Cerium ion (Ce3+) and pyrophosphate ion coordination polymer networks for the rapid fluorometric detection of glyphosate
-
摘要: 本文基于铈离子与焦磷酸根离子 (Ce-PPi) 配位聚合物网络 (coordination polymer networks,CPNs) 开发出一种草甘膦快速检测方法。通过铈离子 (Ce3+) 与焦磷酸根离子 (PPi) 之间的配位作用,自组装合成出Ce-PPi CPNs,并对其结构和性质进行了表征。草甘膦可以减弱PPi与Ce3+ 之间的配体场效应,导致Ce-PPi CPNs的荧光减弱。基于这一原理,通过优化条件,实现了草甘膦的定量检测,R2为0.9972,检出限为0.014 μmol/L。该方法检测灵敏度较高,且对草甘膦具有优异的选择性,可应用于自来水与苹果样品中草甘膦的检测,方法定量限为0.05 mg/kg,回收率在77%~87%之间,为草甘膦的快速、现场和实时实际样品检测提供了新的选择。Abstract: A rapid fluorometric method was established to detect glyphosate by using cerium ion and pyrophosphate ion (Ce-PPi) coordination polymer networks (CPNs). Based on coordination of cerium ion (Ce3+) and pyrophosphate ion (PPi), fluorescent Ce-PPi CPNs were synthesized by simple self-assemble process, and the structure and properties were characterized. Upon introducing glyphosate, the ligand field effect of PPi with Ce3+ was weakened resulting in a decrease in fluorescence of Ce-PPi CPNs. Based on this principle, the quantitative detection of glyphosate was achieved by optimizing the conditions, with R2 of 0.9972 and the detection limit of 0.014 μmol/L. The established method based on Ce-PPi CPNs possessed outstanding sensitivity and exclusive selectivity for rapid detction of glyphosate, and could be used for the detection of glyphosate in tap water and apple samples. The limit of quantitation (LOQ) was 0.05 mg/kg and the recoveries were between 77% and 87%. The method provided a potential choice for the rapid, on-site and real-time, detection of glyphosate.
-
Key words:
- cerium ion /
- pyrophosphate /
- coordination polymer networks /
- glyphosate /
- fluorescence detection
-
图 8 Ce3+浓度(A)、PPi添加量(B)、 PPi与Ce3+结合时间 (C)以及草甘膦与 Ce3+ 作用时间(D)对Ce-PPi CPNs相对荧光强度的影响
Figure 8. Effects of the concentration of Ce3+ (A) , the addition amount of PPi (B) , the combination time between PPi with Ce3+ (C) and reaction time of glyphosate and Ce3+ (D) on relative fluorescence intensities of Ce-PPi CPNs
图 10 草甘膦和潜在干扰物质存在时的相对荧光强度
1~23分别代表:1-草甘膦、2-Na+、3-Ca2+、4-Zn2+、5-抗坏血酸、6-葡萄糖、7-甘氨酸、8-毒死蜱、9-灭多威、10-莠去津、11-异丙甲草胺、12-戊唑醇、13-嘧菌酯、14-马拉硫磷、15-杀螟硫磷、16-草铵膦、17-辛硫磷、18-乙酰甲胺磷、19-H2PO4−、20-HPO42−、21-PO43−、22-百草枯、23-PBS缓冲液(pH=7.4) (所有物质浓度均为5 μmol/L)
Figure 10. The relative fluorescence intensity change rate of glyphosate and potential interfering substances towards detection
1-23 was 1-glyphosate, 2-Na+, 3-Ca2+, 4-Zn2+, 5-ascorbic acid, 6-glucose, 7-glycine, 8-chlorpyrifos, 9-methomyl, 10-atrazine, 11-metolachlor, 12-tebuconazole, 13-azoxystrobin, 14-malathion, 15-fenitrothion, 16-glufosinate ammonium, 17-phoxim, 18-acephate, 19-H2PO4−, 20-HPO42−, 21-PO43−, 22-paraquat, 23-PBS buffer (pH=7.4) , respectively (5 μmol/L for all substances)
表 1 Ce-PPi CPNs和NIST数据库中被测元素的结合能
Table 1. Binding energies of tested elements in Ce-PPi and NIST database
元素
Element结合能
