Determination of 30 organophosphorus pesticides in eight famous herbals in Zhejiang(Zhebawei) by liquid chromatography-tandem mass spectrometry
-
摘要: 建立了浙八味中30种有机磷 (OPPs)农药残留分析的检测方法。针对中草药基质复杂、净化难度大的问题,采用纳米材料二氧化锆 (nano-ZrO2)和介孔分子筛 (MCM-41)作为分散固相萃取 (d-SPE)净化吸附剂,以延胡索为代表基质对净化过程进行系统的优化,并采用液相色谱-串联质谱 (LC-MS/MS)进行分析。结果表明:以30 mg nano-ZrO2和50 mg MCM-41为净化吸附剂时,延胡索基质中,除苯腈磷、敌百虫 (0.002 ~ 0.25 mg/L)和敌敌畏 (0.005 ~ 0.25 mg/L)外,各农药在0.001 ~ 0.25 mg/L范围内线性关系良好,相关系数 (r)均大于0.99。方法定量限 (LOQ)除敌敌畏 (0.050 mg/kg)外,均为0.010 mg/kg。8种基质在0.05 mg/kg添加水平下,除倍硫磷和敌敌畏外,其余农药平均回收率范围为64 % ~ 125 %,相对标准偏差 (RSDs)在0.05% ~ 11%之间。该方法简单、快速、准确、重现性好,并且在浙八味中有较好的适用性,弥补了浙八味中有机磷农药残留检测技术缺乏的空白。
-
关键词:
- 液相色谱-串联质谱:浙八味 /
-
/ - 有机磷农药 /
- QuEChERS /
- 农药多残留 /
- 中药材
Abstract: A method for simultaneous determination of 30 organophosphorus pesticides in eight famous herbals in Zhejiang (called Zhebawei) was established. Considering the complexity of Chinese herbal medicine and difficulty in purification, nano-ZrO2 and mesoporous molecular sieve MCM-41 were selected as dispersive solid phase extraction (d-SPE) cleanup adsorbents. The cleanup process was systematically optimized with Corydalis as the representative matrix, and combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The results showed that using 30 mg nano-ZrO2 and 50 mg MCM-41 as d-SPE cleanup adsorbents, the linearity for the pesticides was good in the concentration range of 0.001-0.25 mg/L and the correlation coefficient (r) was greater than 0.99, except for cyanofenphos, trichlorphon (0.002-0.25 mg/L) and dichlorvos (0.005-0.25 mg/L). The limit of quantitation (LOQ) was 0.010 mg/kg except for dichlorvos (0.050 mg/kg). Except for fenthion and dichlorvos, the average recoveries of the pesticides in the eight herbal samples ranged from 64 % to 125 % at spiking level of 0.05 mg/kg, and the relative standard deviations (RSDs) ranged from 0.05 % to 11 %. The method is simple, rapid, accurate and reproducible, and has good applicability in the eight herbals in Zhejiang, which makes up for the lack of detection technology of organophosphorus pesticide residues in eight herbals of Zhejiang. -
表 1 30种有机磷农药多级反应监测分析参数
Table 1. MRM parameters for residue analysis of 30 OPPs
编号
No.化合物
Compound保留时间
Retention time/min前体离子
Parent ion, m/z产物离子
Product ion, m/zQ1偏差
Q1 pre-rod/V碰撞电压
CE/ VQ3偏差
