• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

跳甲聚集信息素的合成研究进展

王李锋 钟江春 刘丰茂 边庆花 王敏

王李锋, 钟江春, 刘丰茂, 边庆花, 王敏. 跳甲聚集信息素的合成研究进展[J]. 农药学学报, 2022, 24(2): 203-216. doi: 10.16801/j.issn.1008-7303.2021.0181
引用本文: 王李锋, 钟江春, 刘丰茂, 边庆花, 王敏. 跳甲聚集信息素的合成研究进展[J]. 农药学学报, 2022, 24(2): 203-216. doi: 10.16801/j.issn.1008-7303.2021.0181
WANG Lifeng, ZHONG Jiangchun, LIU Fengmao, BIAN Qinghua, WANG Min. Research progress on the syntheses of aggregation pheromones of flea beetles[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 203-216. doi: 10.16801/j.issn.1008-7303.2021.0181
Citation: WANG Lifeng, ZHONG Jiangchun, LIU Fengmao, BIAN Qinghua, WANG Min. Research progress on the syntheses of aggregation pheromones of flea beetles[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 203-216. doi: 10.16801/j.issn.1008-7303.2021.0181

跳甲聚集信息素的合成研究进展

doi: 10.16801/j.issn.1008-7303.2021.0181
基金项目: 国家重点研发计划项目 (2017YFD0201404).
详细信息

Research progress on the syntheses of aggregation pheromones of flea beetles

Funds: the National Key Research and Development Program of China (2017YFD0201404).
  • 摘要: 跳甲是危害蔬菜、水果、谷物等农作物的重要害虫。跳甲聚集信息素的化学成分包括14种倍半萜类化合物和6种不饱和醛类化合物,可用于跳甲诱集与种群监测,在害虫绿色防控方面极具发展前景。本文首先按手性中心的构建方法,包括手性源法、手性诱导法与不对称催化法,详细阐述了倍半萜类跳甲聚集信息素的合成方法;然后依据碳碳双键的合成方法分类总结了不饱和醛类跳甲聚集信息素的合成方法,主要包括羟醛缩合法、Wittig偶联法、Wittig-Horner偶联法与炔酯异构化法。另外,分析了每种合成方法的优势与不足,并对跳甲聚集信息素的合成研究进行了展望。
  • 图  1  倍半萜类跳甲聚集信息素

    Figure  1.  Sesquiterpene aggregation pheromones of flea beetles

    图  2  不饱和醛类跳甲聚集信息素

    Figure  2.  Unsaturated aldehyde aggregation pheromones of flea beetles

    1  聚集信息素1可能的生源合成途径[34]

    1.  A proposed biosynthetic pathway of aggregation pheromone 1[34]

    2  以 (−)-α-雪松烯为原料合成聚集信息素1与5[49]

    2.  Synthesis of aggregation pheromones 1 and 5 from (−)-α-himachalene[49]

    3  以(R)-香茅醛为原料合成聚集信息素1、3、5与6[51]

    3.  Synthesis of aggregation pheromones 1, 3, 5 and 6 from (R)-citronellal[51]

    4  以(R)-香芹酮为原料合成聚集信息素2[52]

    4.  Synthesis of aggregation pheromone 2 from (R)-carvone[52]

    5  以(R)-胡薄荷酮为原料合成聚集信息素6[25,64]

    5.  Synthesis of aggregation pheromone 6 from (R)-pulegone[25,64]

    6  以6为原料合成聚集信息素1、3、7~9[25,65]

    6.  Synthesis of aggregation pheromones 1, 3, 7-9 from 6[25,65]

    7  以6为原料合成聚集信息素10~14[25]

    7.  Synthesis of aggregation pheromones 10-14 from 6[25]

    8  Evans不对称烷基化法合成聚集信息素5[71]

    8.  Synthesis of aggregation pheromone 5 via Evans asymmetric alkylation[71]

    9  不对称催化Sharpless双羟基化法合成聚集信息素5[88]

    9.  Synthesis of aggregation pheromone 5 via catalytic Sharpless asymmetric dihydroxylation[88]

    10  不对称催化插烯Mukaiyama法合成聚集信息素5[89]

    10.  Synthesis of aggregation pheromone 5 via catalytic asymmetric vinylogous Mukaiyama reaction[89]

    11  不对称催化硼酸加成法合成聚集信息素5[90]

    11.  Synthesis of aggregation pheromone 5 via catalytic asymmetric arylboronic acid addition[90]

    12  羟醛缩合法合成聚集信息素15 与 16[101]

    12.  Synthesis of aggregation pheromones 15 and 16 via aldol condensation[101]

    13  Wittig偶联法合成聚集信息素15与16[104]

    13.  Synthesis of aggregation pheromones 15 and 16 via Wittig coupling[104]

    14  Wittig-Horner偶联合成聚集信息素15[30]

    14.  Synthesis of aggregation pheromone 15 via Wittig-Horner coupling[30]

    15  Wittig-Horner法合成聚集信息素16[30,107]

    15.  Synthesis of aggregation pheromone 16 via Wittig -Horner coupling[30,107]

    16  炔酯异构化法合成聚集信息素15[111]

    16.  Synthesis of aggregation pheromone 15 via the acetylenic ester isomerization[111]

  • [1] FURTH D G. Recent advances in the knowledge of Mexican Alticinae (Coleoptera, Chrysomelidae)[J]. Zookeys, 2017(720): 23-46.
    [2] 翟宗昭, 葛斯琴, 杨星科. 跳甲的食性及食性分化 [J]. 昆虫学报, 2005, 48(3): 407-417.

