• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

樱桃采后灰霉病菌对甲基硫菌灵、乙霉威和腐霉利的抗性

宋郝棋 杨晓琦 李阿根 吴鉴艳 张传清

宋郝棋, 杨晓琦, 李阿根, 吴鉴艳, 张传清. 樱桃采后灰霉病菌对甲基硫菌灵、乙霉威和腐霉利的抗性[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0039
引用本文: 宋郝棋, 杨晓琦, 李阿根, 吴鉴艳, 张传清. 樱桃采后灰霉病菌对甲基硫菌灵、乙霉威和腐霉利的抗性[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0039
SONG Haoqi, YANG Xiaoqi, LI Agen, WU Jianyan, ZHANG Chuanqing. Resistance of Botrytis cinerea to thiophanate-methyl, diethofencarb, and procymidone in postharvest cherry[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0039
Citation: SONG Haoqi, YANG Xiaoqi, LI Agen, WU Jianyan, ZHANG Chuanqing. Resistance of Botrytis cinerea to thiophanate-methyl, diethofencarb, and procymidone in postharvest cherry[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0039

樱桃采后灰霉病菌对甲基硫菌灵、乙霉威和腐霉利的抗性

doi: 10.16801/j.issn.1008-7303.2022.0039
详细信息
    作者简介:

    宋郝棋,shq991207@163.com

    杨晓琦,yangxiaoqi1232020@163.com

    通讯作者:

    张传清,cqzhang9603@126.com

  • 中图分类号: S481.4

Resistance of Botrytis cinerea to thiophanate-methyl, diethofencarb, and procymidone in postharvest cherry

  • 摘要: 本文采用单孢分离法对四川汉源和山东烟台等地采集的樱桃果实进行了采后灰霉病的病原菌分离和鉴定;采用区分剂量法分别测定了菌株对苯并咪唑类杀菌剂甲基硫菌灵、乙霉威和二甲酰亚胺类杀菌剂腐霉利的敏感性,并进一步分析了抗药性菌株的分子机制。结果表明,分离得到的54株樱桃采后灰霉病菌均为灰葡萄孢Botrytis cinerea,对甲基硫菌灵的总抗性频率高达79.6%,其中甲基硫菌灵抗性-乙霉威敏感 (BEN R1) 菌株频率为 25.9%;甲基硫菌灵-乙霉威双重抗性菌株 (BEN R2) 频率为53.7%;检测到腐霉利抗性菌株 (DCF R) 9 株,频率为16.7%。甲基硫菌灵抗性菌株在β-tubulin基因上的突变共有2种类型: BEN R1抗性菌株中,第198位密码子发生点突变 (GAG→GCG),编码氨基酸由Glu (E)突变成缬氨酸Ala (A);在BEN R2抗性菌株中,第198位密码子发生点突变 (GAG→GTG),编码氨基酸由Glu (E)突变成缬氨酸Val (V)。DCF R菌株在BcOS1的第365位密码子由ATC突变成AAC或AGC,导致编码的氨基酸由异亮氨酸Ile (I)突变成天冬酰胺Asn (N)或丝氨酸Ser (S)。本研究表明樱桃采后灰霉病菌对甲基硫菌灵和腐霉利存在不同程度抗性,要在加强抗药性监测的同时与其他类型杀菌剂交替使用,延缓抗药性发展。
  • 图  1  樱桃灰霉病菌—灰葡萄孢B. cinerea的形态学特征

    a:SCHY- 45菌落形态;b:分生孢子形态;c:分生孢子梗形态 (40 ×,比例尺 = 20 μm)。

    Figure  1.  Morphological characteristics of B. cinerea causing postharvest grey mold of cherry

    a: Colony morphology of SCHY- 45; b: Spore morphology; c: Conidiophore morphology (40 ×,scale = 20 µm).

