|
[25] |
BARTELT R J, ZILKOWSKI B W, COSSÉ A A, et al. Male-specific sesquiterpenes from Phyllotreta flea beetles[J]. J Nat Prod, 2011, 74(4): 585-595. doi: 10.1021/np100608p
|
[26] |
TÓTH M, CSONKA E, BARTELT R J, et al. Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae)[J]. J Appl Entomol, 2012, 136(9): 688-697. doi: 10.1111/j.1439-0418.2011.01702.x
|
[27] |
BERAN F, JIMÉNEZ-ALEMÁN G H, LIN M Y, et al. The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited[J]. J Chem Ecol, 2016, 42(8): 748-755. doi: 10.1007/s10886-016-0743-6
|
[28] |
SOROKA J J, BARTELT R J, ZILKOWSKI B W, et al. Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials[J]. J Chem Ecol, 2005, 31(8): 1829-1843. doi: 10.1007/s10886-005-5929-2
|
[29] |
TÓTH M, CSONKA E, BARTELT R J, et al. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate[J]. J Chem Ecol, 2005, 31(11): 2705-2720. doi: 10.1007/s10886-005-7621-y
|
[30] |
ZILKOWSKI B W, BARTELT R J, COSSÉ A A, et al. Male-produced aggregation pheromone compounds from the eggplant flea beetle (Epitrix fuscula): identification, synthesis, and field biossays[J]. J Chem Ecol, 2006, 32(11): 2543-2558. doi: 10.1007/s10886-006-9163-3
|
[31] |
ZILKOWSKI B W, BARTELT R J, VERMILLION K. Analysis of 2, 4, 6-nonatrienal geometrical isomers from male flea beetles, Epitrix hirtipennis and E. fuscula[J]. J Agric Food Chem, 2008, 56(13): 4982-4986. doi: 10.1021/jf8005273
|
[32] |
赵成华. 蛾类昆虫性信息素生物合成的研究进展[J]. 昆虫学报, 2000(4): 429-439. doi: 10.3321/j.issn:0454-6296.2000.04.013ZHAO C H. Research progress on biosynthesis of sex pheromones in moths[J]. Acta Entomol Sin, 2000(4): 429-439. doi: 10.3321/j.issn:0454-6296.2000.04.013
|
[33] |
ZHANG S, LIU X, ZHU B, et al. Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling[J]. PLoS One, 2014, 9(10): e111003. doi: 10.1371/journal.pone.0111003
|
[34] |
BERAN F, RAHFELD P, LUCK K, et al. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle[J]. Proc Natl Acad Sci, 2016, 113(11): 2922-2927. doi: 10.1073/pnas.1523468113
|
[35] |
MURAKI Y, TAGURI T, YAMAKAWA R, et al. Synthesis and field evaluation of stereoisomers and analogues of 5-methylheptadecan-7-ol, an unusual sex pheromone component of the lichen moth, Miltochrista calamina[J]. J Chem Ecol, 2014, 40(3): 250-258. doi: 10.1007/s10886-014-0405-5
|
[36] |
TATSUTA K. Total synthesis and development of bioactive natural products[J]. Proc Jpn Acad, Ser B, 2008, 84(4): 87-106. doi: 10.2183/pjab.84.87
|
[37] |
单绍军, 哈成勇. 萜类化合物为手性源合成拒食剂研究进展[J]. 化学通报, 2004(7): 493-498. doi: 10.3969/j.issn.0441-3776.2004.07.005SHAN S Y, HA C Y. Progress in synthesis of antifeedants from terpenoids[J]. Chem Bull, 2004(7): 493-498. doi: 10.3969/j.issn.0441-3776.2004.07.005
|
[38] |
KHARISOV R Y, LATYPOVA E R, TALIPOV R F, et al. (R)-4-menthenone in the synthesis of optically pure sex pheromone of the peach leafminer moth (Lyonetia clerkella)[J]. Russ Chem Bull, 2003, 52(10): 2267-2269. doi: 10.1023/B:RUCB.0000011889.58249.43
|
[39] |
CROSBY J. Synthesis of optically active compounds: a large scale perspective[J]. Tetrahedron, 1991, 47(27): 4789-4846. doi: 10.1016/S0040-4020(01)80950-9
|
[40] |
SCHLAMP K K, GRIES R, KHASKIN G, et al. Pheromone components from body scales of female Anarsia lineatella induce contacts by conspecific males[J]. J Chem Ecol, 2005, 31(12): 2897-2911. doi: 10.1007/s10886-005-8402-3
|
[41] |
王乃兴. 利用天然手性源合成复杂手性化合物的方法[J]. 中国科学: 化学, 2010, 40(4): 295-302. doi: 10.1360/zb2010-40-4-295WANG N X. The synthesis methods of complex chiral compounds by natural chiron[J]. Sci Sinica Chim: Chem, 2010, 40(4): 295-302. doi: 10.1360/zb2010-40-4-295
|
[42] |
CHANDRASEKHAR S, VIJAYKUMAR B V D, PRATAP T V. Total synthesis of (-)-lentiginosine[J]. Tetrahedron Asymmetry, 2008, 19(6): 746-750. doi: 10.1016/j.tetasy.2008.02.017
|
[43] |
MULZER J. Chiral pool synthesis: from α-amino acids and derivatives[J]. Compr Chirality, 2012, 2: 122-162.
