• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚洲玉米螟几丁质酶的双靶向天然产物抑制剂及其抑制机理

何丹婵 姜熙 杨青

何丹婵, 姜熙, 杨青. 亚洲玉米螟几丁质酶的双靶向天然产物抑制剂及其抑制机理[J]. 农药学学报, 2022, 24(5): 1171-1178. doi: 10.16801/j.issn.1008-7303.2022.0044
引用本文: 何丹婵, 姜熙, 杨青. 亚洲玉米螟几丁质酶的双靶向天然产物抑制剂及其抑制机理[J]. 农药学学报, 2022, 24(5): 1171-1178. doi: 10.16801/j.issn.1008-7303.2022.0044
HE Danchan, JIANG Xi, YANG Qing. Dual-targeted natural product inhibitors of Ostrinia furnacalis chitinases and inhibitory mechanisms[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1171-1178. doi: 10.16801/j.issn.1008-7303.2022.0044
Citation: HE Danchan, JIANG Xi, YANG Qing. Dual-targeted natural product inhibitors of Ostrinia furnacalis chitinases and inhibitory mechanisms[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1171-1178. doi: 10.16801/j.issn.1008-7303.2022.0044

亚洲玉米螟几丁质酶的双靶向天然产物抑制剂及其抑制机理

doi: 10.16801/j.issn.1008-7303.2022.0044
基金项目: 深圳市科技项目(KQTD20180411143628272);国家自然科学基金(31830076, 32161133010).
详细信息
    作者简介:

    何丹婵,hdanchan@163.com

    通讯作者:

    杨青,qingyang@dlut.edu.cn

  • 中图分类号: TP399;TQ450

Dual-targeted natural product inhibitors of Ostrinia furnacalis chitinases and inhibitory mechanisms

Funds: the Shenzhen Science and Technology Program (KQTD20180411143628272);the National Natural Science Foundation of China (31830076, 32161133010).
  • 摘要: 多个几丁质酶可协同催化昆虫表皮几丁质的水解,在昆虫蜕皮发育过程中发挥不可或缺的作用,是潜在的绿色杀虫剂作用分子靶标。本文通过对1680种天然产物进行高通量筛选,获得了3个靶向亚洲玉米螟Ostrinia furnacalis来源的几丁质酶OfChtI和OfChi-h的双靶标抑制剂:漆树酸、邻苯二甲酸二 (2-乙基己基) 酯 (DEHP) 和紫菀酮。它们对OfChtI的抑制常数 (Ki) 分别为0.57、0.53 和3.95 μmol/L;对OfChi-h的抑制常数分别为0.48、1.42 和27.33 μmol/L。分子对接结果表明,三者均通过疏水堆积作用结合在靶标酶的底物结合位点上。此外,漆树酸的1位羧基氧原子作为氢键受体,与OfChtI的Arg274和OfChi-h的Arg439侧链胍基氢原子形成氢键。DEHP的羰基和烷氧基氧原子作为氢键受体,与OfChtI的Arg274侧链胍基氢原子形成氢键;DEHP的烷氧基氧原子作为氢键受体,与OfChi-h的Arg439侧链胍基氢原子形成氢键。杀虫活性测定结果表明,在2 mmol/L浓度下,漆树酸和DEHP对亚洲玉米螟幼虫的致死率为33.3%,紫菀酮没有表现出明显的杀虫活性。该研究对于同时靶向多个几丁质酶的新型绿色农药的创制具有参考意义。
  • 图  1  天然产物库化合物在100 μmol/L下对OfChtI (A)和OfChi-h (B)的抑制活性及漆树酸、DEHP和紫菀酮的结构式 (C)

    Figure  1.  Inhibitory activities of compounds from natural product library against OfChtI (A) and OfChi-h (B) at 100 μmol/L and structural formula of anacardic acid, di(2-ethylhexyl) phthalate (DEHP) and shionone (C)

    图  2  漆树酸、DEHP和紫菀酮对OfChtI和OfChi-h的Ki

    Figure  2.  Ki values of anacardic acid, DEHP, and shionone against OfChtI and OfChi-h

    图  3  漆树酸、DEHP和紫菀酮与OfChtI和OfChi-h的结合模式

    Figure  3.  Modeled structures of anacardic acid, DEHP, and shionone in complex with OfChtI and OfChi-h

    图  4  漆树酸、DEHP和紫菀酮的杀虫活性

    Figure  4.  Insecticidal activities of anacardic acid, DEHP, and shionone against O. furnacalis

