• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province, China

CHEN Yawei XU Jianqiang WANG Shuo XU Daochao MA Shichuang HUANG Yulong HOU Ying

陈亚伟, 徐建强, 王硕, 许道超, 马世闯, 黄宇龙, 侯颖. 河南省假禾谷镰刀菌对咯菌腈的敏感性[J]. 农药学学报, 2022, 24(2): 306-314. doi: 10.16801/j.issn.1008-7303.2021.0187
引用本文: 陈亚伟, 徐建强, 王硕, 许道超, 马世闯, 黄宇龙, 侯颖. 河南省假禾谷镰刀菌对咯菌腈的敏感性[J]. 农药学学报, 2022, 24(2): 306-314. doi: 10.16801/j.issn.1008-7303.2021.0187
CHEN Yawei, XU Jianqiang, WANG Shuo, XU Daochao, MA Shichuang, HUANG Yulong, HOU Ying. Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province, China[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 306-314. doi: 10.16801/j.issn.1008-7303.2021.0187
Citation: CHEN Yawei, XU Jianqiang, WANG Shuo, XU Daochao, MA Shichuang, HUANG Yulong, HOU Ying. Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province, China[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 306-314. doi: 10.16801/j.issn.1008-7303.2021.0187

河南省假禾谷镰刀菌对咯菌腈的敏感性

doi: 10.16801/j.issn.1008-7303.2021.0187
详细信息
  • 中图分类号: S482.2

Sensitivity of Fusarium pseudograminearum isolates to fludioxonil in Henan Province, China

Funds: State Key Laboratory of Crop Stress Biology for Arid Areas (CSBAAKF2021012), Henan Provincial Science and Technology Research Project (202102110071), National Innovation and Entrepreneurship Training Program for College Students (202010464070).
More Information
  • 摘要:

    由假禾谷镰刀菌Fusarium pseudograminearum引起的小麦茎基腐病已成为重要的土传病害,并且影响小麦的品质和产量。为了明确中国河南省假禾谷镰刀菌对咯菌腈的敏感性,采用菌丝生长速率法测定了咯菌腈对2019年从河南省6个地市分离的105株假禾谷镰刀菌F. pseudograminearum 的敏感性,通过最小显著差异法(LSD)和SPSS聚类方法对测定结果进行了分析,并测定了假禾谷镰刀菌对多菌灵和戊唑醇的敏感性,分析了咯菌腈与这两种杀菌剂毒力的相关性。结果表明:咯菌腈对供试菌株的最低抑制浓度(MIC)为0.2400 μg/mL。敏感性频率分布图显示,EC50值范围在0.0027~0.0470 μg/mL,敏感性差异达17.41倍;敏感性频率分布为连续单峰曲线,平均EC50值为(0.0263 ± 0.0101) μg/mL,可作为假禾谷镰刀菌对咯菌腈的敏感性基线。方差分析结果显示,不同县市的小麦假禾谷镰刀菌对咯菌腈的敏感性差异较大,EC50值变化范围为0.0150~0.0335 μg/mL,其中咯菌腈对郑州中牟的敏感性最低和最高菌株的EC50值相差16.78倍。聚类分析结果显示,河南省小麦茎基腐病菌菌株对咯菌腈敏感性差异与菌株的地理来源无明显关联性。多菌灵和戊唑醇对病菌的平均EC50值分别为 (0.7881 ± 0.3153) μg/mL和(0.0886 ± 0.1453) μg/mL。病菌对咯菌腈与其对多菌灵和戊唑醇的敏感性之间无明显相关性。温室防效结果显示,用咯菌腈悬浮种衣剂对小麦进行拌种处理,2020年 (咯菌腈有效成分为75.0 μg/g)对小麦茎基腐病的防治效果可达58.00%,2021年 (咯菌腈有效成分为50.0 μg/g)的防治效果可达到63.69%。本研究结果可为咯菌腈在小麦茎基腐病防治中的合理使用提供依据,为病原菌对药剂的敏感性监测提供参考。

  • Figure  1.  Inhibition rate of fludioxonil to mycelial growth of F. pseudograminearum

    Figure  2.  Determination (A) and frequency (B) of sensitivity of F. pseudograminearum to fludioxonil

    Figure  3.  Hierarchical cluster analysis on EC50 values of fludioxonil to F. pseudograminearum from different areas in Henan Province

    Figure  4.  Correlation of the sensitivity of F. pseudograminearum to fludioxonil and carbendazim (A) or tebuconazole(B)

    Table  1.   Sensitivity of F. pseudograminearum from different areas in Henan Province to fludioxonil