    ZHAI Z Z, GE S Q, YANG X K. Feeding habits and host plant differentiation of flea beetles [J]. Acta Entomol Sin, 2005, 48(3): 407-417.
    [3] WEI J, SEGRAVES K A, LI W Z, et al. Gut bacterial communities and their contribution to performance of specialist Altica flea beetles[J]. Microb Ecol, 2020, 80(4): 946-959. doi: 10.1007/s00248-020-01590-x
    [4] FURTH D G. Diversity of Alticinae in oaxaca, Mexico: A preliminary study (Coleoptera, Chrysomelidae)[J]. Zookeys, 2013(332): 1-32.
    [5] MASON J, ALFORD A M, KUHAR T P. Flea beetle (Coleoptera: Chrysomelidae) populations, effects of feeding injury, and efficacy of insecticide treatments on eggplant and cabbage in southwest Virginia[J]. J Econ Entomol, 2020, 113(2): 887-895. doi: 10.1093/jee/toz355
    [6] ANOOJ S S, RAGHAVENDRA K V, SHASHANK P R, et al. An emerging pest of radish, striped flea beetle Phyllotreta striolata (Fabricius), from Northern India: incidence, diagnosis and molecular analysis[J]. Phytoparasitica, 2020, 48(5): 743-753. doi: 10.1007/s12600-020-00825-4
    [7] BURRACK H J, REEVES R B. Tobacco flea beetle susceptibility to foliar insecticides, 2010[J]. Arthropod Manage Tests, 2011, 36(L11): 1.
    [8] BRIAR S S, SHRESTHA G, SHARMA A, et al. Effect of nitrogen fertilization on flea beetle (Phyllotreta cruciferae) and cabbage seedpod weevil (Ceutorhynchus obstrictus) injury and crop yield in dry land canola[J]. Phytoparasitica, 2019, 47(5): 637-645. doi: 10.1007/s12600-019-00762-x
    [9] KUHAR T P, STIVERS-YOUNG L J, HOFFMANN M P, et al. Control of corn flea beetle and Stewart's wilt in sweet corn with imidacloprid and thiamethoxam seed treatments[J]. Crop Prot, 2002, 21(1): 25-31. doi: 10.1016/S0261-2194(01)00056-4
    [10] 周利琳, 司升云, 王攀, 等. 武汉百合科蔬菜新害虫: 葱黄寡毛跳甲[J]. 长江蔬菜, 2020(21): 53-54.

    ZHOU L L, SI S Y, WANG P, et al. New pests of Liliaceae vegetables in Wuhan: Luperomorpha suturalis Chen[J]. Changjiang Veg, 2020(21): 53-54.
    [11] 张静, 陈利标, 闫超, 等. 2%噻虫胺·氟氯氰菊酯颗粒剂对黄曲条跳甲的防治效果[J]. 热带作物学报, 2019, 40(8): 1606-1610. doi: 10.3969/j.issn.1000-2561.2019.08.022

    ZHANG J, CHEN L B, YAN C, et al. The effect of 2% clothianidin and cyfluthrin granule against Phyllotreta striolata[J]. Chin J Trop Crop, 2019, 40(8): 1606-1610. doi: 10.3969/j.issn.1000-2561.2019.08.022
    [12] ANDERSEN C L, HAZZARD R, VAN DRIESCHE R, et al. Alternative management tactics for control of Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) on Brassica rapa in Massachusetts[J]. J Econ Entomol, 2006, 99(3): 803-810. doi: 10.1093/jee/99.3.803
    [13] 李霜霜, 钟春燕. 黄曲条跳甲化学防治研究现状[J]. 南方农业, 2019, 13(18): 18-19.

    LI S S, ZHONG C Y. Research of chemical control of striped flea beetle Phyllotreta striolata (Fabricius)[J]. South Chin Agr, 2019, 13(18): 18-19.
    [14] 傅建炜, 尤民生. 寄主植物对黄曲条跳甲抗性相关酶系活性及其频率的影响[J]. 福建农林大学学报, 2004, 33(2): 153-157.

    FU J W, YOU M S. Effects of host plants on the activity of enzymes related to pesticide resistance of striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomelidae)[J]. J Fujian Agric For Univ, 2004, 33(2): 153-157.
    [15] 周先治, 吴刚. 福州地区黄曲条跳甲的抗性监测[J]. 福建农林大学学报, 2004, 33(2): 158-161.

