• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相色谱-串联质谱法测定中药浙八味中30种有机磷农药残留

虞淼 姚芳 张寒 王娇 齐沛沛 王新全

虞淼, 姚芳, 张寒, 王娇, 齐沛沛, 王新全. 液相色谱-串联质谱法测定中药浙八味中30种有机磷农药残留[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0184
引用本文: 虞淼, 姚芳, 张寒, 王娇, 齐沛沛, 王新全. 液相色谱-串联质谱法测定中药浙八味中30种有机磷农药残留[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2021.0184
YU Miao, YAO Fang, ZHANG Han, WANG Jiao, QI Peipei, WANG Xinquan. Determination of 30 organophosphorus pesticides in eight famous herbals in Zhejiang(Zhebawei) by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0184
Citation: YU Miao, YAO Fang, ZHANG Han, WANG Jiao, QI Peipei, WANG Xinquan. Determination of 30 organophosphorus pesticides in eight famous herbals in Zhejiang(Zhebawei) by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2021.0184

液相色谱-串联质谱法测定中药浙八味中30种有机磷农药残留

doi: 10.16801/j.issn.1008-7303.2021.0184
基金项目: 浙江省重点研发计划 (2020C02023).
详细信息
    作者简介:

    虞淼:yumiao2020@sina.com

    通讯作者:

    wangxinquan212@163.com

  • 中图分类号: TQ450.263;O657.63;X592

Determination of 30 organophosphorus pesticides in eight famous herbals in Zhejiang(Zhebawei) by liquid chromatography-tandem mass spectrometry

Funds: the Key R&D Program of Zhejiang Province (2020C02023)
  • 摘要: 建立了浙八味中30种有机磷 (OPPs)农药残留分析的检测方法。针对中草药基质复杂、净化难度大的问题,采用纳米材料二氧化锆 (nano-ZrO2)和介孔分子筛 (MCM-41)作为分散固相萃取 (d-SPE)净化吸附剂,以延胡索为代表基质对净化过程进行系统的优化,并采用液相色谱-串联质谱 (LC-MS/MS)进行分析。结果表明:以30 mg nano-ZrO2和50 mg MCM-41为净化吸附剂时,延胡索基质中,除苯腈磷、敌百虫 (0.002 ~ 0.25 mg/L)和敌敌畏 (0.005 ~ 0.25 mg/L)外,各农药在0.001 ~ 0.25 mg/L范围内线性关系良好,相关系数 (r)均大于0.99。方法定量限 (LOQ)除敌敌畏 (0.050 mg/kg)外,均为0.010 mg/kg。8种基质在0.05 mg/kg添加水平下,除倍硫磷和敌敌畏外,其余农药平均回收率范围为64 % ~ 125 %,相对标准偏差 (RSDs)在0.05% ~ 11%之间。该方法简单、快速、准确、重现性好,并且在浙八味中有较好的适用性,弥补了浙八味中有机磷农药残留检测技术缺乏的空白。
  • 图  1  延胡索中农药在不同nano-ZrO2用量条件下的回收率(n=3)

    1 ~ 30分别对应于表1序号。

    Figure  1.  Recoveries of pesticides in Rhizoma Corydalis using different amount of nano-ZrO2 as sorbents (n=3)

    No.1-30 respectively correspond to the No. in Table 1.

    图  2  延胡索样品经不同MCM-41用量和30 mgnano-ZrO2净化后颜色的变化

    Figure  2.  The color change of the Rhizoma Corydalis samples after cleaned-up with different amount of MCM-41 and 30 mg nano-ZrO2

    图  3  不同用量MCM-41对部分农药基质效应 (Ra) 的影响 (nano-ZrO2的用量为30 mg)

    21个农药编号分别对应于表1序号。

    Figure  3.  The effect of different amount of MCM-41 (with 30 mg nano-ZrO2) on matrix effects (Ra)

    21 numbers correspond to the No. in Table 1, respectively.