    图  2  樱桃采后灰霉病菌对甲基硫菌灵、乙霉威 (a) 和腐霉利 (b) 的抗药性频率

    注:BEN S表示甲基硫菌灵敏感菌株;BEN R1表示甲基硫菌灵抗性但乙霉威敏感菌株; BEN R2表示甲基硫菌灵抗性且乙霉威抗性菌株。*DCF S表示腐霉利敏感菌株; DCF R表示腐霉利抗性菌株。Note: BEN S: thiophanate-methyl-sensitive strains; BEN R1: thiophanate-methyl-resistant and diethofencarb-sensitive strains; BEN R2: thiophanate-methyl-resistant and diethofencarb-resistant strains; DCF S: procymidone-sensitive strains; DCF R: procymidone-resistant strains.

    Figure  2.  Resistance of B.cinerea to thiophanate-methyl, diethofencarb (a) and procymidone (b) on postharvest cherry

    表  1  本研究PCR扩增所用引物及其序列信息

    Table  1.   Primers and their sequence information used in this study

    基因
    Gene
    引物
    Primer
    长度
    Length/bp
    退火温度
    Annealing temperature/℃
    序列 (5′-3′)
    Sequence (5′-3′)
    参考文献
    Reference
    ITSIts-1F59352CTTGGTCATTTAGAGGAAGTAA[15]
    Its-4TCCTCCGCTTATTGATATGC
    BcOS1F1171962GCTCTCGAAAGGGAACTG[16]
    R1TTCGGCAGCGTCCCTAGC
    F297255GCGGGTGAAATACTCATACT
    R2GCGGGTGAAATACTCATACT
    F370760GGTAGACGGAAAATTATTC
    R3TTGTACCTTCTTACTGAGATC
    F4163060TTGTACCTTCTTACTGAGATC
    R4TTGTACCTTCTTACTGAGATC
    β-tubulinP1176555ATGCGTGAGATTGTATGTATTTC[17]
    P2CTATTCCTCGCCCTCAATTG
    下载: 导出CSV

    表  2  不同灰葡萄孢β-tubulin碱基序列及氨基酸的比较

    Table  2.   Comparison of codon and encoded amino acid sequences of β-tubulin from different isolates

    菌株
    Isolate
    菌株类型*
    Type of isolate*
    氨基酸 (碱基序列)
    Amino acid (Codon sequence)
    198
    SCHY-17BEN SE (GAG)
    SCHY-36-1E (GAG)
    SCHY-48-1E (GAG)
    SCHY-52-1E (GAG)
    YTHD-2BEN R1A (GCG)
    SCHY-3A (GCG)
    SCHY-19-2A (GCG)
    SCHY-50A (GCG)
    SCHY-6-3BEN R2V (GTG)
    SCHY-14V (GTG)
    SCHY-35V (GTG)
    HZZ-12-1V (GTG)
    注:*BEN S、BEN R1和 BEN R2分别表示甲基硫菌灵敏感、甲基硫菌灵抗性但乙霉威敏感和甲基硫菌灵抗性且乙霉威抗性。Note: *BEN S,BEN R1 and BEN R2 indicate thiophanate-methyl- sensitive, thiophanate-methyl-resistant and diethofencarb-sensitive, and resistant to both thiophanate-methyl- and diethofencarb, respectively.
    下载: 导出CSV

    表  3  不同灰葡萄孢 BcOS1 碱基序列及氨基酸的比较

    Table  3.   Comparison of the codon and encoded amino acid sequences of BcOS1 from different strains

    菌株
    Isolate
    菌株类型*
    Type of isolates*
    氨基酸(碱基序列)
    Amino acid (Codon sequence)
    365
    SCHY-6-3DCF SI (ATC)
    SCHY-10-1I (ATC)
    SCHY-14I (ATC)
    SCHY-17I (ATC)
    SCHY-36-1I (ATC)
    SCHY-48-1I (ATC)
    SCHY-3DCF RN (AAC)
    SCHY-8S (AGC)
    SCHY-24-1S (AGC)
    SCHY-38-2S (AGC)
    SCHY-44S (AGC)
    SCHY-45S (AGC)
    注:*DCF S和 DCF R分别表示腐霉利敏感和腐霉利抗性。Note: *DCF S and DCF R indicate procymidone-sensitive and procymidone-resistant, respectively.
    下载: 导出CSV
  • [1] 任静, 李龙俊, 刘光霞, 等. 贵阳市乌当区樱桃的常见病害及防控措施[J]. 农技服务, 2019, 36(5): 54-56.