|
[44] |
冯志强, 尹承烈. 以L-焦谷氨酸为手性源的不对称合成研究进展[J]. 化学通报, 1998(9): 17-24.FENG Z Q, YIN C L. Progress in asymmetric synthesis of L-pyroglutamic acid as chiral source[J]. Chem Bull, 1998(9): 17-24.
|
[45] |
TEWARI N, MAHESHWARI N, MEDHANE R, et al. A novel method for the large scale synthesis of cinacalcet hydrochloride using iron catalyzed C-C coupling[J]. Org Process Res Dev, 2012, 16(9): 1566-1568. doi: 10.1021/op300164y
|
[46] |
BIJUKUMAR G, MALOYESH B, BHASKAR B S, et al. Efficient synthesis of cinacalcet hydrochloride[J]. Synth Commun, 2008, 38(10): 1512-1517. doi: 10.1080/00397910801928541
|
[47] |
邵瑞链, 杨敏华. 天然手性源在光学活性菊酸合成中的应用[J]. 有机化学, 1993, 13(4): 347-353.SHAO R L, YANG M H. Application of natural chiral resources in synthesis of optical chrysanthemic acids and their analogues[J]. Chin J Org Chem, 1993, 13(4): 347-353.
|
[48] |
HONDA T, NAITO K, YAMANE S, et al. Samarium(II) iodide promoted reductive fragmentation of γ-halo carbonyl compounds: Application to the enantiospecific synthesis of (-)-oudemansin A[J]. J Chem Soc, Chem Commun, 1992(17): 1218-1220.
|
[49] |
BERAN F, MEWIS I, SRINIVASAN R, et al. Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles[J]. J Chem Ecol, 2011, 37(1): 85-97. doi: 10.1007/s10886-010-9899-7
|
[50] |
JIMENEZ-ALEMAN G H, SCHOENER T, MONTERO-ALEJO A L, et al. Improved synthesis of the chrysomelid pheromone (6R, 7S)-(+)-himachala-9, 11-diene via spontaneous bromination and didehydrobromination of 2, 6, 6, 9-tetramethyl-bicyclo[5.4. 0]undec-8-ene[J]. ARKIVOC, 2012(3): 371-378.
|
[51] |
MUTO S-E, BANDO M, MORI K. Synthesis and stereochemistry of the four himachalene-type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidates[J]. Eur J Org Chem, 2004(9): 1946-1952.
|
[52] |
SRIKRISHNA A, RAVI KUMAR P. Chiral synthons from carvone. Part 66. Enantiospecific first total synthesis of (+)-trans-α-himachalene[J]. Tetrahedron Lett, 2004, 45(37): 6867-6870. doi: 10.1016/j.tetlet.2004.07.103
|
[53] |
DERWICH E, BENZIANE Z, BOUKIR A. Chemical composition and in vitro antibacterial activity of the essential oil of Cedrus atlantica[J]. Int J Agric Biol, 2010, 12(3): 381-385.