    ZHOU X Z, WU G. Temporal and spatial dynamics of resistance to some commercial insecticides in Phyllotreta Striolata (Fabricius) (Coleoptera: Chrysomelidae) in Fuzhou, China[J]. J Fujian Agric For Univ, 2004, 33(2): 158-161.
    [16] ZIMMER C T, MÜLLER A, HEIMBACH U, et al. Target-site resistance to pyrethroid insecticides in German populations of the cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae)[J]. Pestic Biochem Physiol, 2014, 108: 1-7. doi: 10.1016/j.pestbp.2013.11.005
    [17] WILLIS C E, FOSTER S P, ZIMMER C T, et al. Investigating the status of pyrethroid resistance in UK populations of the cabbage stem flea beetle (Psylliodes chrysocephala)[J]. Crop Prot, 2020, 138: 105316. doi: 10.1016/j.cropro.2020.105316
    [18] 袁谷城, 边庆花, 王敏, 等. 手性甲基脂肪烃类昆虫素的合成研究进展[J]. 有机化学, 2021, 41(7): 2571-2587. doi: 10.6023/cjoc202103007

    YUAN G C, BIAN Q H, WANG M, et al. Research progress on the syntheses of chiral methyl-branched aliphatic hydrocarbons insect pheromones[J]. Chin J Org Chem, 2021, 41(7): 2571-2587. doi: 10.6023/cjoc202103007
    [19] PENG C, WEISS M J. Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae)[J]. J Chem Ecol, 1992, 18(6): 875-884. doi: 10.1007/BF00988328
    [20] PENG C, BARTELT R J, WEISS M J. Male crucifer flea beetles produce an aggregation pheromone[J]. Physiol Entomol, 1999, 24(1): 98-99. doi: 10.1046/j.1365-3032.1999.00113.x
    [21] 戴建青, 韩诗畴, 李军, 等. 黄板加信息素对黄曲条跳甲成虫的田间诱集作用[J]. 南方农业学报, 2013, 44(3): 422-425. doi: 10.3969/j:issn.2095-1191.2013.3.422

    DAI J Q, HAN S C LI J, et al. Trapping effect of yellow sticky board and semiochemicals on vegetable pests striped flea beetle (Phyllotreta striolata F. )[J]. J South Agric, 2013, 44(3): 422-425. doi: 10.3969/j:issn.2095-1191.2013.3.422
    [22] 刘彬, 徐嘉政, 田椿燕, 等. 不同色板及诱芯对黄曲条跳甲的诱集效果[J]. 中国植保导刊, 2021, 41(3): 54-56. doi: 10.3969/j.issn.1672-6820.2021.03.010

    LIU B, XU J Z, TIAN C Y, et al. Trapping effects of different color plates and luring cores on striped flea beetle (Phyllotreta striolata F. )[J]. China Plant Prot, 2021, 41(3): 54-56. doi: 10.3969/j.issn.1672-6820.2021.03.010
    [23] 刘晓梅, 凌冰, 张茂新. 跳甲聚集信息素的研究进展[J]. 环境昆虫学报, 2013, 35(5): 656-663. doi: 10.3969/j.issn.1674-0858.2013.05.16

    LIU X M, LING B, ZHANG M X. Research progress in aggregation pheromones of Alticinae[J]. J Environ Entomol, 2013, 35(5): 656-663. doi: 10.3969/j.issn.1674-0858.2013.05.16
    [24] BARTELT R J, COSSÉ A A, ZILKOWSKI B W, et al. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles[J]. J Chem Ecol, 2001, 27(12): 2397-2423. doi: 10.1023/A:1013667229345
    [25] BARTELT R J, ZILKOWSKI B W, COSSÉ A A, et al. Male-specific sesquiterpenes from Phyllotreta flea beetles[J]. J Nat Prod, 2011, 74(4): 585-595. doi: 10.1021/np100608p
    [26] TÓTH M, CSONKA E, BARTELT R J, et al. Similarities in pheromonal communication of flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chrysomelidae)[J]. J Appl Entomol, 2012, 136(9): 688-697. doi: 10.1111/j.1439-0418.2011.01702.x
    [27] BERAN F, JIMÉNEZ-ALEMÁN G H, LIN M Y, et al. The aggregation pheromone of Phyllotreta striolata (Coleoptera: Chrysomelidae) revisited[J]. J Chem Ecol, 2016, 42(8): 748-755. doi: 10.1007/s10886-016-0743-6
    [28] SOROKA J J, BARTELT R J, ZILKOWSKI B W, et al. Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials[J]. J Chem Ecol, 2005, 31(8): 1829-1843. doi: 10.1007/s10886-005-5929-2
    [29] TÓTH M, CSONKA E, BARTELT R J, et al. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate[J]. J Chem Ecol, 2005, 31(11): 2705-2720. doi: 10.1007/s10886-005-7621-y
    [30] ZILKOWSKI B W, BARTELT R J, COSSÉ A A, et al. Male-produced aggregation pheromone compounds from the eggplant flea beetle (Epitrix fuscula): identification, synthesis, and field biossays[J]. J Chem Ecol, 2006, 32(11): 2543-2558. doi: 10.1007/s10886-006-9163-3
    [31] ZILKOWSKI B W, BARTELT R J, VERMILLION K. Analysis of 2, 4, 6-nonatrienal geometrical isomers from male flea beetles, Epitrix hirtipennis and E. fuscula[J]. J Agric Food Chem, 2008, 56(13): 4982-4986. doi: 10.1021/jf8005273
    [32] 赵成华. 蛾类昆虫性信息素生物合成的研究进展[J]. 昆虫学报, 2000(4): 429-439. doi: 10.3321/j.issn:0454-6296.2000.04.013