    表  1  30种有机磷农药多级反应监测分析参数

    Table  1.   MRM parameters for residue analysis of 30 OPPs

    编号
    No.
    化合物
    Compound
    保留时间
    Retention time/min
    前体离子
    Parent ion, m/z
    产物离子
    Product ion, m/z
    Q1偏差
    Q1 pre-rod/V
    碰撞电压
    CE/ V
    Q3偏差
    Q3 pre-rod/V
    1 倍硫磷 fenthion 4.985 279.2 169.0*;247.0 −30;−30 −17;−12 −18;−18
    2 苯腈磷 cyanofenphos 4.753 304.1 77.25*;122.2 −20;−11 −60;−19 −16;−25
    3 苯线磷 fenamiphos 4.753 304.1 217.1*;202.0 −15;−15 −22;−36 −23;−21
    4 丙硫磷 prothiophos 6.498 344.8 240.9*;275.0 −17;−17 −18;−13 −26;−30
    5 丙溴磷 profenofos 5.560 372.9 302.8*;345.0 −18;−18 −19;−12 −30;−24
    6 除线磷 dichlofenthion 5.816 315.0 258.8*;286.9 −27;−27 −16;−11 −28;−20
    7 哒嗪硫磷 pyridaphenthion 4.494 341.1 189.1*;205.1 −17;−23 −22;−22 −20;−22
    8 敌百虫 trichlorfon 3.202 256.9 108.9*;220.8 −29;−29 −17;−10 −19;−23
    9 敌敌畏 dichlorvos 3.784 221.0 109.1*;79.1 −23;−23 −16;−27 −11;−30
    10 敌瘟磷 edifenphos 4.921 311.0 282.9*;111.0 −24;−24 −13;−21 −30;−21
    11 毒死蜱 chlorpyrifos 5.888 351.9 199.9*;96.9 −27;−27 −18;−33 −21;−18
    12 二嗪磷 diazinon 5.022 305.0 169.1*;153.1 −30;−30 −19;−20 −18;−16
    13 伏杀硫磷 phosalone 5.103 368.0 182.0*;111.0 −30;−30 −14;−39 −19;−20
    14 甲拌磷 phorate 5.189 261.0 75.0*;143.0 −29;−29 −10;−18 −30;−15
    15 久效磷 monocrotophos 2.749 224.1 127.0*;193.0 −25;−25 −15;−8 −13;−20
    16 乙丙硫磷 sulprofos 5.902 322.9 219.0*;139.2 −16;−16 −16;−30 −16;−15
    17 硫线磷 cadusafos 5.302 271.1 159.0*;97.0 −30;−30 −14;−37 −29;−18
    18 马拉硫磷 malathion 4.442 331.0 127.0*;99.0 −17;−17 −12;−23 −13;−18
    19 马拉氧磷 malaoxon 3.765 314.9 98.9*;127.0 −15;−15 −24;−13 −19;−23
    20 嘧啶磷 pirimiphos-ethyl 5.693 334.1 198.0*;182.1 −25;−25 −22;−22 −21;−19
    21 三唑磷 triazophos 4.527 314.1 162.1*;119.1 −23;−23 −19;−35 −17;−21
    22 杀虫畏 tetrachlorvinphos 4.829 364.9 127.0*;203.9 −27;−27 −14;−38 −13;−21
    23 杀扑磷 methidathion 4.223 303.0 145.0*;85.1 −21;−21 −8;−22 −15;−30
    24 双硫磷 temephos 5.567 467.0 419.0*;341.0 −23;−23 −19;−32 −30;−24
    25 特丁硫磷 terbufos 5.645 289.0 103.1*;57.1 −14;−14 −9;−24 −18;−24
    26 辛硫磷 phoxim 5.034 299.0 77.1*;129.1 −30;−30 −26;−10 −30;−13
    27 亚胺硫磷 phosemet 4.252 318.0 160.0*;77.1 −16;−16 −13;−54 −17;−30
    28 氧乐果 omethoate 2.329 214.1 183.0*;155.0 −15;−23 −23;−14 −15;−28
    29 乙酰甲胺磷 acephate 2.238 184.2 143.0*;95.0 −20;−20 −8;−23 −15;−16
    30 蝇毒磷 coumaphos 4.969 363.0 227.0*;307.1 −18;−18 −26;−18 −23;−21
    注:*定量离子。Note: *quantitative ion.
    下载: 导出CSV

    表  2  延胡索中30种有机磷的回归方程、相关系数(r)、基质效应、线性范围及检出限

    Table  2.   Method validation of the linearity, correlation coefficients (r), matrix effects, linear range, and LODs of the 30 OPPs in Rhizoma Corydalis