|
[54] |
SATRANI B, ABERCHANE M, FARAH A, et al. Chemical composition and antimicrobial activity of essential oils extracted from fractional hydrodistillation of Cedrus atlantica Manetti wood[J]. Acta Bot Gallica, 2006, 153(1): 97-104. doi: 10.1080/12538078.2006.10515524
|
[55] |
喻世涛, 肖龙恩, 王萍, 等. 不同产地香茅草挥发性成分的GC-MS分析[J]. 香料香精化妆品, 2016(6): 5-8. doi: 10.3969/j.issn.1000-4475.2016.06.002YU S T, XIAO L E, WANG P, et al. Analysis of volatile components of Cymbopogon citratus from different habitats by GC-MS[J]. Flavour Frag Cosmet, 2016(6): 5-8. doi: 10.3969/j.issn.1000-4475.2016.06.002
|
[56] |
STONE S C, VASCONCELLOS F A, LENARDÃO E J, et al. Evaluation of potential use of Cymbopogon sp. essential oils, (R)-citronellal and N-citronellylamine in cancer chemotherapy[J]. Int J Appl Res Nat Prod, 2013, 6(4): 11-15.
|
[57] |
RAVID U, PUTIEVSKY E, KATZIR I, et al. Chiral GC analysis of (S) (+)- and (R) (−)-carvone with high enantiomeric purity in caraway, dill and spearmint oils[J]. Flavour Frag J, 1992, 7(5): 289-292. doi: 10.1002/ffj.2730070511
|
[58] |
康艳蕾, 苏璇, 唐法娣, 等. 留兰香油主要成分香芹酮和柠檬烯的GC含量测定及薄层鉴别[J]. 中华中医药学刊, 2014, 32(3): 661-664.KANG Y L, SU X, TANG F D, et al. Determination of main components of spearmint oil by GC and identification by TLC[J]. Chin Arch Tradit Chin Med, 2014, 32(3): 661-664.
|
[59] |
AGGARWAL K K, KHANUJA S P S, AHMAD A, et al. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa[J]. Flavour Frag J, 2002, 17(1): 59-63. doi: 10.1002/ffj.1040
|
[60] |
迟玉广, 李中阳, 黄爱华, 等. 不同产地薄荷饮片中挥发性成分的比较分析[J]. 安徽医药, 2016, 20(9): 1661-1664. doi: 10.3969/j.issn.1009-6469.2016.09.013CHI Y G, LI Z Y, HUANG A H, et al. A comparative analysis of volatile components in Mentha haplocalyx Briq from different habitats[J]. Anhui Med Pharm J, 2016, 20(9): 1661-1664. doi: 10.3969/j.issn.1009-6469.2016.09.013
|
[61] |
孙文君, 于生, 单鸣秋, 等. GC-MS法测定荆芥挥发油中薄荷酮、胡薄荷酮含量[J]. 药学与临床研究, 2011, 19(6): 571-572. doi: 10.3969/j.issn.1673-7806.2011.06.029SUN W J, YU S, SHAN M Q, et al. Determination of menthone and ulegone in Schizoneeta by GC-MS[J]. Pharm Clin Res, 2011, 19(6): 571-572. doi: 10.3969/j.issn.1673-7806.2011.06.029
|
[62] |
OPLE R S, HANDORE K L, KAMAT N S, et al. A total synthesis of (−)-nardoaristolone B[J]. Eur J Org Chem, 2016(22): 3804-3808.
|
[63] |
DING R, FU J G, XU G Q, et al. Divergent total synthesis of the lycopodium alkaloids huperzine A, huperzine B, and huperzine U[J]. J Org Chem, 2014, 79(1): 240-250. doi: 10.1021/jo402419h
|
[64] |
OVERBERGER C G, KAYE H. Syntheses of some optically active ε-caprolactones[J]. J Am Chem Soc, 1967, 89(22): 5640-5645. doi: 10.1021/ja00998a024
|
[65] |
BARTELT R J, WEISLEDER D, MOMANY F A. Total synthesis of himachalene sesquiterpenes of Aphthona and Phyllotreta flea beetles[J]. Synthesis, 2003(1): 117-123. doi: 10.1055/s-2003-36253
|
[66] |
PLA-QUINTANA A, ROGLANS A. Chiral induction in [2 + 2 + 2] cycloaddition reactions[J]. Asian J Org Chem, 2018, 7(9): 1706-1718. doi: 10.1002/ajoc.201800291
|
[67] |
刘双, 李玉明, 王典, 等. 手性诱导构建磷手性中心不对称合成有机磷功能化合物研究进展. 有机化学, 2018, 38(2): 341-349.LIU S, LI Y M, WANG D, et al. Research progress of asymmetric synthesis of optically active P-stereogenic organophosphoryl compounds by chiral induction [J]. Chin J Org Chem, 2018, 38(2): 341-349.