Q3 pre-rod/V1 倍硫磷 fenthion 4.985 279.2 169.0*;247.0 −30;−30 −17;−12 −18;−18 2 苯腈磷 cyanofenphos 4.753 304.1 77.25*;122.2 −20;−11 −60;−19 −16;−25 3 苯线磷 fenamiphos 4.753 304.1 217.1*;202.0 −15;−15 −22;−36 −23;−21 4 丙硫磷 prothiophos 6.498 344.8 240.9*;275.0 −17;−17 −18;−13 −26;−30 5 丙溴磷 profenofos 5.560 372.9 302.8*;345.0 −18;−18 −19;−12 −30;−24 6 除线磷 dichlofenthion 5.816 315.0 258.8*;286.9 −27;−27 −16;−11 −28;−20 7 哒嗪硫磷 pyridaphenthion 4.494 341.1 189.1*;205.1 −17;−23 −22;−22 −20;−22 8 敌百虫 trichlorfon 3.202 256.9 108.9*;220.8 −29;−29 −17;−10 −19;−23 9 敌敌畏 dichlorvos 3.784 221.0 109.1*;79.1 −23;−23 −16;−27 −11;−30 10 敌瘟磷 edifenphos 4.921 311.0 282.9*;111.0 −24;−24 −13;−21 −30;−21 11 毒死蜱 chlorpyrifos 5.888 351.9 199.9*;96.9 −27;−27 −18;−33 −21;−18 12 二嗪磷 diazinon 5.022 305.0 169.1*;153.1 −30;−30 −19;−20 −18;−16 13 伏杀硫磷 phosalone 5.103 368.0 182.0*;111.0 −30;−30 −14;−39 −19;−20 14 甲拌磷 phorate 5.189 261.0 75.0*;143.0 −29;−29 −10;−18 −30;−15 15 久效磷 monocrotophos 2.749 224.1 127.0*;193.0 −25;−25 −15;−8 −13;−20 16 乙丙硫磷 sulprofos 5.902 322.9 219.0*;139.2 −16;−16 −16;−30 −16;−15 17 硫线磷 cadusafos 5.302 271.1 159.0*;97.0 −30;−30 −14;−37 −29;−18 18 马拉硫磷 malathion 4.442 331.0 127.0*;99.0 −17;−17 −12;−23 −13;−18 19 马拉氧磷 malaoxon 3.765 314.9 98.9*;127.0 −15;−15 −24;−13 −19;−23 20 嘧啶磷 pirimiphos-ethyl 5.693 334.1 198.0*;182.1 −25;−25 −22;−22 −21;−19 21 三唑磷 triazophos 4.527 314.1 162.1*;119.1 −23;−23 −19;−35 −17;−21 22 杀虫畏 tetrachlorvinphos 4.829 364.9 127.0*;203.9 −27;−27 −14;−38 −13;−21 23 杀扑磷 methidathion 4.223 303.0 145.0*;85.1 −21;−21 −8;−22 −15;−30 24 双硫磷 temephos 5.567 467.0 419.0*;341.0 −23;−23 −19;−32 −30;−24 25 特丁硫磷 terbufos 5.645 289.0 103.1*;57.1 −14;−14 −9;−24 −18;−24 26 辛硫磷 phoxim 5.034 299.0 77.1*;129.1 −30;−30 −26;−10 −30;−13 27 亚胺硫磷 phosemet 4.252 318.0 160.0*;77.1 −16;−16 −13;−54 −17;−30 28 氧乐果 omethoate 2.329 214.1 183.0*;155.0 −15;−23 −23;−14 −15;−28 29 乙酰甲胺磷 acephate 2.238 184.2 143.0*;95.0 −20;−20 −8;−23 −15;−16 30 蝇毒磷 coumaphos 4.969 363.0 227.0*;307.1 −18;−18 −26;−18 −23;−21 注:*定量离子。Note: *quantitative ion. 表 2 延胡索中30种有机磷的回归方程、相关系数(r)、基质效应、线性范围及检出限
Table 2. Method validation of the linearity, correlation coefficients (r), matrix effects, linear range, and LODs of the 30 OPPs in Rhizoma Corydalis
化合物
Compound标准溶液
Standard solution回归方程
Regression equation相关系数
r基质效应
Matrix effects线性范围/mg/L
Linear range检出限
LOD/mg/L倍硫磷 fenthion 基质 Matrix y = 11186.5 x + 64206.7 0.9996 0.27 0.001 ~ 0.25 0.00038 溶剂 Solvent y = 41100.0 x + 156743 0.9990 0.001 ~ 0.25 苯腈磷 cyanofenphos 基质 Matrix y = 6712.28 x + 9725.17 0.9992 0.16 0.002 ~ 0.25 0.0016 溶剂 Solvent y = 41650.4 x + 46306.8 0.9998 0.002 ~ 0.25 苯线磷 fenamiphos 基质 Matrix y = 85388.9 x + 16795.6 0.9996 0.14 0.001 ~ 0.25 0.00045 溶剂 Solvent y = 599509 x + 278328 0.9998 0.001 ~ 0.25 丙硫磷 prothiophos 基质 Matrix y = 31005.3 x + 56113.3 0.9996 0.50 0.001 ~ 0.25 0.00053 溶剂 Solvent y = 62080.8 x + 42838.6 0.9998 0.001 ~ 0.25 丙溴磷 profenofos 基质 Matrix y = 