    化合物    
    Compound    
    标准溶液
    Standard solution
    回归方程
    Regression equation
    相关系数
    r
    基质效应
    Matrix effects
    线性范围/mg/L
    Linear range
    检出限
    LOD/mg/L
    倍硫磷 fenthion 基质 Matrix y = 11186.5 x + 64206.7 0.9996 0.27 0.001 ~ 0.25 0.00038
    溶剂 Solvent y = 41100.0 x + 156743 0.9990 0.001 ~ 0.25
    苯腈磷 cyanofenphos 基质 Matrix y = 6712.28 x + 9725.17 0.9992 0.16 0.002 ~ 0.25 0.0016
    溶剂 Solvent y = 41650.4 x + 46306.8 0.9998 0.002 ~ 0.25
    苯线磷 fenamiphos 基质 Matrix y = 85388.9 x + 16795.6 0.9996 0.14 0.001 ~ 0.25 0.00045
    溶剂 Solvent y = 599509 x + 278328 0.9998 0.001 ~ 0.25
    丙硫磷 prothiophos 基质 Matrix y = 31005.3 x + 56113.3 0.9996 0.50 0.001 ~ 0.25 0.00053
    溶剂 Solvent y = 62080.8 x + 42838.6 0.9998 0.001 ~ 0.25
    丙溴磷 profenofos 基质 Matrix y = 44979.0 x + 22741.5 0.9998 0.50 0.001 ~ 0.25 0.00051
    溶剂 Solvent y = 90314.6 x + 99936.6 0.9997 0.001 ~ 0.25
    除线磷 dichlofenthion 基质 Matrix y = 17313.0 x + 34036.4 0.9998 0.62 0.001 ~ 0.25 0.00071
    溶剂 Solvent y = 27940.4 x - 1752.36 0.9998 0.001 ~ 0.25
    哒嗪硫磷 pyridaphenthion 基质 Matrix y = 102202 x + 968791 0.9997 0.31 0.001 ~ 0.25 0.00050
    溶剂 Solvent y = 334406 x + 305843 0.9996 0.001 ~ 0.25
    敌百虫 trichlorphon 基质 Matrix y = 6983.58 x + 16255.9 0.9998 0.53 0.002 ~ 0.25 0.0014
    溶剂 Solvent y = 13295.1 x - 36878.2 0.9987 0.002 ~ 0.25
    敌敌畏 dichlorvos 基质 Matrix y = 3750.36 x + 8692.80 0.9997 0.36 0.005 ~ 0.25 0.0026
    溶剂 Solvent y = 10361.8 x + 14173.9 0.9996 0.005 ~ 0.25
    敌瘟磷 edifenphos 基质 Matrix y = 750668 x - 43055.8 0.9999 0.24 0.001 ~ 0.25 0.00039
    溶剂 Solvent y = 3106700 x - 118601 0.9997 0.001 ~ 0.25
    毒死蜱 chlorpyrifos 基质 Matrix y = 27616.8 x + 209187 0.9998 0.40 0.001 ~ 0.25 0.00067
    溶剂 Solvent y = 68940.7 x + 22862.0 0.9999 0.001 ~ 0.25
    二嗪磷 diazinon 基质 Matrix y = 87125.4 x + 40800.7 0.9999 0.31 0.001 ~ 0.25 0.00021
    溶剂 Solvent y = 284411 x + 112947 0.9999 0.001 ~ 0.25
    伏杀硫磷 phosalone 基质 Matrix y = 13279.8 x + 1655.59 0.9999 0.12 0.001 ~ 0.25 0.00059
    溶剂 Solvent y = 111449 x + 106651 0.9998 0.001 ~ 0.25
    甲拌磷 phorate 基质 Matrix y = 7245.59 x + 2553.84 0.9998 0.16 0.001 ~ 0.25 0.00058
    溶剂 Solvent y = 45622.5 x + 26065.4 0.9999 0.001 ~ 0.25
    久效磷 monocrotophos 基质 Matrix y = 9066.93 x + 4349.27 0.9998 0.25 0.001 ~ 0.25 0.0010
    溶剂 Solvent y = 36960.4 x + 24774.2 0.9993 0.001 ~ 0.25
    乙丙硫磷 sulprofos 基质 Matrix y = 17865.6 x + 18199.5 0.9999 0.29 0.001 ~ 0.25 0.00048
    溶剂 Solvent y = 61161.1 x + 19350.2 0.9998 0.001 ~ 0.25
    硫线磷 cadusafos 基质 Matrix y = 213565 x + 63957.6 0.9999 0.40 0.001 ~ 0.25 0.00046
    溶剂 Solvent y = 537674 x - 165154 0.9999 0.001 ~ 0.25
    马拉硫磷 malathion 基质 Matrix y = 25105.2 x + 11069.0 0.9998 0.19 0.001 ~ 0.25 0.00092
    溶剂 Solvent y = 134823 x + 52546.8 0.9999 0.001 ~ 0.25
    马拉氧磷 malaoxon 基质 Matrix y = 257712 x + 64825.1 0.9998 0.30 0.001 ~ 0.25 0.00016
    溶剂 Solvent y = 859152 x + 372042 0.9998 0.001 ~ 0.25
    嘧啶磷 pirimiphos-ethyl 基质 Matrix y = 397456 x + 35639.9 0.9999 0.51 0.001 ~ 0.25 0.00014
    溶剂 Solvent y = 781657 x - 267204 0.9997 0.001 ~ 0.25
    三唑磷 triazophos 基质 Matrix y = 289410 x + 122747 0.9999 0.31 0.001 ~ 0.25 0.00013
    溶剂 Solvent y = 929411 x - 228026 0.9999 0.001 ~ 0.25
    杀虫畏 tetrachlorvinphos 基质 Matrix y = 8073.80 x - 1514.11 0.9999 0.12 0.001 ~ 0.25 0.00094
    溶剂 Solvent y = 67348.3 x + 102981 0.9997 0.001 ~ 0.25
    杀扑磷 methidathion 基质 Matrix y = 13872.9 x + 1968.04 0.9999 0.22 0.001 ~ 0.25 0.00031
    溶剂 Solvent y = 63367.9 x + 54929.0 0.9995 0.001 ~ 0.25
    双硫磷 temephos 基质 Matrix y = 23922.2 x + 67354.1 0.9997 0.63 0.001 ~ 0.25 0.00055
    溶剂 Solvent y = 38083.5 x + 64683.7 0.9997 0.001 ~ 0.25
    特丁硫磷 terbufos 基质 Matrix y = 15305.8 x + 176447 0.9998 0.43 0.001 ~ 0.25 0.00091
    溶剂 Solvent y = 35899.8 x + 136459 0.9998 0.001 ~ 0.25
    辛硫磷 phoxim 基质 Matrix y = 21771.8 x + 24226.9 0.9999 0.18 0.001 ~ 0.25 0.00053
    溶剂 Solvent y = 119213 x + 122252 0.9997 0.001 ~ 0.25
    亚胺硫磷 phosemet 基质 Matrix y = 71042.2 x + 46146.5 0.9998 0.24 0.001 ~ 0.25 0.00027
    溶剂 Solvent y = 300883 x + 25401.3 0.9999 0.001 ~ 0.25
    氧乐果 omethoate 基质 Matrix y = 46401.9 x + 826062 0.9996 0.81 0.001 ~ 0.25 0.00039
    溶剂 Solvent y = 57136.3 x + 62540.0 0.9994 0.001 ~ 0.25
    乙酰甲胺磷 acephate 基质 Matrix y = 55667.2 x + 52404.0 0.9999 0.56 0.001 ~ 0.25 0.00044
    溶剂 Solvent y = 99817.4 x + 161494 0.9990 0.001 ~ 0.25
    蝇毒磷 coumaphos 基质 Matrix y = 66053.1 x + 43518.5 0.9999 0.30 0.001 ~ 0.25 0.00023
    溶剂 Solvent y = 218234 x + 467439 0.9996 0.001 ~ 0.25
    下载: 导出CSV

