Hydrolysis and photolysis characteristics of pinoxaden
-
摘要: 在实验室条件下,采用高效液相色谱和高效液相色谱-串联质谱研究了唑啉草酯在不同条件下的水解和光解特性。结果表明:在pH值分别为4.0、7.0和9.0的缓冲溶液中,25 ℃时唑啉草酯的半衰期分别为347、40.8和1.08 h,50 ℃时则分别为57.8、11.6和0.498 h,均为易水解;唑啉草酯在碱性条件下易水解,酸性条件下水解较慢;其水解速率随温度升高而升高,温度效应系数为2.18~6.00。在模拟太阳光氙灯辐射下,唑啉草酯在缓冲溶液中的光解速率随其pH值的升高而加快,在pH值为8.0时最短,为10.0 h;唑啉草酯在自然水体中的光解速率依次为池塘水>稻田水>河水>纯水,4种条件下的半衰期分别为5.17、7.79、8.56和38.5 h。唑啉草酯水解的主要产物是 M2 (8-(2,6-二乙基-4-甲基苯基)-9-羟基-1,2,4,5-四氢吡唑[1,2-d][1,4,5]噁二氮杂卓-7-酮),其降解机理主要是酯水解反应, M2 在光照条件下进一步降解,表明光解为唑啉草酯降解的一个重要途径。研究结果可为唑啉草酯在水体中的环境行为及其环境安全性评价提供参考。Abstract: The hydrolytic and photolytic characteristics of pinoxaden under different conditions were investigated by high performance liquid chromatography (HPLC) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in laboratory conditions. The results showed that in the buffer solutions of pH 4.0, 7.0 and 9.0, the hydrolysis half-lives of pinoxaden were 347, 40.8 and 1.08 h at 25 ℃, and were 57.8, 11.6 and 0.498 h at 50 ℃, respectively, which classified it as easily hydrolysis type. The hydrolysis of pinoxaden was rapid under alkaline conditions, but slowly under acidic conditions. The hydrolytic rate of pinoxaden increased with the increase of temperature, and the temperature effect coefficients ranged from 2.18 to 6.00. Under the irradiation of xenon simulated sunlight, the photo-degradation half-lives of pinoxaden in the buffer solutions were decreased with the increase of pH value, and the shortest was 10.0 h at pH of 8.0. The photolytic rates of pinoxaden in different natural water showed the following sequence: pond water > paddy water > river water > pure water, and the half-lives were 5.17, 7.79, 8.56 and 38.5 h, respectively. The main hydrolysis product of pinoxaden was M2 (8-(2,6-diethyl-4-methyl-phenyl)-9-hydroxy-1,2,4,5-tetrahydro-pyrazolo[1,2-d][1,4,5]oxadiazepin-7-one), and the main degradation mechanism was the hydrolyzation of the ester group. M2 was further degraded under light conditions, indicating that photolysis was an important degradation way of pinoxaden. The results provided a scientific reference for the environmental behavior and safety assessment of pinoxaden in water environment.
-
Key words:
- pinoxaden /
- hydrolysis /
- photolysis /
- half-life
-
表 1 供试水样的理化性质
Table 1. Physical and chemical properties of tested water samples
水体
Water sample
pH值
pH value电导率
Conductivity/
(μS/cm)溶解氧
Dissolved oxygen/
(mg/L)纯水 Pure water 6.260 4.60 9.18 河水 River water 6.844 271 12.64 池塘水 Pond water 8.003 250 13.77 稻田水 Paddy water 7.393 176 13.10 表 2 唑啉草酯水解试验取样时间表
Table 2. Sampling time for hydrolysis test of pinoxaden
pH 温度
Temperature/
℃取样时间
Sampling time4.0 25 0、3、7、11、15、19、23、30、42、51 d 50 0、1、2、3、4、5、6、7、8 d 7.0 25 0、8、22、29、37、45、49、54、81、
95、120、169、190、210 h50 0、4、8、18、21、24、28、32、42 h 9.0 25 0、0.5、0.75、1、1.25、1.5、1.75、2、3、4 h 50 0、10、20、25、30、40、50、60、90、120 min 表 3 唑啉草酯在不同pH值和不同温度条件下的水解动力学参数
Table 3. Hydrolytic kinetics parameters of pinoxaden under different pH value and temperatures
pH 温度
t/℃动力学方程
Kinetic equation决定系数
R2半衰期
t1/2/h活化能
Ea/(kJ/mol)温度效应系数