|
[68] |
李薇, 李云峰, 俞晓明. 氯霉素衍生噁唑烷酮的合成及其在aldol反应中的不对称诱导作用[J]. 有机化学, 2018, 38(2): 341-349. doi: 10.6023/cjoc201708040LI W, LI Y F, YU X M. Synthesis of oxazolidinone derivative from chloramphenicol and its asymmetric induction in aldol reaction[J]. Chin J Org Chem, 2018, 38(2): 341-349. doi: 10.6023/cjoc201708040
|
[69] |
YUAN G C, YANG Y X, LIU J W, et al. Synthesis of the enantiomers of 13-methylheptacosane, the sex pheromone of pear psylla, Cacopsylla pyricola[J]. Chirality, 2021, 33(6): 274-280. doi: 10.1002/chir.23307
|
[70] |
DIAZ-MUÑOZ G, MIRANDA I L, SARTORI S K, et al. Use of chiral auxiliaries in the asymmetric synthesis of biologically active compounds: a review[J]. Chirality, 2019, 31(10): 776-812. doi: 10.1002/chir.23103
|
[71] |
MORI K. Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle: (R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform[J]. Tetrahedron Asymmetry, 2005, 16(3): 685-692. doi: 10.1016/j.tetasy.2004.11.077
|
[72] |
EVANS D A, ENNIS M D, MATHRE D J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives[J]. J Am Chem Soc, 1982, 104(6): 1737-1739. doi: 10.1021/ja00370a050
|
[73] |
JIANG J J, WONG M K. Recent advances in the development of chiral gold complexes for catalytic asymmetric catalysis[J]. Chem Asian J, 2021, 16(5): 364-377. doi: 10.1002/asia.202001375
|
[74] |
EZAWA T, SOHTOME Y, HASHIZUME D, et al. Dynamics in catalytic asymmetric diastereoconvergent (3+2) cycloadditions with isomerizable nitrones and α-keto ester enolates[J]. J Am Chem Soc, 2021, 143(24): 9094-9104. doi: 10.1021/jacs.1c02833
|
[75] |
MAO J Y, LIU F P, WANG M, et al. Cobalt-bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic α-bromo esters with aryl Grignard reagents[J]. J Am Chem Soc, 2014, 136(50): 17662-17668. doi: 10.1021/ja5109084
|
[76] |
ZHOU Y, WANG L F, YUAN G C, et al. Cobalt-bisoxazoline-catalyzed enantioselective cross-coupling of α-bromo esters with alkenyl Grignard reagents[J]. Org Lett, 2020, 22(11): 4532-4536. doi: 10.1021/acs.orglett.0c01557
|
[77] |
DAI X, STROTMAN N A, FU G C. Catalytic asymmetric Hiyama cross-couplings of racemic a-bromo esters [J]. J Am Chem Soc 2008, 130(11): 3302-3303.