    表  3  延胡索中30种有机磷在不同添加水平下的回收率及相对标准偏差(n=3)

    Table  3.   Recoveries and RSDs of the 30 OPPs in Rhizoma Corydalis at different spiking levels (n=3)

    化合物    
    Compound    
    0.010 mg/kg 0.050 mg/kg 0.10 mg/kg
    回收率
    Recovery/%
    相对标准偏差
    RSD/%
    回收率
    Recovery/%
    相对标准偏差
    RSD/%
    回收率
    Recovery/%
    相对标准偏差
    RSD/%
    倍硫磷 fenthion 99 5.9 108 0.7 105 1.9
    苯腈磷 cyanofenphos 100 6.4 107 2.3 97 1.9
    苯线磷 fenamiphos 104 2.9 108 1.8 96 2.1
    乙丙硫磷 sulprofos 107 12 110 2.2 114 0.8
    丙溴磷 profenofos 100 8.6 111 1.5 98 1.7
    除线磷 dichlofenthion 107 2.7 109 5.8 99 0.4
    哒嗪硫磷 pyridaphenthion 107 1.8 108 6.1 92 5.2
    敌百虫 trichlorphon 93 10 101 7.2 96 2.2
    敌敌畏 dichlorvos -- -- 103 6.2 94 1.7
    敌瘟磷 edifenphos 97 3.1 104 0.9 96 2.1
    毒死蜱 chlorpyrifos 97 2.7 108 3.3 94 1.2
    二嗪磷 diazinon 107 3.4 108 3.9 95 2.0
    伏杀硫磷 phosalone 102 3.7 112 1.1 102 3.1
    甲拌磷 phorate 105 4.2 112 2.9 96 2.1
    久效磷 monocrotophos 92 12 84 2.7 95 0.8
    硫丙磷 bolstar 103 17 108 5.3 99 1.6
    硫线磷 cadusafos 101 2.3 116 0.5 97 0.3
    马拉硫磷 malathion 96 4.9 117 3.3 97 5.7
    马拉氧磷 malaoxon 103 2.8 107 2.9 94 0.7
    嘧啶磷 pirimiphos-ethyl 103 1.9 107 2.5 94 0.9
    三唑磷 triazophos 102 5.8 113 3.0 100 3.2
    杀虫畏 tetrachlorvinphos 97 9.7 114 0.6 93 4.5
    杀扑磷 methidathion 100 17 94 11.0 96 13
    双硫磷 temephos 107 2.0 114 0.9 98 1.5
    特丁硫磷 terbufos 107 1.4 109 0.7 97 2.0
    辛硫磷 phoxim 99 3.9 114 3.4 96 4.1
    亚胺硫磷 phosemet 102 8.4 117 1.6 97 6.3
    氧乐果 omethoate 100 2.0 88 0.5 104 2.0
    乙酰甲胺磷 acephate 81 2.7 79 0.7 90 3.2
    蝇毒磷 coumaphos 93 2.3 103 1.7 95 0.8
    注:--表示未检出。Note: -- indicates not detected.
    下载: 导出CSV

