Study on occurrence dynamics of yam root-knot nematode disease and its control technology under root irrigation
-
摘要: 根结线虫病是山药生产上的顽固性重发病害,严重制约了山药产业优质高效发展。为制定精准的药剂防治技术,以‘瑞山药’为供试品种,在江西瑞昌和南昌建立试验点,采集、鉴定试验点供试田块山药根结线虫种类,监测土壤中根结线虫2龄幼虫(J2)数量消长动态及山药根结线虫病发生动态,进行病害药剂防治适期研究和施药技术研发。结果表明,试验点供试田块山药根结线虫种类均为南方根结线虫Meloidogyne incognita。山药生长期间,土壤中J2数量呈持续增长态势。山药根系多于5月下旬(山药齐苗期)开始发病;块茎于6月中下旬开始发病,之后块茎病情持续大幅增长。以山药齐苗时及其后60 d左右各施药1次为最佳防治适期,41.7%氟吡菌酰胺悬浮剂(有效成分1426 g/hm2)、30%噻唑膦微囊悬浮剂(有效成分2925 g/hm2) 的防治效果分别达81.56%~83.43%和75.95%~77.16%。采用研发的山药根层均匀施药技术用药2次(30%噻唑膦微囊悬浮剂(有效成分 2 925g/hm2) + 100亿芽孢/克坚强芽孢杆菌可湿性粉剂(有效成分12000 g/hm2)、41.7%氟吡菌酰胺悬浮剂(有效成分1426 g/hm2))的防治效果达81%以上,显著高于前期采用滴灌后期采用根层均匀施药技术处理、2次滴灌施药处理以及2次常规灌根施药处理的防治效果。Abstract: Root-knot nematode disease is a stubborn and easily recurring disease in yam production and severely restricts the high-quality development of the yam industry. To develop an accurate control technology, this study focused on Ruichang yam and established test sites in Ruichang and Nanchang of Jiangxi Province for the collection and identification of the different root-knot nematodes. Population dynamics of the 2nd instar larvae (J2) of root-knot nematode were observed in the soils and the dynamics of nematode infection on yam were monitored in the fields for the determination of the appropriate control periods and the development of effective spraying technology in the fields. The result indicated the nematode isolates in the soils were southern root-knot nematode (Meloidogyne incognita). The J2 populations showed a continuous increase during the whole growth period of yam in the soils. Yam root infections by root-knot nematode occurred mostly in late May (seedling stage) and sick yam tubers appeared in mid-to-late June, then, the severity of the sick yam tubers continued to increase significantly. The critical periods for root-knot nematode control were at the neatly-grown seedling stage and the following 60 days and one application for each. The control efficacy of 41.7% fluopyram suspension (active ingredient amount 1426 g/hm2) and 30% thiazophos microcapsule suspension (active ingredient amount 2925 g/hm2) were 81.56%-83.43% and 75.95%-77.16%, respectively. The application of 30% thiazophos microcapsule suspension (active ingredient amount 2925 g/hm2) combined with 10 billion spores/gram of Bacillus firmus wettable powder (active ingredient amount 12000 g/hm2), and 41.7% fluopyram suspension (active ingredient amount 1426 g/hm2) with newly generated twice uniform root irrigation technology improved the control efficacy to more than 81%, which is significantly higher than the combination of drip irrigation at the early stage and root irrigation at the later stage, two drip irrigation and two conventional root irrigation.
-
图 1 山药根结线虫种类鉴定及致病性测定
A. 山药根结线虫种类鉴定结果。M:DL2 000 DNA Marker ;−:阴性对照; + :阳性对照 (M. incognita JXMI01);1~45:9个地块DNA样本。B. 根结线虫J2接种山药苗根系发病症状。C. 空白对照。
Figure 1. Specie identification and pathogenicity determination of root-knot nematodes in yam
A. Identification results of the species of root knot nematodes in yam. M: DL2 000 DNA Marker; −: Negative control; + : Positive control (M. incognita JXMI01); 1-45: DNA samples from 9 plots. B. Symptoms of root-knot nematode J2 inoculated seedling root of yam. C. Blank control for pathogenicity determination.