44979.0 x + 22741.5 0.9998 0.50 0.001 ~ 0.25 0.00051 溶剂 Solvent y = 90314.6 x + 99936.6 0.9997 0.001 ~ 0.25 除线磷 dichlofenthion 基质 Matrix y = 17313.0 x + 34036.4 0.9998 0.62 0.001 ~ 0.25 0.00071 溶剂 Solvent y = 27940.4 x - 1752.36 0.9998 0.001 ~ 0.25 哒嗪硫磷 pyridaphenthion 基质 Matrix y = 102202 x + 968791 0.9997 0.31 0.001 ~ 0.25 0.00050 溶剂 Solvent y = 334406 x + 305843 0.9996 0.001 ~ 0.25 敌百虫 trichlorphon 基质 Matrix y = 6983.58 x + 16255.9 0.9998 0.53 0.002 ~ 0.25 0.0014 溶剂 Solvent y = 13295.1 x - 36878.2 0.9987 0.002 ~ 0.25 敌敌畏 dichlorvos 基质 Matrix y = 3750.36 x + 8692.80 0.9997 0.36 0.005 ~ 0.25 0.0026 溶剂 Solvent y = 10361.8 x + 14173.9 0.9996 0.005 ~ 0.25 敌瘟磷 edifenphos 基质 Matrix y = 750668 x - 43055.8 0.9999 0.24 0.001 ~ 0.25 0.00039 溶剂 Solvent y = 3106700 x - 118601 0.9997 0.001 ~ 0.25 毒死蜱 chlorpyrifos 基质 Matrix y = 27616.8 x + 209187 0.9998 0.40 0.001 ~ 0.25 0.00067 溶剂 Solvent y = 68940.7 x + 22862.0 0.9999 0.001 ~ 0.25 二嗪磷 diazinon 基质 Matrix y = 87125.4 x + 40800.7 0.9999 0.31 0.001 ~ 0.25 0.00021 溶剂 Solvent y = 284411 x + 112947 0.9999 0.001 ~ 0.25 伏杀硫磷 phosalone 基质 Matrix y = 13279.8 x + 1655.59 0.9999 0.12 0.001 ~ 0.25 0.00059 溶剂 Solvent y = 111449 x + 106651 0.9998 0.001 ~ 0.25 甲拌磷 phorate 基质 Matrix y = 7245.59 x + 2553.84 0.9998 0.16 0.001 ~ 0.25 0.00058 溶剂 Solvent y = 45622.5 x + 26065.4 0.9999 0.001 ~ 0.25 久效磷 monocrotophos 基质 Matrix y = 9066.93 x + 4349.27 0.9998 0.25 0.001 ~ 0.25 0.0010 溶剂 Solvent y = 36960.4 x + 24774.2 0.9993 0.001 ~ 0.25 乙丙硫磷 sulprofos 基质 Matrix y = 17865.6 x + 18199.5 0.9999 0.29 0.001 ~ 0.25 0.00048 溶剂 Solvent y = 61161.1 x + 19350.2 0.9998 0.001 ~ 0.25 硫线磷 cadusafos 基质 Matrix y = 213565 x + 63957.6 0.9999 0.40 0.001 ~ 0.25 0.00046 溶剂 Solvent y = 537674 x - 165154 0.9999 0.001 ~ 0.25 马拉硫磷 malathion 基质 Matrix y = 25105.2 x + 11069.0 0.9998 0.19 0.001 ~ 0.25 0.00092 溶剂 Solvent y = 134823 x + 52546.8 0.9999 0.001 ~ 0.25 马拉氧磷 malaoxon 基质 Matrix y = 257712 x + 64825.1 0.9998 0.30 0.001 ~ 0.25 0.00016 溶剂 Solvent y = 859152 x + 372042 0.9998 0.001 ~ 0.25 嘧啶磷 pirimiphos-ethyl 基质 Matrix y = 397456 x + 35639.9 0.9999 0.51 0.001 ~ 0.25 0.00014 溶剂 Solvent y = 781657 x - 267204 0.9997 0.001 ~ 0.25 三唑磷 triazophos 基质 Matrix y = 289410 x + 122747 0.9999 0.31 0.001 ~ 0.25 0.00013 溶剂 Solvent y = 929411 x - 228026 0.9999 0.001 ~ 0.25 杀虫畏 tetrachlorvinphos 基质 Matrix y = 8073.80 x - 1514.11 0.9999 0.12 0.001 ~ 0.25 0.00094 溶剂 Solvent y = 67348.3 x + 102981 0.9997 0.001 ~ 0.25 杀扑磷 methidathion 基质 Matrix y = 13872.9 x + 1968.04 0.9999 0.22 0.001 ~ 0.25 0.00031 溶剂 Solvent y = 63367.9 x + 54929.0 0.9995 0.001 ~ 0.25 双硫磷 temephos 基质 Matrix y = 23922.2 x + 67354.1 0.9997 0.63 