    表  4  白芍、浙贝母、玄参、郁金、白术、麦冬和杭白菊中30种有机磷农药在添加水平为0.050 mg/kg下的回收率 (n=3)

    Table  4.   Recoveries of the 30 OPPs in Radix Paeoniae Alba, Bulbus Fritillariae Thunbergii, Radix Scrophulariae, Radix Curcumae, Rhizoma Atractylodis Macrocephalae, Radix Ophiopogonis, and Dendranthema Morifolium samples at spiked concentration of 0.050 mg/kg (n=3)

    化合物  
    Compound  
    白芍
    Radix Paeoniae Alba
    浙贝母
    Bulbus Fritillariae Thunbergii
    玄参
    Radix Scrophulariae
    郁金
    Radix Curcumae
    白术
    Rhizoma Atractylodis Macrocephalae
    麦冬
    Radix Ophiopogonis
    杭白菊
    Dendranthema Morifolium
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    回收率/
    %
    RSD/
    %
    倍硫磷
    fenthion
    110 4.0 96 7.9 101 0.91 -- -- 113 5.2 101 5.3 -- --
    苯腈磷
    cyanofenphos
    104 1.5 96 0.89 96 3.0 103 2.7 96 0.59 102 3.5 108 3.3
    苯线磷
    fenamiphos
    104 2.6 96 2.0 95 2.5 98 3.2 97 0.57 103 1.4 114 3.6
    丙硫磷
    prothiophos
    100 11 105 4.8 110 7.4 105 3.5 106 4.7 119 8.5 92 0.43
    丙溴磷
    profenofos
    117 0.74 104 2.2 112 2.0 108 4.1 106 4.6 111 1.9 102 4.6
    除线磷
    dichlofenthion
    106 2.3 108 9.1 99 7.6 97 4.2 108 7.7 114 3.1 99 4.1
    哒嗪硫磷
    pyridaphenthion
    108 1.9 104 0.89 110 3.6 108 2.4 103 2.4 116 2.3 121 0.31
    敌百虫
    trichlorphon
    99 3.8 98 5.6 104 5.1 104 4.7 95 4.3 113 0.60 112 0.91
    敌敌畏
    dichlorvos
    105 4.3 108 2.1 -- -- -- -- 98 4.9 -- -- 104 7.5
    敌瘟磷
    edifenphos
    103 0.65 103 2.0 110 1.6 105 2.5 103 1.5 110 2.3 115 3.0
    毒死蜱
    chlorpyrifos
    113 3.0 102 6.9 108 0.94 103 4.8 99 5.6 110 1.8 97 1.6
    二嗪磷
    diazinon
    104 1.7 102 5.3 107 3.6 103 5.1 97 2.9 103 3.2 108 0.81
    伏杀硫磷
    phosalone
    114 4.6 104 1.2 116 4.1 103 0.93 99 5.0 111 1.7 117 0.31
    甲拌磷
    phorate
    116 0.35 120 1.2 114 2.2 107 5.2 114 0.69 118 1.1 105 0.68
    久效磷
    monocrotophos
    80 5.2 80 5.0 86 1.5 84 1.7 81 1.0 89 1.2 90 0.83
    乙丙硫磷
    sulprofos
    112 5.7 102 3.7 107 5.1 97 8.1 102 1.2 112 2.2 98 1.4
    硫线磷
    cadusafos
    111 3.0 106 2.7 114 2.9 109 4.2 104 1.7 116 1.0 119 1.4
    马拉硫磷
    malathion
    104 1.4 103 2.2 101 2.6 106 1.7 91 1.3 120 4.5 108 0.65
    马拉氧磷
    malaoxon
    106 1.6 98 2.3 105 3.5 109 3.4 103 1.1 110 0.85 104 0.26
    嘧啶磷
    pirimiphos-ethyl
    84 4.1 83 8.0 80 3.0 77 4.7 71 4.1 80 3.2 70 7.3
    三唑磷
    triazophos
    109 2.1 101 1.8 110 2.0 110 4.4 102 1.7 117 0.87 118 0.55
    杀虫畏
    tetrachlorvinphos
    107 1.4 105 3.4 105 3.9 100 2.3 106 3.1 114 4.3 106 2.9
    杀扑磷
    methidathion
    107 4.0 94 3.2 106 3.4 100 3.2 105 1.3 116 4.2 106 1.5
    双硫磷
    temephos
    116 2.7 105 3.5 116 1.1 101 3.9 109 7.8 114 5.6 110 2.0
    特丁硫磷
    terbufos
    108 0.34 98 8.2 108 1.3 102 1.0 97 6.1 105 4.3 108 0.67
    辛硫磷
    phoxim
    113 1.4 105 2.7 110 2.0 101 3.5 104 2.9 106 2.0 103 3.3
    亚胺硫磷
    phosemet
    108 4.6 123 1.5 120 1.4 121 5.2 125 3.2 112 3.6 109 0.52
    氧乐果
    omethoate
    65 2.0 70 2.8 66 2.4 69 2.0 65 0.50 70 1.5 68 0.50
    乙酰甲胺磷
    acephate
    69 2.1 66 2.1 66 0.51 70 2.3 65 0.57 71 2.2 70 1.1
    蝇毒磷
    coumaphos
    112 2.7 109 4.3 112 1.5 98 3.7 101 5.9 113 0.52 107 0.049
    下载: 导出CSV