    ZHAO C H. Research progress on biosynthesis of sex pheromones in moths[J]. Acta Entomol Sin, 2000(4): 429-439. doi: 10.3321/j.issn:0454-6296.2000.04.013
    [33] ZHANG S, LIU X, ZHU B, et al. Identification of differentially expressed genes in the pheromone glands of mated and virgin Bombyx mori by digital gene expression profiling[J]. PLoS One, 2014, 9(10): e111003. doi: 10.1371/journal.pone.0111003
    [34] BERAN F, RAHFELD P, LUCK K, et al. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle[J]. Proc Natl Acad Sci, 2016, 113(11): 2922-2927. doi: 10.1073/pnas.1523468113
    [35] MURAKI Y, TAGURI T, YAMAKAWA R, et al. Synthesis and field evaluation of stereoisomers and analogues of 5-methylheptadecan-7-ol, an unusual sex pheromone component of the lichen moth, Miltochrista calamina[J]. J Chem Ecol, 2014, 40(3): 250-258. doi: 10.1007/s10886-014-0405-5
    [36] TATSUTA K. Total synthesis and development of bioactive natural products[J]. Proc Jpn Acad, Ser B, 2008, 84(4): 87-106. doi: 10.2183/pjab.84.87
    [37] 单绍军, 哈成勇. 萜类化合物为手性源合成拒食剂研究进展[J]. 化学通报, 2004(7): 493-498. doi: 10.3969/j.issn.0441-3776.2004.07.005

    SHAN S Y, HA C Y. Progress in synthesis of antifeedants from terpenoids[J]. Chem Bull, 2004(7): 493-498. doi: 10.3969/j.issn.0441-3776.2004.07.005
    [38] KHARISOV R Y, LATYPOVA E R, TALIPOV R F, et al. (R)-4-menthenone in the synthesis of optically pure sex pheromone of the peach leafminer moth (Lyonetia clerkella)[J]. Russ Chem Bull, 2003, 52(10): 2267-2269. doi: 10.1023/B:RUCB.0000011889.58249.43
    [39] CROSBY J. Synthesis of optically active compounds: a large scale perspective[J]. Tetrahedron, 1991, 47(27): 4789-4846. doi: 10.1016/S0040-4020(01)80950-9
    [40] SCHLAMP K K, GRIES R, KHASKIN G, et al. Pheromone components from body scales of female Anarsia lineatella induce contacts by conspecific males[J]. J Chem Ecol, 2005, 31(12): 2897-2911. doi: 10.1007/s10886-005-8402-3
    [41] 王乃兴. 利用天然手性源合成复杂手性化合物的方法[J]. 中国科学: 化学, 2010, 40(4): 295-302. doi: 10.1360/zb2010-40-4-295

    WANG N X. The synthesis methods of complex chiral compounds by natural chiron[J]. Sci Sinica Chim: Chem, 2010, 40(4): 295-302. doi: 10.1360/zb2010-40-4-295
    [42] CHANDRASEKHAR S, VIJAYKUMAR B V D, PRATAP T V. Total synthesis of (-)-lentiginosine[J]. Tetrahedron Asymmetry, 2008, 19(6): 746-750. doi: 10.1016/j.tetasy.2008.02.017
    [43] MULZER J. Chiral pool synthesis: from α-amino acids and derivatives[J]. Compr Chirality, 2012, 2: 122-162.
    [44] 冯志强, 尹承烈. 以L-焦谷氨酸为手性源的不对称合成研究进展[J]. 化学通报, 1998(9): 17-24.

    FENG Z Q, YIN C L. Progress in asymmetric synthesis of L-pyroglutamic acid as chiral source[J]. Chem Bull, 1998(9): 17-24.
    [45] TEWARI N, MAHESHWARI N, MEDHANE R, et al. A novel method for the large scale synthesis of cinacalcet hydrochloride using iron catalyzed C-C coupling[J]. Org Process Res Dev, 2012, 16(9): 1566-1568. doi: 10.1021/op300164y
    [46] BIJUKUMAR G, MALOYESH B, BHASKAR B S, et al. Efficient synthesis of cinacalcet hydrochloride[J]. Synth Commun, 2008, 38(10): 1512-1517. doi: 10.1080/00397910801928541
    [47] 邵瑞链, 杨敏华. 天然手性源在光学活性菊酸合成中的应用[J]. 有机化学, 1993, 13(4): 347-353.