0.001 ~ 0.25 0.00055 溶剂 Solvent y = 38083.5 x + 64683.7 0.9997 0.001 ~ 0.25 特丁硫磷 terbufos 基质 Matrix y = 15305.8 x + 176447 0.9998 0.43 0.001 ~ 0.25 0.00091 溶剂 Solvent y = 35899.8 x + 136459 0.9998 0.001 ~ 0.25 辛硫磷 phoxim 基质 Matrix y = 21771.8 x + 24226.9 0.9999 0.18 0.001 ~ 0.25 0.00053 溶剂 Solvent y = 119213 x + 122252 0.9997 0.001 ~ 0.25 亚胺硫磷 phosemet 基质 Matrix y = 71042.2 x + 46146.5 0.9998 0.24 0.001 ~ 0.25 0.00027 溶剂 Solvent y = 300883 x + 25401.3 0.9999 0.001 ~ 0.25 氧乐果 omethoate 基质 Matrix y = 46401.9 x + 826062 0.9996 0.81 0.001 ~ 0.25 0.00039 溶剂 Solvent y = 57136.3 x + 62540.0 0.9994 0.001 ~ 0.25 乙酰甲胺磷 acephate 基质 Matrix y = 55667.2 x + 52404.0 0.9999 0.56 0.001 ~ 0.25 0.00044 溶剂 Solvent y = 99817.4 x + 161494 0.9990 0.001 ~ 0.25 蝇毒磷 coumaphos 基质 Matrix y = 66053.1 x + 43518.5 0.9999 0.30 0.001 ~ 0.25 0.00023 溶剂 Solvent y = 218234 x + 467439 0.9996 0.001 ~ 0.25 表 3 延胡索中30种有机磷在不同添加水平下的回收率及相对标准偏差(n=3)
Table 3. Recoveries and RSDs of the 30 OPPs in Rhizoma Corydalis at different spiking levels (n=3)
化合物
Compound0.010 mg/kg 0.050 mg/kg 0.10 mg/kg 回收率
Recovery/%相对标准偏差
RSD/%回收率
Recovery/%相对标准偏差
RSD/%回收率
Recovery/%相对标准偏差
RSD/%倍硫磷 fenthion 99 5.9 108 0.7 105 1.9 苯腈磷 cyanofenphos 100 6.4 107 2.3 97 1.9 苯线磷 fenamiphos 104 2.9 108 1.8 96 2.1 乙丙硫磷 sulprofos 107 12 110 2.2 114 0.8 丙溴磷 profenofos 100 8.6 111 1.5 98 1.7 除线磷 dichlofenthion 107 2.7 109 5.8 99 0.4 哒嗪硫磷 pyridaphenthion 107 1.8 108 6.1 92 5.2 敌百虫 trichlorphon 93 10 101 7.2 96 2.2 敌敌畏 dichlorvos -- -- 103 6.2 94 1.7 敌瘟磷 edifenphos 97 3.1 104 0.9 96 2.1 毒死蜱 chlorpyrifos 97 2.7 108 3.3 94 1.2 二嗪磷 diazinon 107 3.4 108 3.9 95 2.0 伏杀硫磷 phosalone 102 3.7 112 1.1 102 3.1 甲拌磷 phorate 105 4.2 112 2.9 96 2.1 久效磷 monocrotophos 92 12 84 2.7 95 0.8 硫丙磷 bolstar 103 17 108 5.3 99 1.6 硫线磷 cadusafos 101 2.3 116 0.5 97 0.3 马拉硫磷 malathion 96 4.9 117 3.3 97 5.7 马拉氧磷 malaoxon 103 2.8 107 2.9 94 0.7 嘧啶磷 pirimiphos-ethyl 103 1.9 107 2.5 94 0.9 三唑磷 triazophos 102 5.8 113 3.0 100 3.2 杀虫畏 tetrachlorvinphos 97 9.7 114 0.6 93 4.5 杀扑磷 methidathion 100 17 94 11.0 96 13 双硫磷 temephos 107 2.0 114 0.9 98 1.5 特丁硫磷 terbufos 107 1.4 109 0.7 97 2.0 辛硫磷 phoxim 99 3.9 114 3.4 96 4.1 亚胺硫磷 phosemet 102 8.4 117 1.6 97 6.3 氧乐果 omethoate 100 2.0 88 0.5 104 2.0 乙酰甲胺磷 acephate 81 2.7 79 0.7 90 3.2 蝇毒磷 coumaphos 93 2.3 103 1.7 95 0.8 注:--表示未检出。Note: -- indicates not detected. 表 4 白芍、浙贝母、玄参、郁金、白术、麦冬和杭白菊中30种有机磷农药在添加水平为0.050 mg/kg下的回收率 (n=3)
Table 4. Recoveries of the 30 OPPs in Radix Paeoniae Alba, Bulbus Fritillariae Thunbergii, Radix Scrophulariae, Radix Curcumae, Rhizoma Atractylodis Macrocephalae, Radix Ophiopogonis, and Dendranthema Morifolium samples at spiked concentration of 0.050 mg/kg (n=3)