    表  5  实际样品的残留测定结果

    Table  5.   The concentrations of pesticide residues in real samples

    样品  
    Sample  
    批次
    Batch
    检出农药残留量
    Pesticide detection/(mg/kg)
    丙溴磷
    profenofos
    毒死蜱
    chlorpyrifos
    马拉硫磷
    malathion
    三唑磷
    triazophos
    辛硫磷
    phoxim
    浙贝母
    Bulbus
    Fritillariae
    Thunbergii
    10.038
    20.021
    30.021
    麦冬
    Radix
    Ophiopogonis
    40.027
    50.0270.015
    60.049
    杭白菊
    Dendranthema
    Morifolium
    70.019
    80.018
    90.012
    100.0170.028
    110.0200.26
    120.00900.044
    130.0230.15
    140.0160.038
    150.0130.16
    下载: 导出CSV
  • [1] 黄卫平, 唐红芳, 金锋, 等. “浙八味”药材重金属和有机氯农药残留分析[J]. 中华中医药学刊, 2013, 31(3): 624-627.

    HUANG W P, TANG H F, JIN F, et al. Determination of residues of heavy metal and organochlorine pesticides in eight famous herbal drugs in Zhejiang[J]. Chin Arch Tradit Chin Med, 2013, 31(3): 624-627.
    [2] 范明明, 张嘉裕, 张湘龙, 等. 麦冬的化学成分和药理作用研究进展[J]. 中医药信息, 2020, 37(4): 130-134.

    FAN M M, ZHANG J Y, ZHANG X L, et al. Research progress on chemical components and pharmacological action of Radix ophiopogonis[J]. Inf Tradit Chin Med, 2020, 37(4): 130-134.
    [3] 李翎熙, 陈迪路, 周小江. 玄参化学成分、药理活性研究进展及其质量标志物分析预测[J]. 中成药, 2020, 42(9): 2417-2426. doi: 10.3969/j.issn.1001-1528.2020.09.032

    LI L X, CHEN D L, ZHOU X J. Research progress on chemical constituents and pharmacological activities of Radix scrophulariae and analysis of prediction of quality markers[J]. Chin Tradit Pat Med, 2020, 42(9): 2417-2426. doi: 10.3969/j.issn.1001-1528.2020.09.032
    [4] WANG Y, GAO S M, LI R, et al. Antidepressant-like effects of the Radix Bupleuri and Radix Paeoniae Alba drug pair[J]. Neurosci Lett, 2016, 633: 14-20. doi: 10.1016/j.neulet.2016.09.001
    [5] 邢敏, 毛敬洁, 陈文列, 等. 芍药苷干预阿尔茨海默病作用机制研究进展[J]. 中草药, 2019, 50(4): 1022-1026. doi: 10.7501/j.issn.0253-2670.2019.04.034