    SHAO R L, YANG M H. Application of natural chiral resources in synthesis of optical chrysanthemic acids and their analogues[J]. Chin J Org Chem, 1993, 13(4): 347-353.
    [48] HONDA T, NAITO K, YAMANE S, et al. Samarium(II) iodide promoted reductive fragmentation of γ-halo carbonyl compounds: Application to the enantiospecific synthesis of (-)-oudemansin A[J]. J Chem Soc, Chem Commun, 1992(17): 1218-1220.
    [49] BERAN F, MEWIS I, SRINIVASAN R, et al. Male Phyllotreta striolata (F.) produce an aggregation pheromone: identification of male-specific compounds and interaction with host plant volatiles[J]. J Chem Ecol, 2011, 37(1): 85-97. doi: 10.1007/s10886-010-9899-7
    [50] JIMENEZ-ALEMAN G H, SCHOENER T, MONTERO-ALEJO A L, et al. Improved synthesis of the chrysomelid pheromone (6R, 7S)-(+)-himachala-9, 11-diene via spontaneous bromination and didehydrobromination of 2, 6, 6, 9-tetramethyl-bicyclo[5.4. 0]undec-8-ene[J]. ARKIVOC, 2012(3): 371-378.
    [51] MUTO S-E, BANDO M, MORI K. Synthesis and stereochemistry of the four himachalene-type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidates[J]. Eur J Org Chem, 2004(9): 1946-1952.
    [52] SRIKRISHNA A, RAVI KUMAR P. Chiral synthons from carvone. Part 66. Enantiospecific first total synthesis of (+)-trans-α-himachalene[J]. Tetrahedron Lett, 2004, 45(37): 6867-6870. doi: 10.1016/j.tetlet.2004.07.103
    [53] DERWICH E, BENZIANE Z, BOUKIR A. Chemical composition and in vitro antibacterial activity of the essential oil of Cedrus atlantica[J]. Int J Agric Biol, 2010, 12(3): 381-385.
    [54] SATRANI B, ABERCHANE M, FARAH A, et al. Chemical composition and antimicrobial activity of essential oils extracted from fractional hydrodistillation of Cedrus atlantica Manetti wood[J]. Acta Bot Gallica, 2006, 153(1): 97-104. doi: 10.1080/12538078.2006.10515524
    [55] 喻世涛, 肖龙恩, 王萍, 等. 不同产地香茅草挥发性成分的GC-MS分析[J]. 香料香精化妆品, 2016(6): 5-8. doi: 10.3969/j.issn.1000-4475.2016.06.002

    YU S T, XIAO L E, WANG P, et al. Analysis of volatile components of Cymbopogon citratus from different habitats by GC-MS[J]. Flavour Frag Cosmet, 2016(6): 5-8. doi: 10.3969/j.issn.1000-4475.2016.06.002
    [56] STONE S C, VASCONCELLOS F A, LENARDÃO E J, et al. Evaluation of potential use of Cymbopogon sp. essential oils, (R)-citronellal and N-citronellylamine in cancer chemotherapy[J]. Int J Appl Res Nat Prod, 2013, 6(4): 11-15.
    [57] RAVID U, PUTIEVSKY E, KATZIR I, et al. Chiral GC analysis of (S) (+)- and (R) (−)-carvone with high enantiomeric purity in caraway, dill and spearmint oils[J]. Flavour Frag J, 1992, 7(5): 289-292. doi: 10.1002/ffj.2730070511
    [58] 康艳蕾, 苏璇, 唐法娣, 等. 留兰香油主要成分香芹酮和柠檬烯的GC含量测定及薄层鉴别[J]. 中华中医药学刊, 2014, 32(3): 661-664.

    KANG Y L, SU X, TANG F D, et al. Determination of main components of spearmint oil by GC and identification by TLC[J]. Chin Arch Tradit Chin Med, 2014, 32(3): 661-664.
    [59] AGGARWAL K K, KHANUJA S P S, AHMAD A, et al. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa[J]. Flavour Frag J, 2002, 17(1): 59-63. doi: 10.1002/ffj.1040
    [60] 迟玉广, 李中阳, 黄爱华, 等. 不同产地薄荷饮片中挥发性成分的比较分析[J]. 安徽医药, 2016, 20(9): 1661-1664. doi: 10.3969/j.issn.1009-6469.2016.09.013

    CHI Y G, LI Z Y, HUANG A H, et al. A comparative analysis of volatile components in Mentha haplocalyx Briq from different habitats[J]. Anhui Med Pharm J, 2016, 20(9): 1661-1664. doi: 10.3969/j.issn.1009-6469.2016.09.013
    [61] 孙文君, 于生, 单鸣秋, 等. GC-MS法测定荆芥挥发油中薄荷酮、胡薄荷酮含量[J]. 药学与临床研究, 2011, 19(6): 571-572. doi: 10.3969/j.issn.1673-7806.2011.06.029