化合物
Compound白芍
Radix Paeoniae Alba浙贝母
Bulbus Fritillariae Thunbergii玄参
Radix Scrophulariae郁金
Radix Curcumae白术
Rhizoma Atractylodis Macrocephalae麦冬
Radix Ophiopogonis杭白菊
Dendranthema Morifolium回收率/
%RSD/
%回收率/
%RSD/
%回收率/
%RSD/
%回收率/
%RSD/
%回收率/
%RSD/
%回收率/
%RSD/
%回收率/
%RSD/
%倍硫磷
fenthion110 4.0 96 7.9 101 0.91 -- -- 113 5.2 101 5.3 -- -- 苯腈磷
cyanofenphos104 1.5 96 0.89 96 3.0 103 2.7 96 0.59 102 3.5 108 3.3 苯线磷
fenamiphos104 2.6 96 2.0 95 2.5 98 3.2 97 0.57 103 1.4 114 3.6 丙硫磷
prothiophos100 11 105 4.8 110 7.4 105 3.5 106 4.7 119 8.5 92 0.43 丙溴磷
profenofos117 0.74 104 2.2 112 2.0 108 4.1 106 4.6 111 1.9 102 4.6 除线磷
dichlofenthion106 2.3 108 9.1 99 7.6 97 4.2 108 7.7 114 3.1 99 4.1 哒嗪硫磷
pyridaphenthion108 1.9 104 0.89 110 3.6 108 2.4 103 2.4 116 2.3 121 0.31 敌百虫
trichlorphon99 3.8 98 5.6 104 5.1 104 4.7 95 4.3 113 0.60 112 0.91 敌敌畏
dichlorvos105 4.3 108 2.1 -- -- -- -- 98 4.9 -- -- 104 7.5 敌瘟磷
edifenphos103 0.65 103 2.0 110 1.6 105 2.5 103 1.5 110 2.3 115 3.0 毒死蜱
chlorpyrifos113 3.0 102 6.9 108 0.94 103 4.8 99 5.6 110 1.8 97 1.6 二嗪磷
diazinon104 1.7 102 5.3 107 3.6 103 5.1 97 2.9 103 3.2 108 0.81 伏杀硫磷
phosalone114 4.6 104 1.2 116 4.1 103 0.93 99 5.0 111 1.7 117 0.31 甲拌磷
phorate116 0.35 120 1.2 114 2.2 107 5.2 114 0.69 118 1.1 105 0.68 久效磷
monocrotophos80 5.2 80 5.0 86 1.5 84 1.7 81 1.0 89 1.2 90 0.83 乙丙硫磷
sulprofos112 5.7 102 3.7 107 5.1 97 8.1 102 1.2 112 2.2 98 1.4 硫线磷
cadusafos111 3.0 106 2.7 114 2.9 109 4.2 104 1.7 116 1.0 119 1.4 马拉硫磷
malathion104 1.4 103 2.2 101 2.6 106 1.7 91 1.3 120 4.5 108 0.65 马拉氧磷
malaoxon106 1.6 98 2.3 105 3.5 109 3.4 103 1.1 110 0.85 104 0.26 嘧啶磷
pirimiphos-ethyl84 4.1 83 8.0 80 3.0 77 4.7 71 4.1 80 3.2 70 7.3 三唑磷
triazophos109 2.1 101 1.8 110 2.0 110 4.4 102 1.7 117 0.87 118 0.55 杀虫畏
tetrachlorvinphos107 1.4 105 3.4 105 3.9 100 2.3 106 3.1 114 4.3 106 2.9 杀扑磷
methidathion107 4.0 94 3.2 106 3.4 100 3.2 105 1.3 116 4.2 106 1.5 双硫磷
temephos116 2.7 105 3.5 116 1.1 101 3.9 109 7.8 114 5.6 110 2.0 特丁硫磷
terbufos108 0.34 98 8.2 108 1.3 102 1.0 97 6.1 105 4.3 108 0.67 辛硫磷
phoxim113 1.4 105 2.7 110 2.0 101 3.5 104 2.9 106 2.0 103 3.3 亚胺硫磷
phosemet108 4.6 123 1.5 120 1.4 121 5.2 125 3.2 112 3.6 109 0.52 氧乐果
omethoate65 2.0 70 2.8 66 2.4 69 2.0 65 0.50 70 1.5 68 0.50 乙酰甲胺磷
acephate69 2.1 66 2.1 66 0.51 70 2.3 65 0.57 71 2.2 70 1.1 蝇毒磷
coumaphos112 2.7 109 4.3 112 1.5 98 3.7 101 5.9 113 0.52 107 0.049 表 5 实际样品的残留测定结果
Table 5. The concentrations of pesticide residues in real samples
样品
Sample批次
Batch检出农药残留量
Pesticide detection/(mg/kg)丙溴磷
profenofos毒死蜱
chlorpyrifos马拉硫磷
malathion三唑磷
triazophos辛硫磷
phoxim浙贝母
Bulbus
Fritillariae