表 1 2019和2020年施药时间及用药剂量
Table 1. Dosages and spraying times of nematicide between 2019 and 2020
处理
Treatment供试药剂
Nematicide
2019 瑞昌市范镇范镇村
Fanzhen hamlet, Fan town,
Ruichang city, 20192020 瑞昌市高丰镇乐丰村
Lefeng hamlet, Gaofeng town,
Ruichang city, 20202020 南昌县小兰乡涂家村
Tujia hamlet, Xiaolan village,
Nanchang county, 2020施药日期
Application time施药日期
Application time施药日期
Application time第 1 次
First第 2 次
Second第 1 次
First第 2 次
second第 1 次
First第 2 次
SecondA 41.7% 氟吡菌酰胺 SC
(有效成分1426 g/hm2)
fluopyram 41.7% SC
(1 426 g a.i./hm2)4 月 26 日
April 266 月 23 日
June 234 月 24 日
April 246 月 26 日
June 264 月 25 日
April 256 月 21 日
June 21B 5 月 22 日
May 22— 5 月 24 日
May 24— 5 月 22 日
May 22— C 5 月 22 日
May 227 月 29 日
July 295 月 24 日
May 247 月 31 日
July 315 月 22 日
May 227 月 26 日
July 26D 6 月 23 日
June 238 月 30 日
August 306 月 26 日
June 268 月 29 日
August 296 月 21 日
June 218 月 27 日
August 27E 30% 噻唑膦微囊 SC
(有效成分2925 g/hm2)
fosthiazate 30% SC
(2 925 g a.i./hm2)4 月 26 日
April 266 月 23 日
June 234 月 24 日
April 246 月 26 日
June 264 月 25 日
April 256 月 21 日
June 21F 5 月 22 日
May 22— 5 月 24 日
May 24— 5 月 22 日
May 22— G 5 月 22 日
May 227 月 29 日
July 295 月 24 日
May 247 月 31 日
July 315 月 22 日
May 227 月 26 日
July 26H 6 月 23 日
June 238 月 30 日
August 306 月 26 日
June 268 月 29 日
August 296 月 21 日
June 218 月 27 日
August 27CK — — — — — — — 注:处理A、处理E第1次施药时间为山药萌芽前,处理B、C、F和G第1次施药时间为山药齐苗期,处理D和H第1次施药时间为山药齐苗后30 d左右。下同。Note: Group A and E were firstly treated with nematicides before the germinating stage. Group B, C, F and G were firstly treated with nematicides at the neatly-grown seedling stage. Group D and H were firstly treated with nematicides at 30 d after the neatly-grown seedling stage. The same as below. 表 2 土壤根结线虫2龄幼虫 (J2) 数量消长动态 (2019)
Table 2. Population dynamics of the 2nd instar larvae (J2) of yam root-knot nematode in the soils (2019)
监测地点
Location1 月下旬
Late January4 月中旬
Mid-April6 月下旬
Late June8 月下旬
Late August10 月下旬
Late October瑞昌市范镇范镇村
Fanzhen hamlet, Fan town, Ruichang city65.33±11.37 325.00±38.69 247.67±44.30 446.67±63.58 527.33±42.15 南昌县小兰乡涂家村
Tujia hamlet, Xiaolan village, Nanchang county47.67±13.32 207.33±22.40 144.67±8.08 331.67±22.59 363.67±33.56 注:表中数据为平均值±标准误差。Note: The data in the table are mean±SE. 表 3 不同施药时间对山药根结线虫病的防治效果
Table 3. The control efficacy of different spraying times of nematicides on yam root-knot nematode disease
处理
Treatment2019·瑞昌市范镇范镇村
Fanzhen hamlet, Fan town, Ruichang city2020·瑞昌市高丰镇乐丰村
Lefeng hamlet, Gaofeng town, Ruichang city2020·南昌县小兰乡涂家村
Tujia hamlet, Xiaolan village, Nanchang county病情指数
Disease index防治效果
Control efficacy/%病情指数
Disease index防治效果
Control efficacy/%病情指数
Disease index防治效果