    REN J, LI L J, LIU G X, et al. Common diseases and control measures of cherry in Wudang District of Guiyang City[J]. Agric Technol Serv, 2019, 36(5): 54-56.
    [2] 李国琴, 武晋海, 朱洪梅, 等. 甜樱桃采后保鲜技术的研究进展[J]. 食品研究与开发, 2021, 42(20): 191-197.

    LI G Q, WU J H, ZHU H M, et al. Research progress in the postharvest preservation technologies for sweet cherry fruit[J]. Food Res Dev, 2021, 42(20): 191-197.
    [3] 董磊, 康新爱, 王瑞, 等. 樱桃果常见病害的发生与防治[J]. 现代园艺, 2018(17): 155-156. doi: 10.14051/j.cnki.xdyy.2018.17.090

    DONG L, KANG X A, WANG R, et al. Occurrence and control of common diseases of cherry[J]. Xiandai Hortic, 2018(17): 155-156. doi: 10.14051/j.cnki.xdyy.2018.17.090
    [4] 尚岩. 桃、樱桃灰霉病菌对七种杀菌剂的抗药性研究[D]. 武汉: 华中农业大学, 2016.

    SHANG Y. Study on the resistance of Botrytis cinerea from peach and cherry to seven fungicides[D]. Wuhan: Huazhong Agricultural University, 2016.
    [5] 胡伟群, 朱卫刚, 张蕊蕊, 等. 灰葡萄孢多药抗性菌株的筛选和鉴定[J]. 农药学学报, 2011, 13(6): 586-590. doi: 10.3969/j.issn.1008-7303.2011.06.05

    HU W Q, ZHU W G, ZHANG R R, et al. Screening and identification of multi-drug resistant Botrytis cinerea strains[J]. Chin J Pestic Sci, 2011, 13(6): 586-590. doi: 10.3969/j.issn.1008-7303.2011.06.05
    [6] 张立新, 张晓宇, 高振峰, 等. 内生细菌TY-6对樱桃采后灰霉病菌的抑菌效果和定殖特性研究[J]. 保鲜与加工, 2020, 20(1): 60-65. doi: 10.3969/j.issn.1009-6221.2020.01.010

    ZHANG L X, ZHANG X Y, GAO Z F, et al. Antifugnal activity of endophytic bacteria TY-6 against Botrytis cinerea and its colonization characteristics in postharvest cherry[J]. Storage Process, 2020, 20(1): 60-65. doi: 10.3969/j.issn.1009-6221.2020.01.010
    [7] BANNO S, FUKUMORI F, ICHIISHI A, et al. Genotyping of benzimidazole-resistant and dicarboximide-resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays[J]. Phytopathology, 2008, 98(4): 397-404. doi: 10.1094/PHYTO-98-4-0397
    [8] KOENRAADT H, SOMERVILLE S C, JONES A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi[J]. Phytopathology, 1992, 82(11): 1348-1354. doi: 10.1094/Phyto-82-1348
    [9] LIU Y H, YUAN S K, HU X R, et al. Shift of sensitivity in Botrytis cinerea to benzimidazole fungicides in strawberry greenhouse ascribing to the rising-lowering of E198A subpopulation and its visual, on-site monitoring by loop-mediated isothermal amplification[J]. Sci Rep, 2019, 9(1): 1-7. doi: 10.1038/s41598-018-37186-2
    [10] WANG H C, ZHANG C Q. Multi-resistance to thiophanate-methyl, diethofencarb, and procymidone among Alternaria alternata populations from tobacco plants, and the management of tobacco brown spot with azoxystrobin[J]. Phytoparasitica, 2018, 46(5): 677-687. doi: 10.1007/s12600-018-0690-6
    [11] 普继雄, 周宗山, 王娜, 等. 弥勒市葡萄灰霉病菌对4种杀菌剂的抗药性检测[J]. 果树学报, 2021, 38(7): 1147-1152. doi: 10.13925/j.cnki.gsxb.20210083