  • [1] MOUSSIAN B. Chitin: structure, chemistry and biology[M/OL]. Adv Exp Med Biol, 2019, 1142: 5-18. [2022-01-20]. https://doi.org/10.1007/978-981-13-7318-3_2.
    [2] MUTHUKRISHNAN S, MUN S, NOH M Y, et al. Insect cuticular chitin contributes to form and function[J]. Curr Pharm Des, 2020, 26(29): 3530-3545. doi: 10.2174/1381612826666200523175409
    [3] MUTHUKRISHNAN S, MERZENDORFER H, ARAKANE Y, et al. Chitin organizing and modifying enzymes and proteins involved in remodeling of the insect cuticle[M/OL]. Adv Exp Med Biol, 2019, 1142: 83-114. [2022-01-20]. https://doi.org/10.1007/978-981-13-7318-3_5.
    [4] QU M, MA L, CHEN P, et al. Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation[J]. J Proteome Res, 2014, 13(6): 2931-2940. doi: 10.1021/pr5000957
    [5] QU M, WATANABE-NAKAYAMA T, SUN S, et al. High-speed atomic force microscopy reveals factors affecting the processivity of chitinases during interfacial enzymatic hydrolysis of crystalline chitin[J]. ACS Catal, 2020, 10(22): 13606-13615. doi: 10.1021/acscatal.0c02751
    [6] ARAKANE Y, MUTHUKRISHNAN S. Insect chitinase and chitinase-like proteins[J]. Cell Mol Life Sci, 2010, 67(2): 201-216. doi: 10.1007/s00018-009-0161-9
    [7] ZHU Q, ARAKANE Y, MUTHUKRISHNAN S, et al. Functional specialization among insect chitinase family genes revealed by RNA interference.[J]. Proc Natl Acad Sci U S A., 2008, 105(18): 6650-6655. doi: 10.1073/pnas.0800739105
    [8] HUANG G, HUANG H. Synthesis, antiasthmatic, and insecticidal/antifungal activities of allosamidins[J]. J Enzyme Inhib Med Chem, 2019, 34(1): 1226-1232. doi: 10.1080/14756366.2019.1623208
    [9] ZIMMERMANN G R, LEHAR J, KEITH C T. Multi-target therapeutics: when the whole is greater than the sum of the parts[J]. Drug Discov Today, 2007, 12(1-2): 34-42. doi: 10.1016/j.drudis.2006.11.008
    [10] GRESSEL J. Perspective: present pesticide discovery paradigms promote the evolution of resistance - learn from nature and prioritize multi-target site inhibitor design[J]. Pest Manag Sci, 2020, 76(2): 421-425. doi: 10.1002/ps.5649
    [11] CHEN W, JIANG X, YANG Q. Glycoside hydrolase family 18 chitinases: the known and the unknown[J]. Biotechnol Adv, 2020, 43: 107553. doi: 10.1016/j.biotechadv.2020.107553
    [12] LIU T, CHEN L, ZHOU Y, et al. Structure, catalysis, and inhibition of OfChi-h, the lepidoptera-exclusive insect chitinase[J]. J Biol Chem, 2017, 292(6): 2080-2088. doi: 10.1074/jbc.M116.755330
    [13] ZHU L, CHEN L, SHAO X, et al. Novel inhibitors of an insect pest chitinase: design and optimization of 9-O-aromatic and heterocyclic esters of berberine[J]. J Agric Food Chem, 2021, 69(27): 7526-7533. doi: 10.1021/acs.jafc.0c07401
    [14] CHEN L, ZHU L, CHEN J, et al. Crystal structure-guided design of berberine-based novel chitinase inhibitors[J]. J Enzyme Inhib Med Chem, 2020, 35(1): 1937-1943. doi: 10.1080/14756366.2020.1837123
    [15] CHEN W, YANG Q. Development of novel pesticides targeting insect chitinases: a minireview and perspective[J]. J Agric Food Chem, 2020, 68(16): 4559-4565. doi: 10.1021/acs.jafc.0c00888
    [16] CHEN L, LIU T, ZHOU Y, et al. Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70(Pt 4): 932-942.
    [17] ZHANG H, SARAVANAN KM, YANG Y, et al. Deep learning based drug screening for novel coronavirus 2019-nCov[J]. Interdiscip Sci, 2020, 12(3): 368-376. doi: 10.1007/s12539-020-00376-6
    [18] CHEN L, LIU T, DUAN Y, et al. Microbial secondary metabolite, phlegmacin B1, as a novel inhibitor of insect chitinolytic enzymes[J]. J Agric Food Chem, 2017, 65(19): 3851-3857. doi: 10.1021/acs.jafc.7b01710
    [19] 姜熙. 几丁质酶的新型抑制剂及其基于结构的抑制机理[D]. 大连: 大连理工大学, 2020.