Control efficacy%A 13.45±0.90 70.56±1.97 b 16.70±1.13 70.16±2.01 b 13.92±0.79 71.17±1.64 b B 30.26±1.20 33.76±2.62 d 40.53±1.60 27.56±2.86 d 32.98±1.26 31.68±2.61 d C 7.70±0.97 83.15±2.14 a 10.31±0.97 81.56±1.72 a 8.00±0.27 83.43±0.55 a D 20.13±1.09 55.95±2.40 c 26.33±0.98 52.95±1.75 c 21.31±0.94 55.85±1.95 c E 19.57±1.10 57.18±2.40 b 25.47±1.43 55.49±2.56 b 19.72±0.87 59.15±1.81 b F 35.01±1.54 23.36±3.25 d 45.07±1.31 19.44±2.33 d 37.39±1.37 22.53±2.85 d G 10.84±0.84 76.27±1.85 a 13.45±1.08 75.95±1.92 a 11.03±1.11 77.16±2.31 a H 22.76±1.02 50.19±2.23 c 30.19±1.20 46.03±2.11 c 23.25±1.17 51.83±2.43 c CK 45.69±1.91 — 55.95±1.38 — 48.27±1.55 — 注:表中数据为平均值±标准误差。同列后不同小写字母表示经Duncan氏新复级差法检验在P<0.05水平差异显著。Note: Data in the table are mean±SE.Different lowercase letters in the same column indicate significant differences at P<0.05 level by Duncan’s new multiple range test. 表 4 不同施药方法组合对山药根结线虫病的防治效果
Table 4. The control efficacy of different spraying methods of nematicides on yam root-knot nematode disease
处理
Treatment施药方法组合
Combined application method瑞昌市高丰镇乐丰村
Lefeng hamlet, Gaofeng town, Ruichang city南昌县小兰乡涂家村
Tujia hamlet, Xiaolan village, Nanchang county第 1 次
First第 2 次
Second病情指数
Disease index防治效果
Control efficacy/%病情指数
Disease index防治效果
Control efficacy/%Ⅰ Ea Ea 9.69±0.58 81.47±1.11 a 7.72±0.68 82.80±1.52 a Ⅱ Di Ea 12.87±0.85 75.39±1.62 b 10.12±0.55 77.44±1.23 b Ⅲ Di Di 16.92±0.73 67.65±1.40 c 14.01±0.75 68.76±1.68 c Ⅳ Wr Wr 29.21±1.28 52.31±0.98 d 23.01±0.57 48.71±1.27 d CK — — 52.31±0.98 — 44.86±1.29 — 注:Ea、Di、Wr分别指根层均匀施药、滴灌施药和灌根施药。“—”表示无数据。表中数据为平均值±标准误差。同列后不同小写字母表示经Duncan氏新复级差法检验在P<0.05水平差异显著。Note: Ea, Di and Wr indicate the treatments of uniform spraying to yam root layers, drip irrigation, and root irrigation, respectively. “—” indicates no data. Data in the table are mean±SE. Different lowercase letters in the same column indicate significant differences at P<0. 05 level by Duncan’s new multiple range test. -
[1] 王葡萄, 单楠, 朱强龙, 等. 瑞昌山药遗传多样性及块茎品质变异分析[J]. 中国蔬菜, 2020(8): 57-63.WANG P T, SHAN N, ZHU Q L, et al. Analysis of genetic diversity and quality variation of Ruichang yam[J]. China Veg, 2020(8): 57-63. [2] JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961. doi: 10.1111/mpp.12057 [3] LIN G C, TSAY T T, CHEN P J. The identification and control of the causal nematodes of yam root-knot and dry rot diseases[J]. Plant Prot Bull (Taichung), 2009, 51(3-4): 95-108. [4] COYNE D L, TCHABI A, BAIMEY H, et al. Distribution and prevalence of nematodes (Scutellonema bradys and Meloidogyne spp.) on marketed yam (Dioscoter spp. ) in West Africa[J]. Field Crop Res, 2006, 96(1): 142-150. doi: 