    XING M, MAO J J, CHEN W L, et al. Progress in interventional mechanism of paeoniflorin on Alzheimer's disease[J]. Chin Tradit Herb Drugs, 2019, 50(4): 1022-1026. doi: 10.7501/j.issn.0253-2670.2019.04.034
    [6] 李尧, 贾睿, 杜金梁, 等. 白芍提取物对罗非鱼氧化损伤的保护作用[J]. 淡水渔业, 2019, 49(4): 62-68. doi: 10.3969/j.issn.1000-6907.2019.04.010

    LI Y, JIA R, DU J L, et al. Protective effects of Paeoniae Alba Radix extract on oxidative stress in Oreochromis niloticus[J]. Freshw Fish, 2019, 49(4): 62-68. doi: 10.3969/j.issn.1000-6907.2019.04.010
    [7] LI X, WANG M, ZHAO J, et al. Ultrasound-assisted emulsification liquid phase microextraction method based on deep eutectic solvent as extraction solvent for determination of five pesticides in traditional Chinese medicine[J]. J Pharm Biomed Anal, 2019, 166: 213-221. doi: 10.1016/j.jpba.2019.01.018
    [8] 中国农业信息网. 农药登记数据[DB/OL]. [2021-08-01]. http://www.chinapesticide.org.cn/hysj/index.jhtml.

    China Pesticide Information Netword. Pesticide registration data [DB/OL]. [2021-08-01]. http://www.chinapesticide.org.cn/hysj/index.jhtml.
    [9] 戴德江, 沈颖, 沈瑶, 等. 浙产特色中药材病虫害化学防治的研究进展[J]. 农药学学报, 2019, 21(Z1): 759-771.

    DAI D J, SHEN Y, SHEN Y, et al. Research progress on chemical control for main disease and insect pests of characteristic Chinese herbal medicines in Zhejiang Province[J]. Chin J Pestic Sci, 2019, 21(Z1): 759-771.
    [10] 吴加伦, 邹耀华, 黄国洋, 等. 浙八味中药材中农药残留调查及控制对策[J]. 农药科学与管理, 2008, 29(5): 16-21. doi: 10.3969/j.issn.1002-5480.2008.05.005

    WU J L, ZOU Y H, HUANG G Y, et al. Survey and control of pesticide residues in eight Chinese crude drugs of Zhejiang Province[J]. Pestic Sci Adm, 2008, 29(5): 16-21. doi: 10.3969/j.issn.1002-5480.2008.05.005
    [11] LIU X Q, TONG L, MENG W T, et al. Determination of 99 pesticide residues in Paeoniae Radix Alba by gas chromatography-triple quadrupole tandem mass spectrometry[J]. Chin J Chromatogr, 2015, 33(8): 869-877. doi: 10.3724/SP.J.1123.2015.04005
    [12] 沈旭, 陈晓辉, 果德安, 等. 中空纤维液相微萃取-气相色谱法测定白芍中20种农药残留[J]. 药物分析杂志, 2009, 29(10): 1745-1748.

    SHEN X, CHEN X H, GUO D A, et al. Determination of 20 pesticide residues in Radix Paeoniae Alba. by hollow fiber-based liquid phase microextraction coupled with gas chromatography[J]. Chin J Pharm Anal, 2009, 29(10): 1745-1748.
    [13] 王倩, 朱艳春, 李婷婷, 等. GC-MS/MS法同时测定白芍、黄芪、猫爪草和山茱萸中69种农药的残留量[J]. 中国药房, 2019, 30(20): 2829-2834.

    WANG Q, ZHU Y C, LI T T, et al. Determination of 69 kinds of pesticide residues in Paeonia tactilora, Astragalus membranaceus, Ranunculus ternatus and Cornus officinalis by GC-MS/MS[J]. China Pharm, 2019, 30(20): 2829-2834.
    [14] WANG S, QI P, DI S, et al. Significant role of supercritical fluid chromatography - mass spectrometry in improving the matrix effect and analytical efficiency during multi-pesticides residue analysis of complex Chrysanthemum samples[J]. Anal Chim Acta, 2019, 1074: 108-116. doi: 10.1016/j.aca.2019.04.063
    [15] 刘佳铭, 李雯婷, 陈铭, 等. 高效液相色谱-串联质谱法测定中药材麦冬中74种农药残留[J]. 分析试验室, 2020, 39(7): 826-833.