    PU J X, ZHOU Z S, WANG N, et al. Evaluation on resistance of Botrytis cinerea to four fungicides in Mile County[J]. J Fruit Sci, 2021, 38(7): 1147-1152. doi: 10.13925/j.cnki.gsxb.20210083
    [12] LEROUX P, GREDT M, LEROCH M, et al. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold[J]. J Appl Environ Microbiol, 2010, 76(19): 6615-6630. doi: 10.1128/AEM.00931-10
    [13] MA Z H, YAN L Y, LUO Y, et al. Sequence variation in the two-component histidine kinase gene of Botrytis cinerea, associated with resistance to dicarboximide fungicides[J]. Pestic Biochem Physiol, 2007, 88(3): 300-306. doi: 10.1016/j.pestbp.2007.01.005
    [14] 郑远, 沈瑶, 汪汉成, 等. 灰葡萄孢对腐霉利的抗性分子机制及快速检测技术[J]. 农药学学报, 2021, 23(1): 90-96.

    ZHENG Y, SHEN Y, WANG H C, et al. Molecular mechanism and rapid detection technique of the resistance to procymidone in Botrytis cinerea[J]. Chin J Pestic Sci, 2021, 23(1): 90-96.
    [15] GARDES M, BRUNS T D. ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts[J]. Mol Ecol, 1993, 2(2): 113-118. doi: 10.1111/j.1365-294X.1993.tb00005.x
    [16] 杜颖. 辽宁省番茄灰霉病菌对腐霉利抗药性机制及快速检测技术研究[D]. 沈阳: 沈阳农业大学, 2018.

    DU Y. Resistance mechanism and rapid detection of tomato gray mold pathogen Botrytis cinerea to procymidone in Liaoning Province [D]. Shenyang: Shenyang Agricultural University, 2018.
    [17] LIU S M, DUAN Y B, GE C Y, et al. Functional analysis of the β2-tubulin gene of Fusarium graminearum and the β-tubulin gene of Botrytis cinerea by homologous replacement[J]. Pest Manag Sci, 2013(69): 582-588.
    [18] 赵虎, 王松群, 余新燕, 等. 南京、镇江地区草莓灰霉病菌对6种杀菌剂的抗药性及生物学性状分析[J]. 基因组学与应用生物学, 2016, 35(7): 1828-1834. doi: 10.13417/j.gab.035.001828

    ZHAO H, WANG S Q, YU X Y, et al. Analysis of the resistance of Botrytis cinerea from strawberry in Nanjing and Zhenjiang area to six fungicides and its biological characteristics[J]. Genom Appl Biol, 2016, 35(7): 1828-1834. doi: 10.13417/j.gab.035.001828
    [19] 沈艳, 何鹏搏, 何鹏飞, 等. 番茄产后灰霉病的病原鉴定及生物防治[J]. 中国农学通报, 2021, 37(13): 102-107. doi: 10.11924/j.issn.1000-6850.casb2020-0798

    SHEN Y, HE P B, HE P F, et al. Pathogen identification and biological control of gray mold on postharvest tomato[J]. Chin Agric Sci Bull, 2021, 37(13): 102-107. doi: 10.11924/j.issn.1000-6850.casb2020-0798
    [20] 张艳婷, 仇智灵, 李阿根, 等. 浙江省樱桃褐腐病病原菌种类及其对常见药剂的抗性检测[J]. 果树学报, 2020, 37(9): 1394-1403. doi: 10.13925/j.cnki.gsxb.20190633