Binding energyCe-PPi/eV NIST/eV 铈 Cerium (3d3/2) 904.4 904.0 (CePO4)* 铈 Cerium (3d5/2) 885.5 885.4 (CePO4) 氧 Oxygen 531.3 531.0 (CePO4) 磷 Phosphorus 133.8 133.3 (NaP2O7) 注:*NIST 结合能括号内的内容为元素所属的具体物质。Note: *The content in the NIST binding energy brackets is the specific substance to which the element belongs. 表 2 不同草甘膦检测方法的检出限和检测时间对比
Table 2. Comparison of limit of detection (LOD) and detection time of glyphosate by different analytical methods
分析方法
Analytical method检出限
LOD/
(μg/L)检测时间
Detection time/
min参考文献
Reference荧光法
Fluorescence5 7 [29] 免疫测定法
Immunoassay4.06 × 105 30 [30] 比色法
Colorimetry100 50 [31] 电化学法
Electrochem SENSE10 5 [32] 化学发光法
Chemiluminescence46 10 [33] 液相色谱-质谱联用
LC-MS/MS0.23 15 [34] Ce-PPi CPNs荧光传感器
Fluorescent sensor based
on Ce-PPi CPNs2.37
(0.014 μmol/L)5 本工作
This work表 3 自来水和苹果样品中草甘膦的添加回收率和相对标准偏差(n=5)
Table 3. Recoveries and relative standard deviations (RSD) of glyphosate in tap water and apple samples(n=5)
样品种类
Sample线性方程及决定系数
Linear equation and
determination coefficient
(0.05~1 mg/L (mg/kg))添加水平
Spiked level平均回收率
Average recovery/%相对标准偏差
RSD/%定量限
The limit of
quantitation, LOQ自来水
Tap waterF= −5331.582 log c + 7311.298
R2=0.99550.05 mg/L 80 8.7 0.05 mg/L 0.5 mg/L 84 6.4 1 mg/L 87 6.8 苹果
AppleF= −5072.112 logc + 7899.375
R2=0.99800.05 mg/kg 77 8.8 0.05 mg/kg 0.5 mg/kg 80 8.0 1 mg/kg 86 6.1 -
[1] VALCKE M, BOURGAULT M H, ROCHETTE L, et al. Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: a cancer and non-cancer risk/benefit perspective[J]. Environ Int, 2017, 108: 63-74. doi: 10.1016/j.envint.2017.07.023 [2] FAROOQ S, NIE J Y, CHENG Y, et al. Molecularly imprinted polymers' application in pesticide residue detection[J]. Analyst, 2018, 143(17): 3971-3989. doi: 10.1039/C8AN00907D [3] CHIARI M, CORTINOVIS C, VITALE N, et al. Pesticide incidence in poisoned baits: a 10-year report[J]. Sci Total Environ, 2017, 601: 285-292. [4] LEE E A, ZIMMERMAN L R, BHULLAR S S, et al. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate[J]. Anal Chem, 2002, 74(19): 4937-4943. doi: 10.1021/ac020208y [5] 吴文静, 林燕. NBD-Cl柱前衍生-高效液相色谱法测定土壤中草甘膦残留[J]. 农药学学报, 2020, 22(6): 1027-1032. doi: 10.16801/j.issn.1008-7303.2020.0154WU W J, LIN Y. Determination of glyphosate in soils by HPLC with pre-column derivatization using 4-chloro-7-nitro-1,2,3-benzoxadiazole[J]. Chin J Pestic Sci, 2020, 22(6): 1027-1032. doi: 10.16801/j.issn.1008-7303.2020.0154 [6] GUO J J, ZHANG Y, LUO Y L, et al. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate[J]. Talanta, 2014, 125: 385-392. doi: 10.1016/j.talanta.2014.03.033 [7] BATTAGLIN W A, MEYER M T, KUIVILA K M, et al. Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation[J]. JAWRA J Am Water Resour Assoc, 2014, 50(2): 275-290. doi: 10.1111/jawr.12159 [8] SINGH S, KUMAR V, DATTA S, et al. Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review[J]. Environ Chem Lett, 2020, 18(3): 663-702. doi: 10.1007/s10311-020-00969-z [9] CHANG Y C, LIN Y S, XIAO G T, et al. A highly selective and sensitive nanosensor for the detection of glyphosate[J]. Talanta, 2016, 161: 94-98. doi: 10.1016/j.talanta.2016.08.029 [10] WEI X, GAO X T, ZHAO L, et al. Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips[J]. J Chromatogr A, 2013, 1281: 148-154. doi: 10.1016/j.chroma.2013.01.039 [11] WANG X F, SAKINATI M, YANG Y X, et al. The construction of a CND/Cu2+ fluorescence sensing system for the ultrasensitive detection of glyphosate[J]. Anal Methods, 2020, 12(4): 520-527. doi: 10.1039/C9AY02303H [12] LIU H B, CHEN P P, LIU Z, et al. Electrochemical luminescence sensor based on double suppression for highly sensitive detection of glyphosate[J]. Sens Actuat B Chem, 2020, 304: 127364. doi: 10.1016/j.snb.2019.127364 [13] SUN Y J, WANG C Y, WEN Q Y, et al. Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride[J]. Chromatographia, 2010, 72(7-8): 679-686. doi: 10.1365/s10337-010-1705-8 [14] 杨亚琴, 冯书惠, 胡永建, 等. 气相色谱-质谱法测定绿茶中草甘膦和氨甲基膦酸残留量[J]. 茶叶科学, 2020, 40(1): 125-132. doi: 10.3969/j.issn.1000-369X.2020.01.014YANG Y Q, FENG S H, HU Y J, et al. Determination of glyphosate and aminomethyl phosphonic acid residue in green tea by gas chromatography-mass spectrometry[J]. J Tea Sci, 2020, 40(1): 125-132. doi: 10.3969/j.issn.1000-369X.2020.01.014 [15] ZHU Y, ZHANG F F, TONG C L, et al. Determination of glyphosate by ion chromatography[J]. J Chromatogr A, 1999, 850(1-2): 297-301. doi: 10.1016/S0021-9673(99)00558-0 [16] OREJUELA E, SILVA M. Rapid and sensitive determination of phosphorus-containing amino acid herbicides in soil samples by capillary zone electrophoresis with diode laser-induced fluorescence detection[J]. Electrophoresis, 2005, 26(23): 4478-4485. doi: 10.1002/elps.200500290 [17] WANG D, LIN B X, CAO Y J, et al. A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads[J]. J Agric Food Chem, 2016, 64(30): 6042-6050. doi: 10.1021/acs.jafc.6b01088 [18] WANG X F, YANG Y X, HUO D Q, et al. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate[J]. Microchimica Acta, 2020, 187(6): 341. doi: 10.1007/s00604-020-04304-9 [19] DAI L X, LO W S, GU Y J, et al. Breaking the 1, 2-HOPO barrier with a cyclen backbone for more efficient sensitization of Eu(iii) luminescence and unprecedented two-photon excitation properties[J]. Chem Sci, 2019, 10(17): 4550-4559. doi: 10.1039/C9SC00244H [20] GUZMÁN-MÉNDEZ Ó, GONZÁLEZ F, BERNÈS S, et al. Coumarin derivative directly coordinated to lanthanides acts as an excellent antenna for UV-vis and near-IR emission[J]. Inorg Chem, 2018, 57(3): 908-911. doi: 10.1021/acs.inorgchem.7b02861 [21] LIU C L, ZHANG R L, LIN C S, et al. Intraligand charge transfer sensitization on self-assembled europium tetrahedral cage leads to dual-selective luminescent sensing toward anion and cation[J]. J Am Chem Soc, 2017, 139(36): 12474-12479. doi: 10.1021/jacs.7b05157 [22] WU X, DEGOTTARDI Q, WU I C, et al. Lanthanide-coordinated semiconducting polymer dots used for flow cytometry and mass cytometry[J]. Angew Chem Int Ed Engl, 2017, 56(47): 14908-14912. doi: 10.1002/anie.201708463 [23] GAO R R, WANG J H, WANG H, et al. Fluorescent nucleotide-lanthanide nanoparticles for highly selective determination of picric acid[J]. Microchimica Acta, 2021, 188(1): 18. doi: 10.1007/s00604-020-04686-w [24] MA L, ZHANG Q, WU H, et al. Multifunctional luminescence sensors assembled with lanthanide and a cyclotriveratrylene-based ligand[J]. Eur J Inorg Chem, 2017, 2017(36): 4221-4230. doi: 10.1002/ejic.201700874 [25] QU F, WANG H, YOU J M. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples[J]. Food Chem, 2020, 323: 126815. doi: 10.1016/j.foodchem.2020.126815 [26] YE K, WANG L J, SONG H W, et al. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection[J]. J Mater Chem B, 2019, 7(31): 4794-4800. doi: 10.1039/C9TB00951E [27] ZHOU W T, WANG L, LIU C, et al. Quantification of cyclic DNA polymerization with lanthanide coordination nanomaterials for liquid biopsy[J]. Chem Sci, 2020, 11(14): 3745-3751. doi: 10.1039/C9SC06408G [28] HOU J Z, WANG X F, LAN S Y, et al. A turn-on fluorescent sensor based on carbon dots from Sophora japonica leaves for the detection of glyphosate[J]. Anal Methods, 2020, 12(33): 4130-4138. doi: 10.1039/D0AY01241F [29] YANG Y X, GHALANDARI B, LIN L Y, et al. A turn-on fluorescence sensor based on Cu2+ modulated DNA-templated silver nanoclusters for glyphosate detection and mechanism investigation[J]. Food Chem, 2022, 367: 130617. doi: 10.1016/j.foodchem.2021.130617 [30] VIIRLAID E, ILISSON M, KOPANCHUK S, et al. Immunoassay for rapid on-site detection of glyphosate herbicide[J]. Environ Monit Assess, 2019, 191(8): 507. doi: 10.1007/s10661-019-7657-z [31] DE ALMEIDA L K S, CHIGOME S, TORTO N, et al. A novel colorimetric sensor strip for the detection of glyphosate in water[J]. Sens Actuat B Chem, 2015, 206: 357-363. doi: 10.1016/j.snb.2014.09.039 [32] DHAMU V N, PRASAD S. ElectrochemSENSE: A platform towards field deployable direct on-produce glyphosate detection[J]. Biosens Bioelectron, 2020, 170: 112609. doi: 10.1016/j.bios.2020.112609 [33] ZHAO P N, YAN M, ZHANG C C, et al. Determination of glyphosate in foodstuff by one novel chemiluminescence-molecular imprinting sensor[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 78(5): 1482-1486. doi: 10.1016/j.saa.2011.01.037 [34] ULRICH J C, FERGUSON P L. Development of a sensitive direct injection LC-MS/MS method for the detection of glyphosate and aminomethylphosphonic acid (AMPA) in hard waters[J]. Anal Bioanal Chem, 2021, 413(14): 3763-3774. doi: 10.1007/s00216-021-03324-5 [35] 食品安全标准 食品中农药最大残留限量: GB 2763-2021[S]. 北京: 中国农业出版社, 2021.Food safety standard, Maximum residue limits of pesticides in foods: GB 2763-2021[S]. Beijing: China Agricultural Press, 2021. [36] 食品中草甘膦残留量测定: NY/T 1096—2006[S]. 北京: 中国农业出版社, 2006.Determination of glyphosate residues in food: NY/T 1096—2006[S]. Beijing: Chinese Agriculture Press, 2006. [37] 出口食品中草甘膦及其代谢物残留量的测定方法 液相色谱-质谱/质谱法: SN/T 4655—2016[S]. 北京: 中国标准出版社, 2017.Determination of glyphosate and its metablize residues in foodstuffs for export. HPLC-MS/MS method: SN/T 4655—2016[S]. Beijing: Standards Press of China, 2017. -