    SUN W J, YU S, SHAN M Q, et al. Determination of menthone and ulegone in Schizoneeta by GC-MS[J]. Pharm Clin Res, 2011, 19(6): 571-572. doi: 10.3969/j.issn.1673-7806.2011.06.029
    [62] OPLE R S, HANDORE K L, KAMAT N S, et al. A total synthesis of (−)-nardoaristolone B[J]. Eur J Org Chem, 2016(22): 3804-3808.
    [63] DING R, FU J G, XU G Q, et al. Divergent total synthesis of the lycopodium alkaloids huperzine A, huperzine B, and huperzine U[J]. J Org Chem, 2014, 79(1): 240-250. doi: 10.1021/jo402419h
    [64] OVERBERGER C G, KAYE H. Syntheses of some optically active ε-caprolactones[J]. J Am Chem Soc, 1967, 89(22): 5640-5645. doi: 10.1021/ja00998a024
    [65] BARTELT R J, WEISLEDER D, MOMANY F A. Total synthesis of himachalene sesquiterpenes of Aphthona and Phyllotreta flea beetles[J]. Synthesis, 2003(1): 117-123. doi: 10.1055/s-2003-36253
    [66] PLA-QUINTANA A, ROGLANS A. Chiral induction in [2 + 2 + 2] cycloaddition reactions[J]. Asian J Org Chem, 2018, 7(9): 1706-1718. doi: 10.1002/ajoc.201800291
    [67] 刘双, 李玉明, 王典, 等. 手性诱导构建磷手性中心不对称合成有机磷功能化合物研究进展. 有机化学, 2018, 38(2): 341-349.

    LIU S, LI Y M, WANG D, et al. Research progress of asymmetric synthesis of optically active P-stereogenic organophosphoryl compounds by chiral induction [J]. Chin J Org Chem, 2018, 38(2): 341-349.
    [68] 李薇, 李云峰, 俞晓明. 氯霉素衍生噁唑烷酮的合成及其在aldol反应中的不对称诱导作用[J]. 有机化学, 2018, 38(2): 341-349. doi: 10.6023/cjoc201708040

    LI W, LI Y F, YU X M. Synthesis of oxazolidinone derivative from chloramphenicol and its asymmetric induction in aldol reaction[J]. Chin J Org Chem, 2018, 38(2): 341-349. doi: 10.6023/cjoc201708040
    [69] YUAN G C, YANG Y X, LIU J W, et al. Synthesis of the enantiomers of 13-methylheptacosane, the sex pheromone of pear psylla, Cacopsylla pyricola[J]. Chirality, 2021, 33(6): 274-280. doi: 10.1002/chir.23307
    [70] DIAZ-MUÑOZ G, MIRANDA I L, SARTORI S K, et al. Use of chiral auxiliaries in the asymmetric synthesis of biologically active compounds: a review[J]. Chirality, 2019, 31(10): 776-812. doi: 10.1002/chir.23103
    [71] MORI K. Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle: (R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform[J]. Tetrahedron Asymmetry, 2005, 16(3): 685-692. doi: 10.1016/j.tetasy.2004.11.077
    [72] EVANS D A, ENNIS M D, MATHRE D J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α-substituted carboxylic acid derivatives[J]. J Am Chem Soc, 1982, 104(6): 1737-1739. doi: 10.1021/ja00370a050
    [73] JIANG J J, WONG M K. Recent advances in the development of chiral gold complexes for catalytic asymmetric catalysis[J]. Chem Asian J, 2021, 16(5): 364-377. doi: 10.1002/asia.202001375
    [74] EZAWA T, SOHTOME Y, HASHIZUME D, et al. Dynamics in catalytic asymmetric diastereoconvergent (3+2) cycloadditions with isomerizable nitrones and α-keto ester enolates[J]. J Am Chem Soc, 2021, 143(24): 9094-9104. doi: 10.1021/jacs.1c02833
    [75] MAO J Y, LIU F P, WANG M, et al. Cobalt-bisoxazoline-catalyzed asymmetric Kumada cross-coupling of racemic α-bromo esters with aryl Grignard reagents[J]. J Am Chem Soc, 2014, 136(50): 17662-17668. doi: 10.1021/ja5109084
    [76] ZHOU Y, WANG L F, YUAN G C, et al. Cobalt-bisoxazoline-catalyzed enantioselective cross-coupling of α-bromo esters with alkenyl Grignard reagents[J]. Org Lett, 2020, 22(11): 4532-4536. doi: 10.1021/acs.orglett.0c01557
    [77] DAI X, STROTMAN N A, FU G C. Catalytic asymmetric Hiyama cross-couplings of racemic a-bromo esters [J]. J Am Chem Soc 2008, 130(11): 3302-3303.
    [78] GLORIUS F. Asymmetric cross-coupling of non-activated secondary alkyl halides[J]. Angew Chem Int Ed, 2008, 47(44): 8347-8349. doi: 10.1002/anie.200803509
    [79] WILSILY A, TRAMUTOLA F, OWSTON N A, et al. New directing groups for metal-catalyzed asymmetric carbon-carbon bond-forming processes: stereoconvergent alkyl-alkyl Suzuki cross-couplings of unactivated electrophiles[J]. J Am Chem Soc, 2012, 134(13): 5794-5797. doi: 10.1021/ja301612y
    [80] XU G Q, FU W Z, LIU G D, et al. Efficient syntheses of korupensamines A, B and michellamine B by asymmetric Suzuki-Miyaura coupling reactions[J]. J Am Chem Soc, 2014, 136(2): 570-573. doi: 10.1021/ja409669r
    [81] LIU F P, ZHONG J C, ZHOU Y, et al. Cobalt-catalyzed enantioselective Negishi cross-coupling of racemic α-bromo esters with arylzincs[J]. Chem - Eur J, 2018, 24(9): 2059-2064. doi: 10.1002/chem.201705463
    [82] SCHMIDT J, CHOI J, LIU A T, et al. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters[J]. Science, 2016, 354(6317): 1265-1269. doi: 10.1126/science.aai8611
    [83] SHAO H, CHAKRABARTY S, QI X, et al. Ligand conformational flexibility enables enantioselective tertiary C-B bond formation in the phosphonate-directed catalytic asymmetric alkene hydroboration[J]. J Am Chem Soc, 2021, 143(12): 4801-4808. doi: 10.1021/jacs.1c01303
    [84] YAMASHITA Y, NOGUCHI A, FUSHIMI S, et al. Chiral metal salts as ligands for catalytic asymmetric Mannich reactions with simple amides[J]. J Am Chem Soc, 2021, 143(15): 5598-5604. doi: 10.1021/jacs.0c13317
    [85] OETVOES S B, KAPPE C O. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates[J]. Green Chem, 2021, 23(17): 6117-6138. doi: 10.1039/D1GC01615F
    [86] 袁谷城, 刘嘉威, 于士航, 等. 美国白蛾性信息素(3Z,6Z,9S,10R)-9,10-环氧-3,6-二十一碳二烯的不对称合成[J]. 有机化学, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005

