Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province, China
-
摘要:
由假禾谷镰刀菌Fusarium pseudograminearum引起的小麦茎基腐病已成为重要的土传病害,并且影响小麦的品质和产量。为了明确中国河南省假禾谷镰刀菌对咯菌腈的敏感性,采用菌丝生长速率法测定了咯菌腈对2019年从河南省6个地市分离的105株假禾谷镰刀菌F. pseudograminearum 的敏感性,通过最小显著差异法(LSD)和SPSS聚类方法对测定结果进行了分析,并测定了假禾谷镰刀菌对多菌灵和戊唑醇的敏感性,分析了咯菌腈与这两种杀菌剂毒力的相关性。结果表明:咯菌腈对供试菌株的最低抑制浓度(MIC)为0.2400 μg/mL。敏感性频率分布图显示,EC50值范围在0.0027~0.0470 μg/mL,敏感性差异达17.41倍;敏感性频率分布为连续单峰曲线,平均EC50值为(0.0263 ± 0.0101) μg/mL,可作为假禾谷镰刀菌对咯菌腈的敏感性基线。方差分析结果显示,不同县市的小麦假禾谷镰刀菌对咯菌腈的敏感性差异较大,EC50值变化范围为0.0150~0.0335 μg/mL,其中咯菌腈对郑州中牟的敏感性最低和最高菌株的EC50值相差16.78倍。聚类分析结果显示,河南省小麦茎基腐病菌菌株对咯菌腈敏感性差异与菌株的地理来源无明显关联性。多菌灵和戊唑醇对病菌的平均EC50值分别为 (0.7881 ± 0.3153) μg/mL和(0.0886 ± 0.1453) μg/mL。病菌对咯菌腈与其对多菌灵和戊唑醇的敏感性之间无明显相关性。温室防效结果显示,用咯菌腈悬浮种衣剂对小麦进行拌种处理,2020年 (咯菌腈有效成分为75.0 μg/g)对小麦茎基腐病的防治效果可达58.00%,2021年 (咯菌腈有效成分为50.0 μg/g)的防治效果可达到63.69%。本研究结果可为咯菌腈在小麦茎基腐病防治中的合理使用提供依据,为病原菌对药剂的敏感性监测提供参考。
Abstract:Wheat crown rot caused by Fusarium pseudograminearum has become an important soil-borne disease and affects the quality and yield of wheat. In order to detect the sensitivity of F. pseudograminearum to fludioxonil in Henan Province, China, 105 isolates of F. pseudograminearum were collected from six cities in 2019. Sensitivity was determined by the mycelial growth rate method, then the methods of least-significant difference (LSD) and SPSS cluster were used for result analysis. The sensitivity of F. pseudograminearum to carbendazim and tebuconazole was determined and the correlation coefficient which existed between fludioxonil and the two fungicides, carbendazim and tebuconazole was analyzed. The results showed that the minimum inhibitory concentration (MIC) of fludioxonil was 0.2400 μg/mL. The sensitivity frequency distribution was a continuous single peak curve, and the EC50 value ranged from 0.0027 to 0.0470 μg/mL. The average EC50 value of (0.0263 ± 0.0101) μg/mL, could be used as the sensitivity baseline of the pathogen to fludioxonil. The variance analysis results showed that the sensitivity of the different cities to fludioxonil was different, and the EC50 value ranged from 0.0150 to 0.0335 μg/mL. The maximum EC50 value of the isolate from Zhongmu County Zhengzhou City was 16.78 times bigger than the minimum value. Cluster analysis showed that there was no significant correlation between the sensitivity of isolates to fludioxonil and their geographical origin. The mean EC50 values of carbendazimand tebuconazole against the pathogens were (0.7881 ± 0.3153) μg/mL and (0.0886 ± 0.1453) μg/mL, respectively. There was no significant correlation between the sensitivity of the isolates to fludioxonil, carbendazim and tebuconazole. The results of greenhouse trials showed that the control efficacy of fludioxonil suspension seed coat agent could reach 58.00% (75.0 μg a.i/g) in 2020 and 63.69% (50.0 μg a.i/g) in 2021 when used to treat wheat as a seed dressing agent. The results of this study provide the basis for the rational use of fludioxonil in the control of wheat crown rot and provide information for monitoring the sensitivity of pathogenic fungi to fungicides.