10.1016/j.fcr.2005.06.004 [5] JOHN B, COYNE D L, KWOSEH C K. Plant Parasitic Nematodes in Subtropical and Tropical Agriculture[M]. Revised 2nd ed. Wallingford: CAB International Publishing, 2005: 221-258. [6] FAOSTAT. Crops and livestock products[DB/OL]. (2016-9-20). http://faostat.fao.org. [7] ONKENDI E M, KARIUKI G M, MARAIS M. et al. The threat of root-knot nematodes (Meloidogyne spp.) in Africa: a review[J]. Plant Pathol, 2014, 63: 727-737. doi: 10.1111/ppa.12202 [8] 苏莱曼. 谷物和山药相关的植物寄生线虫的多样性和鉴定[D]. 北京: 中国农业科学院, 2021.SULAIMAN A. Diversity and characterization of plant-parasitic nematodes associated with cereals and yam(Dioscorea spp.) [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. [9] OGBUJI R. Damage caused by Meloidogyne incognita association with soil borne fungi in ten taro cultivars in Nigeria[J]. Ghana J Agric Sci, 1978, 11: 161-164. [10] CLAUDIUS-COLE A O, FAWOLE B, ASIEDU R, et al. Management of Meloidogyne incognita in yam-based cropping systems with cover crops[J]. Crop Prot, 2014, 63: 97-102. doi: 10.1016/j.cropro.2014.05.011 [11] CLAUDIUS-COLE A O, OMOTAYO T O, MONTES A L. Nodal vine cutting technique for assessing nematode resistance in yams[J]. Trop Plant Pathol, 2020, 45(1): 56-63. doi: 10.1007/s40858-019-00325-9 [12] OSEI K, DANSO Y, OTOO E, ADOMAKO J, et al. Evaluation of yam varieties for reaction to plant parasitic nematodes infestation in three agro-ecologies of Ghana[J]. Acad Res J Agric Sci Res, 2015, 3(7): 201-206. [13] 赵磊, 段玉玺, 白春明, 等. 辽宁省保护地蔬菜根结线虫发生规律及防治对策[J]. 植物保护, 2011, 37(1): 105-109. doi: 10.3969/j.issn.0529-1542.2011.01.023ZHAO L, DUAN Y X, BAI C M, et al. Occurrence and control of vegetable root-knot nematodes under protected cultivation in Liaoning Province[J]. Plant Prot, 2011, 37(1): 105-109. doi: 10.3969/j.issn.0529-1542.2011.01.023 [14] 孙厚俊, 梁家荣, 张凤海. 山药根结线虫病的发生规律与综合防治技术[J]. 中国园艺文摘, 2010, 26(2): 152-153. doi: 10.3969/j.issn.1672-0873.2010.02.089SUN H J, LIANG J R, ZHANG F H. Occurrence regularity and integrated control technology of yam root-knot nematode disease[J]. Chin Hortic Abstr, 2010, 26(2): 152-153. doi: 10.3969/j.issn.1672-0873.2010.02.089 [15] 孟庆鹏, 龙海, 徐建华. 南方、爪哇和花生根结线虫的快速灵敏的PCR鉴定方法[J]. 植物病理学报, 2004, 34(3): 204-210. doi: 10.3321/j.issn:0412-0914.2004.03.003MENG Q P, LONG H, XU J H. Pcr assays for rapid and sensitive identification of three major root-knot nematodes, Meloidogyne incognita, M. javanica and M. Arenaria[J]. Acta Phytopathol Sin, 2004, 34(3): 204-210. doi: 10.3321/j.issn:0412-0914.2004.03.003 [16] HOOPER D J, HALLMANN J, SUBBOTIN S A. Methods for extraction, processing and detection of plant and soil nematodes [C]//LUC M, SIKORA R A, BRIDGE J. Plant parasitic nematodes in subtropical and tropical agriculture. Wallingford, UK, CAB International, 2005: 53-86. [17] 马铃薯抗南方根结线虫病鉴定技术规程: NY/T 3623—2020[S]. 