    Sampling siteStrain nameTested isolateFrequency/%EC50 value/(μg/mL)
    RangeEC50 (Max)/ EC50 (Min)Mean±SDSensitive factor
    Luolong District, Luoyang City JFLF 13 12.38 0.0183-0.0445 2.43 0.0251 ± 0.0088 b 0.95
    Wugang County, Luohe City JFLW 14 13.33 0.0084-0.0240 2.86 0.0150 ± 0.0037 c 0.57
    Neixiang County, Nanyang City JFNN 5 4.76 0.0140-0.0459 3.28 0.0302 ± 0.0122 ab 1.15
    Yucheng County, Shangqiu City JFSQ 6 5.71 0.0163-0.0405 2.48 0.0256 ± 0.0103 b 0.97
    Hongqi District, Xinxiang City JFXH 21 20.00 0.0119-0.0453 3.81 0.0261 ± 0.0094 b 0.99
    Yanjin District, Xinxiang City JFXY 20 19.05 0.0106-0.0470 4.43 0.0335 ± 0.0091 a 1.27
    Zhongmu County, Zhengzhou City JFXS 26 24.76 0.0027-0.0453 16.78 0.0268 ± 0.0090 ab 1.02
    Total 7 105 100 0.0027-0.0470 17.41 0.0263 ± 0.0101 ab 1.00
    Note: Different letters in the same column indicate significant difference at P<0.05 by LSD test.
    下载: 导出CSV

    Table  2.   Control efficacy of fludioxonil 25 g/L FSC on wheat crown rot in greenhouse