Q4.0 25 Ct = 10.12e−0.002t 0.9802 347 57.3 6.00 50 Ct = 11.84e−0.012t 0.9264 57.8 7.0 25 Ct = 9.53e−0.017t 0.9959 40.8 40.4 3.53 50 Ct = 9.47e−0.06t 0.9902 11.6 9.0 25 Ct = 9.07e−0.64t 0.9843 1.08 24.9 2.18 50 Ct = 12.35e−1.392t 0.9652 0.498 表 4 唑啉草酯在不同缓冲溶液中的光解动力学参数
Table 4. Photolysis kinetics parameters of pinoxaden in different buffer solutions
pH 动力学方程
Kinetic equation决定系数
R2半衰期
t1/2/h3.0 Ct = 10.21e−0.011t 0.9422 63.0 4.0 Ct = 10.04e−0.011t 0.9617 63.0 5.0 Ct = 10.33e−0.014t 0.9582 49.5 6.0 Ct = 10.44e−0.013t 0.9594 53.3 7.0 Ct = 10.18e−0.028t 0.9939 24.8 8.0 Ct = 9.54e−0.069t 0.9925 10.0 表 5 唑啉草酯在自然水体中的光解动力学参数
Table 5. Photolysis kinetics parameters of pinoxaden in natural water
水体
Water sample动力学方程
Kinetic equation决定系数
R2半衰期
t1/2/h纯水 Pure water Ct = 10.72e−0.018t 0.9872 38.5 河水 River water Ct = 10.43e−0.081t 0.9782 8.56 池塘水 Pond water Ct = 11.85e−0.134t 0.9828 5.17 稻田水 Paddy water Ct = 11.54e−0.089t 0.9636 7.79 -
[1] MUEHLEBACH M, BOEGER M, CEDERBAUM F, et al. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part I: discovery of the novel cereal herbicide pinoxaden[J]. Bioorg Med Chem, 2009, 17(12): 4241-4256. doi: 10.1016/j.bmc.2008.12.062 [2] MUEHLEBACH M, CEDERBAUM F, CORNES D, et al. Aryldiones incorporating a [1,4,5]oxadiazepane ring. Part 2: chemistry and biology of the cereal herbicide pinoxaden[J]. Pest Manag Sci, 2011, 67(12): 1499-1521. doi: 10.1002/ps.2204 [3] 刘维屏. 农药环境化学[M]. 北京: 化学工业出版社, 2006.LIU W P. Pesticide environmental chemistry[M]. Beijing: Chemical Industry Press, 2006. [4] 王晓霞, 姬鹏燕, 魏万磊, 等. 唑啉草酯合成的研究进展[J]. 农药, 2018, 57(8): 547-550,559.WANG X X, JI P Y, WEI W L, et al. The research progress of synthesis of pinoxaden[J]. Agrochemicals, 2018, 57(8): 547-550,559. [5] ABDEL-WAHAB S I Z, AIOUB A A A, SALEM R E M E, et al. Electrophoretic banding patterns of protein induced by pinoxaden, tribenuron-methyl, and pyroxsulam herbicides in wheat leaves (Triticum aestivum L.)[J]. Environ Sci Pollut Res, 2021, 28(23): 30077-30089. doi: 10.1007/s11356-021-12676-5 [6] MUHAMMAD M, JAN M R, SHAH J, et al. Evaluation and statistical analysis of the modified QuEChERS method for the extraction of pinoxaden from environmental and agricultural samples[J]. J Anal Sci Technol, 2017, 8(1): 1-10. doi: 10.1186/s40543-017-0110-4 [7] 吴绪金, 李萌, 宋彦, 等. 小麦中唑啉草酯及其代谢物残留检测与膳食摄入评估[J]. 农药, 2021, 60(5): 352-356.WU X J, LI M, SONG Y, et al. Determination of pinoxaden and its metabolite in wheat and risk assessment for dietary residue intake[J]. Agrochemicals, 2021, 60(5): 352-356. [8] 欧将, 刘开林, 欧晓明, 等. 高效液相色谱法测定水和土壤中的唑啉草酯残留量[J]. 农药, 2020, 59(12): 901-905.OU J, LIU K L, OU X M, et al. Determination of pinoxaden residues in water and soil by HPLC[J]. Agrochemicals, 2020, 59(12): 901-905. [9] Joint Meeting on Pesticide Residues. No. (293) 2016 (T, R) report, evaluation[EB/OL]. [2021-10-13]. http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/lpe/lpe-p/ir/. [10] MCMANUS S, PAYVANDI S, SWEENEY P, et al. Regulatory groundwater monitoring: realistic residues of pinoxaden and metabolites at vulnerable locations[J]. Sci Total Environ, 2021, 761: 143313. doi: 10.1016/j.scitotenv.2020.143313 [11] 楼书聪. 