-
Table 1. Sensitivity of F. pseudograminearum from different areas in Henan Province to fludioxonil
Sampling site Strain name Tested isolate Frequency/% EC50 value/(μg/mL) Range EC50 (Max)/ EC50 (Min) Mean±SD Sensitive factor Luolong District, Luoyang City JFLF 13 12.38 0.0183-0.0445 2.43 0.0251 ± 0.0088 b 0.95 Wugang County, Luohe City JFLW 14 13.33 0.0084-0.0240 2.86 0.0150 ± 0.0037 c 0.57 Neixiang County, Nanyang City JFNN 5 4.76 0.0140-0.0459 3.28 0.0302 ± 0.0122 ab 1.15 Yucheng County, Shangqiu City JFSQ 6 5.71 0.0163-0.0405 2.48 0.0256 ± 0.0103 b 0.97 Hongqi District, Xinxiang City JFXH 21 20.00 0.0119-0.0453 3.81 0.0261 ± 0.0094 b 0.99 Yanjin District, Xinxiang City JFXY 20 19.05 0.0106-0.0470 4.43 0.0335 ± 0.0091 a 1.27 Zhongmu County, Zhengzhou City JFXS 26 24.76 0.0027-0.0453 16.78 0.0268 ± 0.0090 ab 1.02 Total 7 105 100 0.0027-0.0470 17.41 0.0263 ± 0.0101 ab 1.00 Note: Different letters in the same column indicate significant difference at P<0.05 by LSD test. Table 2. Control efficacy of fludioxonil 25 g/L FSC on wheat crown rot in greenhouse
Year Treatments Dosage/(μg a.i/g) Disease index* Control efficacy/% 2020 T1
T2
T3
T4
CK12.5
25.0
50.0
75.0
030.00 ± 2.02 b
32.89 ± 3.42 b
31.43 ± 4.04 b
20.00 ± 4.04 c
47.62 ± 1.34 a37.00
30.93
34.00
58.00
—2021 T1
T2
T3
T4
CK12.5
25.0
50.0
75.0
012.14 ± 6.35 ab
13.33 ± 7.20 ab
9.52 ± 8.73 b
11.00 ± 3.91 ab
26.22 ± 14.24 a53.70
49.16
63.69
58.09
—Note: * Different letters in the same column indicate significant difference at P<0.05 by LSD test. -
[1] PU L F, REN H, OU Y C, et al. Screening of germpiasms resistant to crown rot and Fusarium head blight and the associated SNPs in wheat[J]. J Triticeae Crops, 2020, 40(7): 780-788. [2] ZHOU H F, YANG Y, NIU Y J, et al. Occurrence and control methods of crown rot of wheat[J]. J Henan Agric Sci, 2014, 43(5): 114-117. [3] LI H L, YUAN H X, FU B, et al. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J]. Plant Dis, 2012, 96(7): 1065. [4] AKINSANMI O A, MITTER V, SIMPFENDORFER S, et al. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales[J]. Aust J Agric Resour Econ, 2004, 55(1): 97-107. doi: 10.1071/AR03090 [5] CHAKRABORTY S, LIU C J, MITTER V, et al. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australas Plant Path, 2006, 35(6): 643-655. doi: 10.1071/AP06068 [6] MITTER V, FRANCL L J, ALI S, et al. Ascosporic and conidial inoculum of Gibberella zeae play different roles in Fusarium head blight and crown rot of wheat in Australia and the USA[J]. Australas Plant Path, 2006, 35(4): 441-452. doi: 10.1071/AP06046 [7] SMILEY R W, GOURLIE J A, EASLEY S A, et al. Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington[J]. Plant Dis, 2005, 89(9): 949-957. doi: 10.1094/PD-89-0949 [8] MITTER V, ZHANG M C, LIU C J, et al. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm[J]. Plant Pathol, 2006, 55(3): 433-441. doi: 10.1111/j.1365-3059.2006.01384.x [9] BACKHOUSE D, ABUBAKAR A A, BURGESS L W, et al. Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia[J]. Australas Plant Path, 2004, 33(2): 255-261. doi: 10.1071/AP04010 [10] XU F, SONG Y L, ZHOU Y L, et al. Occurrence dynamics and characteristics of Fusarium root and crown rot of wheat in Henan Province during 2013-2016[J]. Plant Prot, 2016, 42(6): 126-132. [11] YANG Y, HE X L, HU Y F, et al. Resistance of wheat cultivars in Huang-Huai region of China to crown rot caused by Fusarium pseudograminearum[J]. J Triticeae Crops, 2015, 35(3): 339-345. [12] ZHANG X X, SUN H Y, LI W, et al. Composition and pathogenicity of Fusarium crown rot pathogens of wheat in major winter wheat production areas of China[J]. J Triticeae Crops, 2014, 34(2): 272-278. [13] LAMICHHANE J R, YOU M P, LAUDINOT V, et al. Revisiting sustainability of fungicide seed