    YearTreatmentsDosage/(μg a.i/g) Disease index*Control efficacy/%
    2020 T1
    T2
    T3
    T4
    CK
    12.5
    25.0
    50.0
    75.0
    0
    30.00 ± 2.02 b
    32.89 ± 3.42 b
    31.43 ± 4.04 b
    20.00 ± 4.04 c
    47.62 ± 1.34 a
    37.00
    30.93
    34.00
    58.00
    2021 T1
    T2
    T3
    T4
    CK
    12.5
    25.0
    50.0
    75.0
    0
    12.14 ± 6.35 ab
    13.33 ± 7.20 ab
    9.52 ± 8.73 b
    11.00 ± 3.91 ab
    26.22 ± 14.24 a
    53.70
    49.16
    63.69
    58.09
    Note: * Different letters in the same column indicate significant difference at P<0.05 by LSD test.
    下载: 导出CSV
  • [1] PU L F, REN H, OU Y C, et al. Screening of germpiasms resistant to crown rot and Fusarium head blight and the associated SNPs in wheat[J]. J Triticeae Crops, 2020, 40(7): 780-788.
    [2] ZHOU H F, YANG Y, NIU Y J, et al. Occurrence and control methods of crown rot of wheat[J]. J Henan Agric Sci, 2014, 43(5): 114-117.
    [3] LI H L, YUAN H X, FU B, et al. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J]. Plant Dis, 2012, 96(7): 1065.
    [4] AKINSANMI O A, MITTER V, SIMPFENDORFER S, et al. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales[J]. Aust J Agric Resour Econ, 2004, 55(1): 97-107. doi: 10.1071/AR03090
    [5] CHAKRABORTY S, LIU C J, MITTER V, et al. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australas Plant Path, 2006, 35(6): 643-655. doi: 10.1071/AP06068
    [6] MITTER V, FRANCL L J, ALI S, et al. Ascosporic and conidial inoculum of Gibberella zeae play different roles in Fusarium head blight and crown rot of wheat in Australia and the USA[J]. Australas Plant Path, 2006, 35(4): 441-452. doi: 10.1071/AP06046
    [7] SMILEY R W, GOURLIE J A, EASLEY S A, et al. Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington[J]. Plant Dis, 2005, 89(9): 949-957. doi: 10.1094/PD-89-0949
    [8] MITTER V, ZHANG M C, LIU C J, et al. A high-throughput glasshouse bioassay to detect crown rot resistance in wheat germplasm[J]. Plant Pathol, 2006, 55(3): 433-441. doi: 10.1111/j.1365-3059.2006.01384.x
    [9] BACKHOUSE D, ABUBAKAR A A, BURGESS L W, et al. Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia[J]. Australas Plant Path, 2004, 33(2): 255-261. doi: 10.1071/AP04010
    [10] XU F, SONG Y L, ZHOU Y L, et al. Occurrence dynamics and characteristics of Fusarium root and crown rot of wheat in Henan Province during 2013-2016[J]. Plant Prot, 2016, 42(6): 126-132.
    [11] YANG Y, HE X L, HU Y F, et al. Resistance of wheat cultivars in Huang-Huai region of China to crown rot caused by Fusarium pseudograminearum[J]. J Triticeae Crops, 2015, 35(3): 339-345.
    [12] ZHANG X X, SUN H Y, LI W, et al. Composition and pathogenicity of Fusarium crown rot pathogens of wheat in major winter wheat production areas of China[J]. J Triticeae Crops, 2014, 34(2): 272-278.
    [13] LAMICHHANE J R, YOU M P, LAUDINOT V, et al. Revisiting sustainability of fungicide seed treatments for field crops[J]. Plant Dis, 2020, 104(3): 610-623. doi: 10.1094/PDIS-06-19-1157-FE
    [14] LIU S M, HAI F, JIANG J. Sensitivity to fludioxonil of Botrytis cinerea Isolates from tomato in Henan Province of China and characterizations of fludioxonil-resistant mutants[J]. J Phytopathol, 2017, 165(2): 98-104. doi: 10.1111/jph.12542
    [15] ZHANG Y T. Residual digestion of fludioxonil in tomato and its effects on physiological and biochemical properties and edible qualities of tomato[D]. Haibin Normal Univereity, 2019.
    [16] HUA N Z. Market and application evaluation of high-efficiency, low-risk leaf microbicides and seed treatment agents fludioxonil[J]. Pesticide Market News, 2016(29): 28-31.
    [17] DOWLING M, GELAIN J, MAY DE MIO L L, et al. Characterization of high fludioxonil resistance in Botrytis cinerea isolates from Calibrachoa flowers[J]. Phytopathology, 2021, 111(3): 478-484. doi: 10.1094/PHYTO-07-20-0268-R
    [18] DUAN Y B, GE C Y, LIU S M, et al. Effect of phenylpyrrole fungicide fludioxonil on morphological and physiological characteristics of Sclerotinia sclerotiorum[J]. Pestic Biochem Physiol, 2013, 106(1-2): 61-67. doi: 10.1016/j.pestbp.2013.04.004
    [19] TAN F J, WU S H, LI X G, et al. Study on the effect of fludioxonil suspension seed coating agent on pepper seeds[J]. J China Capsicum, 2020, 18(3): 10-13.
    [20] LI Y M. Risk assessment of Botrytis cinerea resistance to Fludioxonil in Beijing[D], Beijing: Beijing Agricultural College, 2020.
    [21] AOKI T, O'DONNELL K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum[J]. Mycologia, 1999, 91(4): 597-609. doi: 10.2307/3761245
    [22] GEORGOPOULOS S G. Detection and measurement of fungicide resistance[J]. Fungicide Resistance in Crop Protection, 1982: 24-31.
    [23] RUSSELL P E. Sensitivity baselines in fungicide resistance research and research and management [EB/OL]. Fungicde resistance action committee (FRAC), [2019-09-03]. FRAC F ungicide Cover 22762AM.https://www.frac.info/fungicide-resistance-management/background
    [24] WANG L L, ZHU K, SUN Y, et al. Inhibitory effect of kresoximmethyl on Fusarium pseudograminearum and control effect on crownroot of wheat [J/OL]. Acta Phytopathologica Sinia, 2021. DOI: 10.13926/j.cnki.apps.000758.
    [25] XU J Q, PING Z L, MA S C, et al. Sensitivity of the isolates of Fusarium graminearum to fludioxonil in Henan Province[J]. Acta Phytophylacica Sinica, 2018, 45(6): 1367-1373.
    [26] DUAN Y B, GE C Y, LIU S M, et al. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum[J]. Mol Plant Pathol, 2013, 14(7): 708-718. doi: 10.1111/mpp.12041
    [27] CUOMO C A, GÜLDENER U, XU J R, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization[J]. Science, 2007, 317(5843): 1400-1402. doi: 10.1126/science.1143708
    [28] MIEDANER T, CUMAGUN C J R, CHAKRABORTY S. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum[J]. J Phytopathol, 2008, 156(3): 129-139. doi: 10.1111/j.1439-0434.2007.01394.x
    [29] ZHAO Y L, WANG X H, HU Y H, et al. Field drug efficiency test for seed wrapping technology to prevent wheat crown rot[J]. China Agric Technol Extension, 2020, 36(5): 63-65.
    [30] YANG S H. Test Study on 10% fludioxonil·azoxystrobin suspension seed coating agent for prevention and treatment of Rhizoctonia solanikuhn[J]. Agri Science-technol Information, 2020(18): 26-27. doi: 10.15979/j.cnki.cn62-1057/s.2020.18.010
    [31] CHU X D, AWASTHI M K, LIU Y N, et al. Studies on the degradation of corn straw by combined bacterial cultures[J]. Bioresour Technol, 2021, 321(pt a): 124174.
    [32] QAYYUM M F, HAIDER G, IQBAL M, et al. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize[J]. Chemosphere, 2021, 266: 128980. doi: 10.1016/j.chemosphere.2020.128980
    [33] CHEN S C, REN J J, ZHAO H J, et al. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots[J]. Phytopathology, 2019, 109(6): 972-982. doi: 10.1094/PHYTO-09-18-0342-R
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 录用日期:  2021-11-03
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回