北京: 中国农业出版社, 2020.Technical code of practice for evalution of potato resistance against southern root-knot nematode (Meloidogyne incognita) NY/T 3623—2020[S]. Beijing: Chinese Agriculture Press, 2020. [18] 华菊玲, 李信申, 沈爱喜, 等. 一种用于植保设备的施药器: ZL201921477225.0[P/OL]. 2020-05-08. http://cn.oversea.cnki.net/kns55/brief/result.aspx?dbprefix=scpd.HUA J L, LI X S, SHEN A X, et al. A medicine applicator device for plant protection: ZL201921477225.0[P/OL]. 2020-05-08. http://cn.oversea.cnki.net/kns55/brief/result.aspx?dbprefix=scpd. [19] 中国农业科学院植物保护研究所, 中国植物保护协会. 中国农作物病虫害[M]. 3 版. 北京: 中国农业出版社, 2015: 1163-1167.Institute of Plant Protection, Chinese Academy of Agricultural Sciences, China Society of Plant Protection. Crop Crop diseases and insect pests in China[M]. 3rd Edition. Beijing: China Agriculture Press, 2015: 1163-1167. [20] 迟元凯, 叶梦迪, 赵伟, 等. 氟吡菌酰胺对南方根结线虫的作用效果[J]. 植物保护学报, 2019, 46(6): 1364-1370.CHI Y K, YE M D, ZHAO W, et al. Effect of fluopyram on root-knot nematode Meloidogyne incognita[J]. Acta Phytophy Sin, 2019, 46(6): 1364-1370. [21] 赵婉婷, 雷飘, 刘晓宇, 等. 日光温室番茄不同生育期根围土壤线虫空间分布研究[J]. 沈阳农业大学学报, 2019, 50(1): 34-42.ZHAO W T, LEI P, LIU X Y, et al. Diversity and spatial distribution of rhizosphere soil nematodes in a tomato greenhouse during different growing period[J]. J Shenyang Agric Univ, 2019, 50(1): 34-42. [22] 祁芳, 李岗生. 不同作物根际土壤线虫量的测定初报[J]. 中国农学通报, 2002, 18(5): 87-88. doi: 10.3969/j.issn.1000-6850.2002.05.027QI F, LI G S. A preliminary report on the determination of nematodes in rhizosphere soil of different crops[J]. Chin Agric Sci Bull, 2002, 18(5): 87-88. doi: 10.3969/j.issn.1000-6850.2002.05.027 [23] BARDGETT R D, MOMMER L, DE VRIES F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends Ecol Evol, 2014, 29(12): 692-699. doi: 10.1016/j.tree.2014.10.006 [24] LI X P, ZHU H M, GEISEN S, et al. Agriculture erases climate constraints on soil nematode communities across large spatial scales[J]. Global Change Biol, 2019, 26(2): 919-930. [25] ZHANG C Z, WANG J J, REN Z H, et al. Root traits mediate functional guilds of soil nematodes in an ex-arable field[J]. Soil Biol Biochem, 2020, 151: 108038. doi: 10.1016/j.soilbio.2020.108038 [26] 董文芳. 山药短体线虫病病原种类鉴定、田间发生动态及其化学防治研究[D]. 保定: 河北农业大学, 2015.DONG W F. Study on pathogen identification, field occurrence dynamic and chemical control of shortbody nematodes disease on Dioscorea opposita thumb[D]. Baoding: Hebei Agricultural University, 2015. -