    YUAN G C, LIU J W, YU S H, et al. Asymmetric synthesis of (3Z,6Z,9S,10R)-9,10-epoxy-3, 6-heneicosadiene, sex pheromone component of Hyphantria cunea[J]. Chin J Org Chem, 2021, 41(11): 4437-4443. doi: 10.6023/cjoc202107005
    [87] WANG N Z, WU Z G, WANG J J, et al. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis[J]. Chem Soc Rev, 2021, 50(17): 9766-9793. doi: 10.1039/D0CS01124J
    [88] CHAVAN S P, KHATOD H S. Enantioselective synthesis of the essential oil and pheromonal component ar-himachalene by a chiral pool and chirality induction approach[J]. Tetrahedron Asymmetry, 2012, 23(18-19): 1410-1415. doi: 10.1016/j.tetasy.2012.09.008
    [89] SPIELMANN K, DE FIGUEIREDO R M, CAMPAGNE J M. Stereospecific hydrogenolysis of lactones: application to the total syntheses of (R)-ar-himachalene and (R)-curcumene[J]. J Org Chem, 2017, 82(9): 4737-4743. doi: 10.1021/acs.joc.7b00419
    [90] KHATUA A, PAL S, DAS M K, et al. Asymmetric total syntheses of (−)-ar-turmerone, (−)-dihydro-ar-turmerone, (−)-ar-dehydrocurcumene, and (−)-ar-himachalene via a key allylic oxidative rearrangement[J]. Tetrahedron Lett, 2021, 73: 153105. doi: 10.1016/j.tetlet.2021.153105
    [91] ZAITSEV A B, ADOLFSSON H. Recent developments in asymmetric dihydroxylations[J]. Synthesis, 2006(11): 1725-1756.
    [92] HERAVI M M, ZADSIRJAN V, ESFANDYARI M, et al. Applications of Sharpless asymmetric dihydroxylation in the total synthesis of natural products[J]. Tetrahedron Asymmetry, 2017, 28(8): 987-1043. doi: 10.1016/j.tetasy.2017.07.004
    [93] NEUMEYER M, BRUECKNER R. Nonracemic γ-lactones from the Sharpless asymmetric dihydroxylation of β, γ-unsaturated carboxylic esters[J]. Eur J Org Chem, 2016(30): 5060-5087.
    [94] MOREAU X, BAZÁN-TEJEDA B, CAMPAGNE J M. Catalytic and asymmetric vinylogous Mukaiyama reactions on aliphatic ketones: formal asymmetric synthesis of taurospongin A[J]. J Am Chem Soc, 2005, 127(20): 7288-7289. doi: 10.1021/ja051573k
    [95] LAINA-MARTIN V, HUMBRIAS-MARTIN J, FERNANDEZ-SALAS J A, et al. Asymmetric vinylogous Mukaiyama aldol reaction of isatins under bifunctional organocatalysis: enantioselective synthesis of substituted 3-hydroxy-2-oxindoles[J]. Chem Commun, 2018, 54(22): 2781-2784. doi: 10.1039/C8CC00759D
    [96] HOSOKAWA S, TATSUTA K. Asymmetric vinylogous Mukaiyama aldol reactions using vinylketene N, O-acetals in total syntheses of natural products[J]. Mini-Rev Org Chem, 2008, 5(1): 1-18. doi: 10.2174/157019308783498197
    [97] KALESSE M, CORDES M, SYMKENBERG G, et al. The vinylogous Mukaiyama aldol reaction (VMAR) in natural product synthesis[J]. Nat Prod Rep, 2014, 31(4): 563-594. doi: 10.1039/C3NP70102F
    [98] SAKUMA S, MIYAURA N. Rhodium(I)-catalyzed asymmetric 1, 4-addition of arylboronic acids to α, β-unsaturated amides[J]. J Org Chem, 2001, 66(26): 8944-8946. doi: 10.1021/jo010747n