Thunbergii1 0.038 2 0.021 3 0.021 麦冬
Radix
Ophiopogonis4 0.027 5 0.027 0.015 6 0.049 杭白菊
Dendranthema
Morifolium7 0.019 8 0.018 9 0.012 10 0.017 0.028 11 0.020 0.26 12 0.0090 0.044 13 0.023 0.15 14 0.016 0.038 15 0.013 0.16 -
[1] 黄卫平, 唐红芳, 金锋, 等. “浙八味”药材重金属和有机氯农药残留分析[J]. 中华中医药学刊, 2013, 31(3): 624-627.HUANG W P, TANG H F, JIN F, et al. Determination of residues of heavy metal and organochlorine pesticides in eight famous herbal drugs in Zhejiang[J]. Chin Arch Tradit Chin Med, 2013, 31(3): 624-627. [2] 范明明, 张嘉裕, 张湘龙, 等. 麦冬的化学成分和药理作用研究进展[J]. 中医药信息, 2020, 37(4): 130-134.FAN M M, ZHANG J Y, ZHANG X L, et al. Research progress on chemical components and pharmacological action of Radix ophiopogonis[J]. Inf Tradit Chin Med, 2020, 37(4): 130-134. [3] 李翎熙, 陈迪路, 周小江. 玄参化学成分、药理活性研究进展及其质量标志物分析预测[J]. 中成药, 2020, 42(9): 2417-2426. doi: 10.3969/j.issn.1001-1528.2020.09.032LI L X, CHEN D L, ZHOU X J. Research progress on chemical constituents and pharmacological activities of Radix scrophulariae and analysis of prediction of quality markers[J]. Chin Tradit Pat Med, 2020, 42(9): 2417-2426. doi: 10.3969/j.issn.1001-1528.2020.09.032 [4] WANG Y, GAO S M, LI R, et al. Antidepressant-like effects of the Radix Bupleuri and Radix Paeoniae Alba drug pair[J]. Neurosci Lett, 2016, 633: 14-20. doi: 10.1016/j.neulet.2016.09.001 [5] 邢敏, 毛敬洁, 陈文列, 等. 芍药苷干预阿尔茨海默病作用机制研究进展[J]. 中草药, 2019, 50(4): 1022-1026. doi: 10.7501/j.issn.0253-2670.2019.04.034XING M, MAO J J, CHEN W L, et al. Progress in interventional mechanism of paeoniflorin on Alzheimer's disease[J]. Chin Tradit Herb Drugs, 2019, 50(4): 1022-1026. doi: 10.7501/j.issn.0253-2670.2019.04.034 [6] 李尧, 贾睿, 杜金梁, 等. 白芍提取物对罗非鱼氧化损伤的保护作用[J]. 淡水渔业, 2019, 49(4): 62-68. doi: 10.3969/j.issn.1000-6907.2019.04.010LI Y, JIA R, DU J L, et al. Protective effects of Paeoniae Alba Radix extract on oxidative stress in Oreochromis niloticus[J]. Freshw Fish, 2019, 49(4): 62-68. doi: 10.3969/j.issn.1000-6907.2019.04.010 [7] LI X, WANG M, ZHAO J, et al. Ultrasound-assisted emulsification liquid phase microextraction method based on deep eutectic solvent as extraction solvent for determination of five pesticides in traditional Chinese medicine[J]. J Pharm Biomed Anal, 2019, 166: 213-221. doi: 10.1016/j.jpba.2019.01.018 [8] 中国农业信息网. 农药登记数据[DB/OL]. [2021-08-01]. http://www.chinapesticide.org.cn/hysj/index.jhtml.China Pesticide Information Netword. Pesticide registration data [DB/OL]. [2021-08-01]. http://www.chinapesticide.org.cn/hysj/index.jhtml. [9] 戴德江, 沈颖, 沈瑶, 等. 浙产特色中药材病虫害化学防治的研究进展[J]. 