    LIU J M, LI W T, CHEN M, et al. Determination of 74 pesticide residues in Radix Ophiopogonis by high performance liquid chromatography-tandem mass spectrometry[J]. Chin J Anal Lab, 2020, 39(7): 826-833.
    [16] GUO X J, GAO Z H, WANG J X, et al. Purification of tertiary and quaternary alkaloids from Rhizoma Corydalis using reversed-phase/weak cation-exchange mixed-mode class separation combined with preparative C18 and silica based strong cation-exchange chromatography[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2019, 1126-1127: 121742. doi: 10.1016/j.jchromb.2019.121742
    [17] GUO Y, FU R, QIAN Y, et al. Comprehensive screening and identification of natural inducible nitric oxide synthase inhibitors from Radix Ophiopogonis by off-line multi-hyphenated analyses[J]. J Chromatogr A, 2019, 1592: 55-63. doi: 10.1016/j.chroma.2019.01.029
    [18] YIN G, CHENG X, TAO W, et al. Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS[J]. J Pharm Biomed Anal, 2018, 148: 224-229. doi: 10.1016/j.jpba.2017.09.015
    [19] CHEN Y S, WANG E P, WEI Z H, et al. Phytochemical analysis, cellular antioxidant and α-glucosidase inhibitory activities of various herb plant organs[J]. Ind Crops Prod, 2019, 141: 111771. doi: 10.1016/j.indcrop.2019.111771
    [20] CHEN W J, ZENG M N, LI M, et al. Four new sesquiterpenoids from Dendranthema morifolium (Ramat. ) Kitam flowers[J]. Phytochem Lett, 2018, 23: 52-56. doi: 10.1016/j.phytol.2017.11.009
    [21] YANG L, JIANG H, GUO X, et al. Quantitative analysis of different batches of raw, wine-processed, and vinegar-processed Paeoniae Alba Radix using ultra-performance convergence chromatography coupled with photo diode array detection[J]. Biomed Chromatogr, 2019, 33(6): e4485. doi: 10.1002/bmc.4485
    [22] XUE W, GAO Y, LI Q, et al. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide from Atractylodis macrocephalae Koidz[J]. Int J Biol Macromol, 2020, 161: 514-524. doi: 10.1016/j.ijbiomac.2020.06.003
    [23] UCLÉS A, HERRERA LÓPEZ S, DOLORES HERNANDO M, et al. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis[J]. Talanta, 2015, 144: 51-61. doi: 10.1016/j.talanta.2015.05.055
    [24] RAJSKI Ł, LOZANO A, UCLÉS A, et al. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2013, 1304: 109-120. doi: 10.1016/j.chroma.2013.06.070
    [25] CHANG C T. Decolorization of methyl orange with mesoporous materials made from Spent Solar Panel[C]//2011 International Conference on Materials for Renewable Energy & Environment. May 20-22, 2011, Shanghai, China. IEEE, 2011: 1495-1499.
    [26] ALARDHI S M, ALBAYATI T M, ALRUBAYE J M. Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column[J]. Heliyon, 2020, 6(1): e03253. doi: 10.1016/j.heliyon.2020.e03253
    [27] MATUSZEWSKI B K, CONSTANZER M L, CHAVEZ-ENG C M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Anal Chem, 2003, 75(13): 3019-3030. doi: 10.1021/ac020361s
    [28] GOSETTI F, MAZZUCCO E, ZAMPIERI D, et al. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry[J]. J Chromatogr A, 2010, 1217(25): 3929-3937. doi: 10.1016/j.chroma.2009.11.060
    [29] 马临科, 方翠芬, 李文庭, 等. HPLC-MS/MS测定延胡索中的12种农药残留[J]. 中国现代应用药学, 2014, 31(4): 470-474.

    MA L K, FANG C F, LI W T, et al. Simultaneous determination of 12 pesticide residues in Corydalis rhizoma by HPLC-MS/MS[J]. Chin J Mod Appl Pharm, 2014, 31(4): 470-474.
    [30] Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed: SANTE/12682/2019 [S]. EU: 2020. https://www.accredia.it/en/documento/guidance-sante-12682-2019-guidance-document-on-analytical-quality-control-and-method-validation-procedures-for-pesticides-residues-analysis-in-food-and-feed/.
  • 加载中
计量
  • 文章访问数:  114
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 录用日期:  2021-11-12
  • 网络出版日期:  2021-12-23

目录

    /

    返回文章
    返回