|
[78] |
GLORIUS F. Asymmetric cross-coupling of non-activated secondary alkyl halides[J]. Angew Chem Int Ed, 2008, 47(44): 8347-8349. doi: 10.1002/anie.200803509
|
[79] |
WILSILY A, TRAMUTOLA F, OWSTON N A, et al. New directing groups for metal-catalyzed asymmetric carbon-carbon bond-forming processes: stereoconvergent alkyl-alkyl Suzuki cross-couplings of unactivated electrophiles[J]. J Am Chem Soc, 2012, 134(13): 5794-5797. doi: 10.1021/ja301612y
|
[80] |
XU G Q, FU W Z, LIU G D, et al. Efficient syntheses of korupensamines A, B and michellamine B by asymmetric Suzuki-Miyaura coupling reactions[J]. J Am Chem Soc, 2014, 136(2): 570-573. doi: 10.1021/ja409669r
|
[81] |
LIU F P, ZHONG J C, ZHOU Y, et al. Cobalt-catalyzed enantioselective Negishi cross-coupling of racemic α-bromo esters with arylzincs[J]. Chem - Eur J, 2018, 24(9): 2059-2064. doi: 10.1002/chem.201705463
|
[82] |
SCHMIDT J, CHOI J, LIU A T, et al. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters[J]. Science, 2016, 354(6317): 1265-1269. doi: 10.1126/science.aai8611
|
[83] |
SHAO H, CHAKRABARTY S, QI X, et al. Ligand conformational flexibility enables enantioselective tertiary C-B bond formation in the phosphonate-directed catalytic asymmetric alkene hydroboration[J]. J Am Chem Soc, 2021, 143(12): 4801-4808. doi: 10.1021/jacs.1c01303
|
[84] |
YAMASHITA Y, NOGUCHI A, FUSHIMI S, et al. Chiral metal salts as ligands for catalytic asymmetric Mannich reactions with simple amides[J]. J Am Chem Soc, 2021, 143(15): 5598-5604. doi: 10.1021/jacs.0c13317
|
[85] |
OETVOES S B, KAPPE C O. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates[J]. Green Chem, 2021, 23(17): 6117-6138. doi: 10.1039/D1GC01615F
|
[86] |
袁谷城, 刘嘉威, 于士航, 等. 美国白蛾性信息素(3Z,6Z,9S,10R)-9,10-环氧-3,6-二十一碳二烯的不对称合成[J]. 有机化学, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005YUAN G C, LIU J W, YU S H, et al. Asymmetric synthesis of (3Z,6Z,9S,10R)-9,10-epoxy-3, 6-heneicosadiene, sex pheromone component of Hyphantria cunea[J]. Chin J Org Chem, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005
|
[87] |
WANG N Z, WU Z G, WANG J J, et al. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis[J]. Chem Soc Rev, 2021, 50(17): 9766-9793. doi: 10.1039/D0CS01124J
|
[88] |
CHAVAN S P, KHATOD H S. Enantioselective synthesis of the essential oil and pheromonal component ar-himachalene by a chiral pool and chirality induction approach[J]. Tetrahedron Asymmetry, 2012, 23(18-19): 1410-1415. doi: 10.1016/j.tetasy.2012.09.008
|
[89] |
SPIELMANN K, DE FIGUEIREDO R M, CAMPAGNE J M. Stereospecific hydrogenolysis of lactones: application to the total syntheses of (R)-ar-himachalene and (R)-curcumene[J]. J Org Chem, 2017, 82(9): 4737-4743. doi: 10.1021/acs.joc.7b00419
|
[90] |
KHATUA A, PAL S, DAS M K, et al. Asymmetric total syntheses of (−)-ar-turmerone, (−)-dihydro-ar-turmerone, (−)-ar-dehydrocurcumene, and (−)-ar-himachalene via a key allylic oxidative rearrangement[J]. Tetrahedron Lett, 2021, 73: 153105. doi: 10.1016/j.tetlet.2021.153105
|
[91] |
ZAITSEV A B, ADOLFSSON H. Recent developments in asymmetric dihydroxylations[J]. Synthesis, 2006(11): 1725-1756.
|
[92] |
HERAVI M M, ZADSIRJAN V, ESFANDYARI M, et al. Applications of Sharpless asymmetric dihydroxylation in the total synthesis of natural products[J]. Tetrahedron Asymmetry, 2017, 28(8): 987-1043. doi: 10.1016/j.tetasy.2017.07.004
|
[93] |
NEUMEYER M, BRUECKNER R. Nonracemic γ-lactones from the Sharpless asymmetric dihydroxylation of β, γ-unsaturated carboxylic esters[J]. Eur J Org Chem, 2016(30): 5060-5087.