农药学学报, 2019, 21(Z1): 759-771.DAI D J, SHEN Y, SHEN Y, et al. Research progress on chemical control for main disease and insect pests of characteristic Chinese herbal medicines in Zhejiang Province[J]. Chin J Pestic Sci, 2019, 21(Z1): 759-771. [10] 吴加伦, 邹耀华, 黄国洋, 等. 浙八味中药材中农药残留调查及控制对策[J]. 农药科学与管理, 2008, 29(5): 16-21. doi: 10.3969/j.issn.1002-5480.2008.05.005WU J L, ZOU Y H, HUANG G Y, et al. Survey and control of pesticide residues in eight Chinese crude drugs of Zhejiang Province[J]. Pestic Sci Adm, 2008, 29(5): 16-21. doi: 10.3969/j.issn.1002-5480.2008.05.005 [11] LIU X Q, TONG L, MENG W T, et al. Determination of 99 pesticide residues in Paeoniae Radix Alba by gas chromatography-triple quadrupole tandem mass spectrometry[J]. Chin J Chromatogr, 2015, 33(8): 869-877. doi: 10.3724/SP.J.1123.2015.04005 [12] 沈旭, 陈晓辉, 果德安, 等. 中空纤维液相微萃取-气相色谱法测定白芍中20种农药残留[J]. 药物分析杂志, 2009, 29(10): 1745-1748.SHEN X, CHEN X H, GUO D A, et al. Determination of 20 pesticide residues in Radix Paeoniae Alba. by hollow fiber-based liquid phase microextraction coupled with gas chromatography[J]. Chin J Pharm Anal, 2009, 29(10): 1745-1748. [13] 王倩, 朱艳春, 李婷婷, 等. GC-MS/MS法同时测定白芍、黄芪、猫爪草和山茱萸中69种农药的残留量[J]. 中国药房, 2019, 30(20): 2829-2834.WANG Q, ZHU Y C, LI T T, et al. Determination of 69 kinds of pesticide residues in Paeonia tactilora, Astragalus membranaceus, Ranunculus ternatus and Cornus officinalis by GC-MS/MS[J]. China Pharm, 2019, 30(20): 2829-2834. [14] WANG S, QI P, DI S, et al. Significant role of supercritical fluid chromatography - mass spectrometry in improving the matrix effect and analytical efficiency during multi-pesticides residue analysis of complex Chrysanthemum samples[J]. Anal Chim Acta, 2019, 1074: 108-116. doi: 10.1016/j.aca.2019.04.063 [15] 刘佳铭, 李雯婷, 陈铭, 等. 高效液相色谱-串联质谱法测定中药材麦冬中74种农药残留[J]. 分析试验室, 2020, 39(7): 826-833.LIU J M, LI W T, CHEN M, et al. Determination of 74 pesticide residues in Radix Ophiopogonis by high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Lab, 2020, 39(7): 826-833. [16] GUO X J, GAO Z H, WANG J X, et al. Purification of tertiary and quaternary alkaloids from Rhizoma Corydalis using reversed-phase/weak cation-exchange mixed-mode class separation combined with preparative C18 and silica based strong cation-exchange chromatography[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2019, 1126-1127: 121742. doi: 10.1016/j.jchromb.2019.121742 [17] GUO Y, FU R, QIAN Y, et al. Comprehensive screening and identification of natural inducible nitric oxide synthase inhibitors from Radix Ophiopogonis by off-line multi-hyphenated analyses[J]. J Chromatogr A, 2019, 1592: 55-63. doi: 10.1016/j.chroma.2019.01.029 [18] YIN G, CHENG X, TAO W, et al. Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS[J]. J Pharm Biomed Anal, 2018, 148: 224-229. doi: 10.1016/j.jpba.2017.09.015 [19] CHEN Y S, WANG E P, WEI Z H, et al. Phytochemical analysis, cellular antioxidant and α-glucosidase inhibitory activities of various herb plant organs[J]. Ind Crops Prod, 2019, 141: 111771. doi: 10.1016/j.indcrop.2019.111771 [20] CHEN W J, ZENG M N, LI M, et al. Four new sesquiterpenoids from Dendranthema morifolium (Ramat. ) Kitam flowers[J]. Phytochem Lett, 2018, 23: 52-56. doi: 10.1016/j.phytol.2017.11.009 [21] YANG L, JIANG H, GUO X, et al. Quantitative analysis of different batches of raw, wine-processed, and vinegar-processed Paeoniae Alba Radix using ultra-performance convergence chromatography coupled with photo diode array detection[J]. Biomed Chromatogr, 2019, 33(6): e4485. doi: 10.1002/bmc.4485 [22] XUE W, GAO Y, LI Q, et al. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide from Atractylodis macrocephalae Koidz[J]. Int J Biol Macromol, 2020, 161: 514-524. doi: 10.1016/j.ijbiomac.2020.06.003 [23] UCLÉS A, HERRERA LÓPEZ S, DOLORES HERNANDO M, et al. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis[J]. Talanta, 2015, 144: 51-61. doi: 10.1016/j.talanta.2015.05.055 [24] RAJSKI Ł, LOZANO A, UCLÉS A, et al. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2013, 1304: 109-120. doi: 10.1016/j.chroma.2013.06.070 [25] CHANG C T. Decolorization of methyl orange with mesoporous materials made from Spent Solar Panel[C]//2011 International Conference on Materials for Renewable Energy & Environment. May 20-22, 2011, Shanghai, China. IEEE, 2011: 1495-1499. [26] ALARDHI S M, ALBAYATI T M, ALRUBAYE J M. Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column[J]. Heliyon, 2020, 6(1): e03253. doi: 10.1016/j.heliyon.2020.e03253 [27] MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Anal Chem, 2003, 75(13): 3019-3030. doi: 10.1021/ac020361s [28] GOSETTI F, MAZZUCCO E, ZAMPIERI D, et al. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2010, 1217(25): 3929-3937. doi: 10.1016/j.chroma.2009.11.060 [29] 马临科, 方翠芬, 李文庭, 等. HPLC-MS/MS测定延胡索中的12种农药残留[J]. 中国现代应用药学, 2014, 31(4): 470-474.MA L K, FANG C F, LI W T, et al. Simultaneous determination of 12 pesticide residues in Corydalis rhizoma by HPLC-MS/MS[J]. Chin J Mod Appl Pharm, 2014, 31(4): 470-474. [30] Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed: SANTE/12682/2019 [S]. EU: 2020. https://www.accredia.it/en/documento/guidance-sante-12682-2019-guidance-document-on-analytical-quality-control-and-method-validation-procedures-for-pesticides-residues-analysis-in-food-and-feed/. -

计量
- 文章访问数: 114
- HTML全文浏览量: 38
- 被引次数: 0