    ZHANG Y T, QIU Z L, LI A G, et al. Species of pathogens causing cherry brown rot and their resistance to common fungicides in Zhejiang Province[J]. J Fruit Sci, 2020, 37(9): 1394-1403. doi: 10.13925/j.cnki.gsxb.20190633
    [21] 李肖静. 葡萄糖氧化酶抑制采后草莓灰霉病的作用研究[D]. 北京: 中国农业科学院, 2019.

    LI X J. Glucose oxidase as a control agent against the fungal pathogen Botrytis cinerea in postharvest strawberry[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
    [22] 纪明山, 刘妍, 朱赫, 等. 辽宁省番茄灰霉病菌对常用杀菌剂的抗药性监测与交互抗药性[J]. 农药, 2017, 56(9): 676-678. doi: 10.16820/j.cnki.1006-0413.2017.09.016

    JI M S, LIU Y, ZHU H, et al. Detection of the resistance of Botrytis cinerea on tomato in Liaoning Province to fungicides and cross-resistance[J]. Agrochemicals, 2017, 56(9): 676-678. doi: 10.16820/j.cnki.1006-0413.2017.09.016
    [23] 杨晓哲, 胡文忠, 姜爱丽, 等. 乙醇熏蒸对采后甜樱桃的保鲜效果[J]. 食品工业科技, 2020, 41(5): 239-244.

    YANG X Z, HU W Z, JIANG A L, et al. Effects of ethanol fumigation on preservation of sweet cherry[J]. Sci Technol Food Ind, 2020, 41(5): 239-244.
    [24] 静玮, 屠康, 邵兴锋, 等. 热水喷淋处理结合拮抗酵母菌对樱桃果实采后腐烂及品质的影响[J]. 果树学报, 2008, 25(3): 367-372.

    JING W, TU K, SHAO X F, et al. Effects of combinations of hot water rinsing and brushing and yeast antagonist for control of decay and quality on harvested sweet cherries[J]. J Fruit Sci, 2008, 25(3): 367-372.
    [25] 尹大芳. 浙江省草莓灰霉病菌抗药性检测及抗性机制的研究[D]. 杭州: 浙江大学, 2015.

    YIN D F. The detection on fungicide resistance and the research on resistance mechanism of Botrytis cinerea from strawberry in Zhejiang Province[D]. Hangzhou: Zhejiang University, 2015.
    [26] 张传清, 张雅, 魏方林, 等. 设施蔬菜灰霉病菌对不同类型杀菌剂的抗性检测[J]. 农药学学报, 2006, 8(3): 245-249. doi: 10.3321/j.issn:1008-7303.2006.03.010

    ZHANG C Q, ZHANG Y, WEI F L, et al. Detection of resistance of Botryotinia fuckeliana from protected vegetables to different classes of fungicides[J]. Chin J Pestic Sci, 2006, 8(3): 245-249. doi: 10.3321/j.issn:1008-7303.2006.03.010
    [27] 胡小然. 草莓主要抗药性病害的环介导等温扩增(LAMP)检测[D]. 杭州: 浙江农林大学, 2018.

    HU X R. Development loop-mediated isothermal amplification (LAMP) for detection of resistant diseases in strawberry[D]. Hangzhou: Zhejiang A&F University, 2018.
    [28] ZIOGAS B N, NIKOU D, MARKOGLOU A N, et al. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay[J]. Eur J Plant Pathol, 2009, 125(1): 97-107. doi: 10.1007/s10658-009-9462-y
    [29] OSHIMA M, FUJIMURA M, BANNO S, et al. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea[J]. Phytopathology, 2002, 92(1): 75-80. doi: 10.1094/PHYTO.2002.92.1.75
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-04-22

目录

    /

    返回文章
    返回