|
[94] |
MOREAU X, BAZÁN-TEJEDA B, CAMPAGNE J M. Catalytic and asymmetric vinylogous Mukaiyama reactions on aliphatic ketones: formal asymmetric synthesis of taurospongin A[J]. J Am Chem Soc, 2005, 127(20): 7288-7289. doi: 10.1021/ja051573k
|
[95] |
LAINA-MARTIN V, HUMBRIAS-MARTIN J, FERNANDEZ-SALAS J A, et al. Asymmetric vinylogous Mukaiyama aldol reaction of isatins under bifunctional organocatalysis: enantioselective synthesis of substituted 3-hydroxy-2-oxindoles[J]. Chem Commun, 2018, 54(22): 2781-2784. doi: 10.1039/C8CC00759D
|
[96] |
HOSOKAWA S, TATSUTA K. Asymmetric vinylogous Mukaiyama aldol reactions using vinylketene N, O-acetals in total syntheses of natural products[J]. Mini-Rev Org Chem, 2008, 5(1): 1-18. doi: 10.2174/157019308783498197
|
[97] |
KALESSE M, CORDES M, SYMKENBERG G, et al. The vinylogous Mukaiyama aldol reaction (VMAR) in natural product synthesis[J]. Nat Prod Rep, 2014, 31(4): 563-594. doi: 10.1039/C3NP70102F
|
[98] |
SAKUMA S, MIYAURA N. Rhodium(I)-catalyzed asymmetric 1, 4-addition of arylboronic acids to α, β-unsaturated amides[J]. J Org Chem, 2001, 66(26): 8944-8946. doi: 10.1021/jo010747n
|
[99] |
YASUKAWA T, SUZUKI A, MIYAMURA H, et al. Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α, β-unsaturated carbonyl compounds[J]. J Am Chem Soc, 2015, 137(20): 6616-6623. doi: 10.1021/jacs.5b02213
|
[100] |
TIAN X, TIAN H S. Roles of ethanol and Si-OH in the aldol condensation of ethyl acetate over a Cs/SBA-15 catalyst[J]. React Chem Eng, 2021, 6(6): 1002-1015. doi: 10.1039/D1RE00020A
|
[101] |
DACH A, SCHIEBERLE P. Characterization of the key aroma compounds in a freshly prepared oat (Avena sativa L. ) pastry by application of the sensomics approach[J]. J Agric Food Chem, 2021, 69(5): 1578-1588. doi: 10.1021/acs.jafc.0c07498
|
[102] |
ZHANG K, LU L Q, XIAO W J. Recent advances in the catalytic asymmetric alkylation of stabilized phosphorous ylides[J]. Chem Commun, 2019, 55(60): 8716-8721. doi: 10.1039/C9CC02831E
|
[103] |
CHAVAN S P, KALBHOR D B, GONNADE R G. Divergent approach to the synthesis of (−)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent[J]. Tetrahedron, 2021, 80: 131773. doi: 10.1016/j.tet.2020.131773
|
[104] |
SCHUH C, SCHIEBERLE P. Characterization of (E, E, Z)-2, 4, 6-nonatrienal as a character impact aroma compound of oat flakes[J]. J Agric Food Chem, 2005, 53(22): 8699-8705. doi: 10.1021/jf051601i
|
[105] |
PADILHA G, KAUFMAN T S, SILVEIRA C C. Wittig-Horner mediated synthesis of 4-vinyl sulfide derivatives of pyrazoles[J]. Tetrahedron Lett, 2016, 57(30): 3349-3353. doi: 10.1016/j.tetlet.2016.06.063
|
[106] |
YANG Y X, WANG L, CHEN Y, et al. One-pot synthesis of α, α-disubstituted aryl-1-ethanones via the Wittig-Horner reaction[J]. Phosphorus, Sulfur Silicon Relat Elem, 2018, 193(3): 121-126. doi: 10.1080/10426507.2017.1415899
|
[107] |
PETROSKI R J. Straightforward preparation of (2E, 4Z)-2, 4-heptadien-1-ol and (2E, 4Z)-2, 4-heptadienal[J]. Synth Commun, 2003, 33(18): 3233-3241. doi: 10.1081/SCC-120023447
|
[108] |
KWONG C K W, FU M Y, LAM C S L, et al. The phosphine-catalyzed alkyne to 1, 3-diene isomerization reaction[J]. Synthesis, 2008(15): 2307-2317.
|
[109] |
BLUET G, CAMPAGNE J M. Towards the total synthesis of octalactin A[J]. Synlett, 2000(1): 221-222.
|
[110] |
MATSUO K, SAKAGUCHI Y. Enantioselective synthesis of (−)-vertinolide[J]. Chem Pharm Bull, 1997, 45(10): 1620-1625. doi: 10.1248/cpb.45.1620
|
[111] |
XIA X S, LAO Z Q, TOY P H. Triphenylphosphine oxide-catalyzed selective α, β-reduction of conjugated polyunsaturated ketones[J]. Synlett, 2019, 30(9): 1100-1104. doi: 10.1055/s-0037-1611537
|