    [99] YASUKAWA T, SUZUKI A, MIYAMURA H, et al. Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α, β-unsaturated carbonyl compounds[J]. J Am Chem Soc, 2015, 137(20): 6616-6623. doi: 10.1021/jacs.5b02213
    [100] TIAN X, TIAN H S. Roles of ethanol and Si-OH in the aldol condensation of ethyl acetate over a Cs/SBA-15 catalyst[J]. React Chem Eng, 2021, 6(6): 1002-1015. doi: 10.1039/D1RE00020A
    [101] DACH A, SCHIEBERLE P. Characterization of the key aroma compounds in a freshly prepared oat (Avena sativa L. ) pastry by application of the sensomics approach[J]. J Agric Food Chem, 2021, 69(5): 1578-1588. doi: 10.1021/acs.jafc.0c07498
    [102] ZHANG K, LU L Q, XIAO W J. Recent advances in the catalytic asymmetric alkylation of stabilized phosphorous ylides[J]. Chem Commun, 2019, 55(60): 8716-8721. doi: 10.1039/C9CC02831E
    [103] CHAVAN S P, KALBHOR D B, GONNADE R G. Divergent approach to the synthesis of (−)-balanol heterocycle and cis-3-hydroxypipecolic acid based on chiral 2-aminoalkanol equivalent[J]. Tetrahedron, 2021, 80: 131773. doi: 10.1016/j.tet.2020.131773
    [104] SCHUH C, SCHIEBERLE P. Characterization of (E, E, Z)-2, 4, 6-nonatrienal as a character impact aroma compound of oat flakes[J]. J Agric Food Chem, 2005, 53(22): 8699-8705. doi: 10.1021/jf051601i
    [105] PADILHA G, KAUFMAN T S, SILVEIRA C C. Wittig-Horner mediated synthesis of 4-vinyl sulfide derivatives of pyrazoles[J]. Tetrahedron Lett, 2016, 57(30): 3349-3353. doi: 10.1016/j.tetlet.2016.06.063
    [106] YANG Y X, WANG L, CHEN Y, et al. One-pot synthesis of α, α-disubstituted aryl-1-ethanones via the Wittig-Horner reaction[J]. Phosphorus, Sulfur Silicon Relat Elem, 2018, 193(3): 121-126. doi: 10.1080/10426507.2017.1415899
    [107] PETROSKI R J. Straightforward preparation of (2E, 4Z)-2, 4-heptadien-1-ol and (2E, 4Z)-2, 4-heptadienal[J]. Synth Commun, 2003, 33(18): 3233-3241. doi: 10.1081/SCC-120023447
    [108] KWONG C K W, FU M Y, LAM C S L, et al. The phosphine-catalyzed alkyne to 1, 3-diene isomerization reaction[J]. Synthesis, 2008(15): 2307-2317.
    [109] BLUET G, CAMPAGNE J M. Towards the total synthesis of octalactin A[J]. Synlett, 2000(1): 221-222.
    [110] MATSUO K, SAKAGUCHI Y. Enantioselective synthesis of (−)-vertinolide[J]. Chem Pharm Bull, 1997, 45(10): 1620-1625. doi: 10.1248/cpb.45.1620
    [111] XIA X S, LAO Z Q, TOY P H. Triphenylphosphine oxide-catalyzed selective α, β-reduction of conjugated polyunsaturated ketones[J]. Synlett, 2019, 30(9): 1100-1104. doi: 10.1055/s-0037-1611537
  • 加载中
图(18)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  51
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 录用日期:  2021-11-04
  • 网络出版日期:  2021-12-16
  • 刊出日期:  2022-04-10

目录

    /

    返回文章
    返回