treatments for field crops[J]. Plant Dis, 2020, 104(3): 610-623. doi: 10.1094/PDIS-06-19-1157-FE [14] LIU S M, HAI F, JIANG J. Sensitivity to fludioxonil of Botrytis cinerea Isolates from tomato in Henan Province of China and characterizations of fludioxonil-resistant mutants[J]. J Phytopathol, 2017, 165(2): 98-104. doi: 10.1111/jph.12542 [15] ZHANG Y T. Residual digestion of fludioxonil in tomato and its effects on physiological and biochemical properties and edible qualities of tomato[D]. Haibin Normal Univereity, 2019. [16] HUA N Z. Market and application evaluation of high-efficiency, low-risk leaf microbicides and seed treatment agents fludioxonil[J]. Pesticide Market News, 2016(29): 28-31. [17] DOWLING M, GELAIN J, MAY DE MIO L L, et al. Characterization of high fludioxonil resistance in Botrytis cinerea isolates from Calibrachoa flowers[J]. Phytopathology, 2021, 111(3): 478-484. doi: 10.1094/PHYTO-07-20-0268-R [18] DUAN Y B, GE C Y, LIU S M, et al. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum[J]. Pestic Biochem Physiol, 2013, 106(1-2): 61-67. doi: 10.1016/j.pestbp.2013.04.004 [19] TAN F J, WU S H, LI X G, et al. Study on the effect of fludioxonil suspension seed coating agent on pepper seeds[J]. J China Capsicum, 2020, 18(3): 10-13. [20] LI Y M. Risk assessment of Botrytis cinerea resistance to Fludioxonil in Beijing[D], Beijing: Beijing Agricultural College, 2020. [21] AOKI T, O'DONNELL K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum[J]. Mycologia, 1999, 91(4): 597-609. doi: 10.2307/3761245 [22] GEORGOPOULOS S G. Detection and measurement of fungicide resistance[J]. Fungicide Resistance in Crop Protection, 1982: 24-31. [23] RUSSELL P E. Sensitivity baselines in fungicide resistance research and research and management [EB/OL]. Fungicde resistance action committee (FRAC), [2019-09-03]. FRAC F ungicide Cover 22762AM.https://www.frac.info/fungicide-resistance-management/background [24] WANG L L, ZHU K, SUN Y, et al. Inhibitory effect of kresoximmethyl on Fusarium pseudograminearum and control effect on crownroot of wheat [J/OL]. Acta Phytopathologica Sinia, 2021. DOI: 10.13926/j.cnki.apps.000758. [25] XU J Q, PING Z L, MA S C, et al. Sensitivity of the isolates of Fusarium graminearum to fludioxonil in Henan Province[J]. Acta Phytophylacica Sinica, 2018, 45(6): 1367-1373. [26] DUAN Y B, GE C Y, LIU S M, et al. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum[J]. Mol Plant Pathol, 2013, 14(7): 708-718. doi: 10.1111/mpp.12041 [27] CUOMO C A, GÜLDENER U, XU J R, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 2007, 317(5843): 1400-1402. doi: 10.1126/science.1143708 [28] MIEDANER T, CUMAGUN C J R, CHAKRABORTY S. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum[J]. J Phytopathol, 2008, 156(3): 129-139. doi: 10.1111/j.1439-0434.2007.01394.x [29] ZHAO Y L, WANG X H, HU Y H, et al. Field drug efficiency test for seed wrapping technology to prevent wheat crown rot[J]. China Agric Technol Extension, 2020, 36(5): 63-65. [30] YANG S H. Test Study on 10% fludioxonil·azoxystrobin suspension seed coating agent for prevention and treatment of Rhizoctonia solanikuhn[J]. Agri Science-technol Information, 2020(18): 26-27. doi: 10.15979/j.cnki.cn62-1057/s.2020.18.010 [31] CHU X D, AWASTHI M K, LIU Y N, et al. Studies on the degradation of corn straw by combined bacterial cultures[J]. Bioresour Technol, 2021, 321(pt a): 124174. [32] QAYYUM M F, HAIDER G, IQBAL M, et al. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize[J]. Chemosphere, 2021, 266: 128980. doi: 10.1016/j.chemosphere.2020.128980 [33] CHEN S C, REN J J, ZHAO H J, et al. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots[J]. Phytopathology, 2019, 109(6): 972-982. doi: 10.1094/PHYTO-09-18-0342-R -