    JIANG X. Novel inhibitors of chitinases and structure-based inhibitory mechanisms[D]. Dalian: Dalian University of Technology, 2020.
    [20] BUTTERWORTH P J. The use of dixon plots to study enzyme inhibition[J]. Biochim Biophys Acta, 1972, 289(2): 251-253. doi: 10.1016/0005-2744(72)90074-5
    [21] SCHUTTELKOPF A W, Van AALTEN D M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes[J]. Acta Crystallogr D Biol Crystallogr, 2004, 60(Pt 8): 1355-1363.
    [22] FORLI S, HUEY R, PIQUE M E, et al. Computational protein-ligand docking and virtual drug screening with the AutoDock suite[J]. Nat Protoc, 2016, 11(5): 905-919. doi: 10.1038/nprot.2016.051
    [23] MORRIS GM, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. J Comput Chem, 2009, 30(16): 2785-2791. doi: 10.1002/jcc.21256
    [24] LU Q, XU L, LIU L P, et al. Lynamicin B is a potential pesticide by acting as a Lepidoptera-exclusive chitinase inhibitor[J]. J Agric Food Chem, 2021, 69(47): 14086-14091. doi: 10.1021/acs.jafc.1c05385
    [25] DAVIES G J, WILSON K S, HENRISSAT B. Nomenclature for sugar-binding subsites in glycosyl hydrolases[J]. Biochem J, 1997, 321(2): 557-559. doi: 10.1042/bj3210557
    [26] TINWORTH C P, YOUNG R J. Facts, patterns, and principles in drug discovery: appraising the rule of 5 with measured physicochemical data[J]. J Med Chem, 2020, 63(18): 10091-10108. doi: 10.1021/acs.jmedchem.9b01596
    [27] LI W, DING Y, QI H, et al. Discovery of natural products as multitarget inhibitors of insect chitinolytic enzymes through high-throughput screening[J]. J Agric Food Chem, 2021, 69(37): 10830-10837. doi: 10.1021/acs.jafc.1c03629
    [28] HAN Q, WU N, LI H L, et al. A piperine-based scaffold as a novel starting point to develop inhibitors against the potent molecular target OfChtI[J]. J Agric Food Chem, 2021, 69(27): 7534-7544. doi: 10.1021/acs.jafc.0c08119
    [29] WU Y, HE L, ZHANG L, et al. Anacardic acid (6-pentadecylsalicylic acid) inhibits tumor angiogenesis by ttargeting Src/FAK/Rho GTPases signaling pathway[J]. J Pharmacol Exp Ther, 2011, 339(2): 403-411. doi: 10.1124/jpet.111.181891
    [30] MUZAFFAR S, BOSE C, BANERJI A, et al. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae[J]. Appl Microbiol Biotechnol, 2016, 100(1): 323-335. doi: 10.1007/s00253-015-6915-4
    [31] SAWAI S, UCHIYAMA H, MIZUNO S, et al. Molecular characterization of an oxidosqualene cyclase that yields shionone, a unique tetracyclic triterpene ketone of Aster tataricus[J]. FEBS Lett, 2011, 585(7): 1031-1036. doi: 10.1016/j.febslet.2011.02.037
    [32] ZHANG B, XUE Y, ZHAO J, et al. Shionone attenuates sepsis-induced acute kidney injury by regulating macrophage polarization via the ECM1/STAT5 pathway[J]. Front Med (Lausanne), 2022, 8: 796743.
    [33] XU N, HU J, HAN K, et al. Shionone suppresses the growth, migration and invasion of human breast cancer cells via induction of apoptosis and inhibition of MEK/ERK and STAT3 signalling pathways[J]. J Buon, 2020, 25(4): 1821-1826.
    [34] VENUGOPAL M, NAMBIAR J, NAIR B G. Anacardic acid-mediated regulation of osteoblast differentiation involves mitigation of inflammasome activation pathways[J]. Mol Cell Biochem. 2021, 476(2): 819-829.
    [35] WANG X, YIN H, FAN L, et al. Shionone alleviates NLRP3 inflammasome mediated pyroptosis in interstitial cystitis injury[J]. Int Immunopharmacol. 2021, 90: 107132.
    [36] RAJAMANIKYAM M, VADLAPUDI V, PARVATHANENI S P, et al. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest[J]. Excli J, 2017, 16: 375-387.
  • 加载中
图(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  27
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回