化学试剂配制手册[M]. 南京: 江苏科学技术出版社, 2002.LOU S C. Chemical reagent preparation manual[M]. Nanjing: Jiangsu Science and Technology Press, 2002. [12] 化学农药环境安全评价试验准则 第2部分 水解试验: GB/T 31270.2—2014[S]. 北京: 中国标准出版社, 2015.Test guidelines on environmental safety assessment for chemical pesticides-Part 2. Hydrolysis: GB/T 31270.2—2014[S]. Beijing: Standards Press of China, 2015. [13] 化学农药环境安全评价试验准则 第3部分 光解试验: GB/T 31270.3—2014[S]. 北京: 中国标准出版社, 2015.Test guidelines on environmental safety assessment for chemical pesticides-Part 3. Phototransformation: GB/T 31270.3—2014[S]. Beijing: Standards Press of China, 2015. [14] 唐启义, 冯明光. 实用统计分析及其DPS数据处理系统[M]. 北京: 科学出版社, 2002: 648.TANG Q Y, FENG M G. Practical statistical analysis and DPS data processing system[M]. Beijing: Science Press, 2002: 648. [15] 欧晓明, 雷满香, 裴晖, 等. 新农药硫肟醚的水解研究[J]. 农业环境科学学报, 2007, 26(6): 2309-2315. doi: 10.3321/j.issn:1672-2043.2007.06.055OU X M, LEI M X, PEI H, et al. Hydrolysis of novel insecticide sulfoxime in buffered solutions[J]. J Agro Environ Sci, 2007, 26(6): 2309-2315. doi: 10.3321/j.issn:1672-2043.2007.06.055 [16] 天津大学物理化学教研室. 物理化学[M]. 北京: 高等教育出版社, 1992.Physical Chemistry Teaching and Research Department of Tianjin University. Physical chemistry[M]. Beijing: Higher Education Press, 1992. [17] 程功, 田宏哲, 刘娜, 等. 丙炔氟草胺的水解及光解特性研究[J]. 农药学学报, 2017, 19(5): 583-588.CHENG G, TIAN H Z, LIU L, et al. Study on the photolytic and hydrolytic properties of flumioxazin[J]. Chin J Pestic Sci, 2017, 19(5): 583-588. [18] 侯丽娜, 孟鸽, 温勇, 等. 腐霉利的光解及水解特性研究[J]. 农药学学报, 2018, 20(3): 340-347.HOU L N, MENG G, WEN Y, et al. Study on the photolysis and hydrolysis characteristics of procymidone[J]. Chin J Pestic Sci, 2018, 20(3): 340-347. [19] 花日茂, 李湘琼, 李学德, 等. 丁草胺在不同类型水中的光化学降解[J]. 应用生态学报, 1999, 10(1): 57-59. doi: 10.3321/j.issn:1001-9332.1999.01.015HUA R M, LI X Q, LI X D, et al. Photochemical degradation of butachlor in different water[J]. Chin J Appl Ecol, 1999, 10(1): 57-59. doi: 10.3321/j.issn:1001-9332.1999.01.015 [20] SHI Y H, LIAO M, KIYOTA H, et al. Kinetics of octachlorodipropyl ether photolysis in aqueous solution[J]. J Pestic Sci, 2015, 40(2): 49-54. doi: 10.1584/jpestics.D14-061 [21] 邹雅竹, 龚道新, 汪传刚. 咪鲜胺在不同pH溶液及3种水体中的光解[J]. 农药, 2006, 45(6): 412-413. doi: 10.3969/j.issn.1006-0413.2006.06.019ZOU Y Z, GONG D X, WANG C G. Prochloraz photodegradation at different pH values and in three different aqueous solutions[J]. Agrochemicals, 2006, 45(6): 412-413. doi: 10.3969/j.issn.1006-0413.2006.06.019 [22] HIRAHARA Y, UENO H, NAKAMURO K. Aqueous photodegradation of fenthion by ultraviolet B irradiation: contribution of singlet oxygen in photodegradation and photochemical hydrolysis[J]. Water Res, 2003, 37(2): 468-476. doi: 10.1016/S0043-1354(02)00272-5 [23] European Food Safety Authority. Conclusion on the peer review of the pesticide risk assessment of the active substance pinoxaden[EB/OL]. [2021-10-13]. https://www.efsa.europa.eu/en/efsajournal/pub/3269. -

计量
- 文章访问数: 75
- HTML全文浏览量: 55
- 被引次数: 0