Synthesis, herbicidal activity, crop safety and soil degradation of sulfonylamino-substituted chlorsulfuron
-
摘要: 基于活性亚结构拼接方法,在氯磺隆分子中苯环的5位引入不同磺酰氨基,设计合成了4个氯磺隆衍生物 ( H01 ~ H04 ),其结构经核磁共振氢谱(1H NMR)、碳谱(13C NMR)和高分辨质谱(HRMS)确证。初步的生物活性测试结果表明,目标化合物在有效成分150 g/hm2测试浓度下表现出较好的除草活性,其中:苗前处理时, H01 、 H02 及 H04 对油菜生长的抑制率均高于85%, H01 对反枝苋的抑制率为100%,优于对照药剂氯磺隆 (68.8%);苗后处理时, H04 对油菜和反枝苋的抑制率均与氯磺隆相当,对稗草的抑制率 (85.2%) 优于对照药剂氯磺隆 (68.8%)。安全性测试结果表明,目标化合物对小麦和玉米生长的抑制率均低于氯磺隆。苗前处理时, H01 和 H04 对小麦安全, H01 ~ H04 对玉米的抑制率均低于氯磺隆;苗后处理时, H01 ~ H04 对玉米生长无抑制作用。降解试验结果表明, H01 ~ H04 在碱性土壤 (pH 8.39) 中的降解半衰期为44.43~53.32 d,比氯磺隆的半衰期 (157.53 d) 明显缩短。研究结果表明, H01 和 H04 可作为潜在的小麦田和玉米田磺酰脲类除草剂候选药物。本文可为进一步设计具有高效除草活性、降解速率快以及作物安全性高的新型磺酰脲类除草剂提供参考。Abstract: Based on the splicing method of active substructures, four chlorsulfuron derivatives ( H01 - H04 ) were designed and synthesized by introducing different sulfonylamino groups on the 5-position of the benzene ring, which were confirmed with melting point, 1H NMR, 13C NMR and HRMS. The preliminary biological activity test results showed that the 5-sulfonylamino-substituted compounds exhibited good herbicidal activities. At concentration of 150 g a.i/hm2, the inhibition rates against Brassica napus of H01 , H02 and H04 were higher than 85% through pre-emergence treatment. In addition, the inhibition rates against Amaranthus retroflexus
of H01 was 100%, which were better than chlorsulfuron (68.8%). For post-emergence treatment, the inhibition rates of H04 on B. napus and A. retroflexus were equivalent to that of chlorsulfuron. And the inhibition rates of H04 on Echinochloa crusgalli (85.2%) was better than that of chlorsulfuron (68.8%). The crop safety results indicated that the inhibition rates of these target compounds on the growth of wheat and corn were lower than that of chlrosulfuron. H01 and H04 showed safety to wheat growth through pre-emergence treatment. Additionally, the inhibition rates of H01 - H04 on corn were lower than chlorsulfuron. In the case of post-emergence treatment, H01 and H04 showed safety to corn. Alkaline soil (pH 8.39) degradation results indicated that the DT50 (half-life of degradation) values of H01 - H04 varied from 44.43 to 53.32 days, which was shorter than that of chlorsulfuron (157.53 days). Based on the results, H01 and H04 could be used as potential sulfonylurea herbicides on wheat and corn. This paper could provide a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, rapid degradation rate and superior crop safety. -
Key words:
- sulfonylurea /
- synthesis /
- herbicidal activity /
- crop safety /
- soil degradation
-
表 1 土壤分析数据
Table 1. Analysis data of soils
土壤
Soil土壤质地
Soil texturepH 有机质含量
Organic
matter/
(g/kg)阳离子交换量
Cation exchange
capacity/
(cmol/kg)土壤粒级/mm (机械组成/%)
Soil separation/mm (Mechanical composition/%)碱性土壤
Alkaline soil轻黏土
Loam8.39 19.4 7.3 1~2 0.5~1 0.25~0. 5 0.05~0.02 0.02~0.002 <0.002 0.25~0.05 2.0~0.05 0.05~0.002 (0.795) (2.46) (2.33) (7.90) (28.6) (28.2) (29.7) (35.3) (36.5) 表 2 不同处理方式下目标化合物H在15 g/hm2和150 g/hm2测试浓度下的除草活性
Table 2. Herbicidal activities of the target compounds H at concentration of 15 g/hm2 and 150 g/hm2 through different treatments
化合物
Compound测试浓度
(有效成分)
Concentration,
a.i/(g/hm2)抑制率 Inhibition rate/% 苗前处理
Pre-emergence treatment苗后处理
Post-emergence treatment油菜
Brassica
napus反枝苋
Amaranthus
retroflexus稗草
Echinochloa
crusgalli马唐
Digitaria
sanguinalis油菜
Brassica
napus反枝苋
Amaranthus
tricolor稗草
Echinochloa
crusgalli马唐
Digitaria
sanguinalis氯磺隆
chlorslfuron15 94.8 62.1 43.8 32.4 100 100 60.0 0 150 100 68.8 84.9 35.5 100 100 68.8 0 H01 15 90.3 53.0 0.1 12.7 0 0 40.9 0 150 94.8 100 14.6 31.1 62.0 97.6 61.5 0 H02 15 83.5 50.0 3.6 5.3 0 13.3 37.2 0 150 89.5 89.4 52.6 27.5 74.3 76.8 70.1 0 H03 15 0 0 0 0 1.2 60.0 55.7 0 150 16.8 0 5.7 2.9 72.6 94.6 90.7 2.3 H04 15 0 58.3 40.1 0 54.4 87.5 47.0 0 150 85.8 62.5 61.2 0.4 100 100 85.2 0 表 3 不同处理方式下目标化合物H在30 g/hm2和60 g/hm2测试浓度下对小麦 (济麦22) 的安全性
Table 3. Crop safety of the target compounds H at concentration of 30 g/hm2 and 60 g/hm2 on wheat (Jimai 22) through different treatments
化合物
Compound测试浓度 (有效成分)
Concentration,
a.i/(g/hm2)苗前处理
Pre-emergence treatment苗后处理
Post-emergence treatment鲜重/(g/10株)
Fresh weight/
(g/10 plants)方差分析 a
Analysis of
Variance a抑制率
Inhibition
rate/%鲜重/(g/10株)
Fresh weight/
(g/10 plants)方差分析 a
Analysis of
Variance a抑制率
Inhibition
rate/%5% 1% 5% 1% 氯磺隆
chlorslfuron0 2.013 abc A 0 4.030 a A 0 30 2.258 abc A 0 4.284 a A 0 60 2.231 abc A 0 4.119 a A 0 H01 30 2.065 abc A 0 4.682 a A 0 60 1.824 c A 9.3 4.496 a A 0 H02 30 1.878 bc A 6.7 4.667 a A 0 60 1.799 c A 10.6 3.796 a A 5.8 H03 30 2.407 ab A 0 3.863 a A 4.1 60 2.524 a A 0 3.762 a A 6.6 H04 30 2.167 abc A 0 4.264 a A 0 60 2.209 abc A 0 4.104 a A 0 a 同一列内不同字母分别表示在5%或1%水平上差异显著。有一个标记相同字母的即为差异不显著,有不同标记字母的即为差异显著。a Different letters within the same column indicate significant difference at 5% or 1% level, respectively. The same letter indicates that there was no significant difference, and different letters indicate that there was a significant difference. 表 4 不同处理方式下目标化合物H在30 g/hm2和60 g/hm2测试浓度下对玉米 (新单66) 的安全性
Table 4. Crop safety of the target compounds H at concentration of 30 g/hm2 and 60 g/hm2 on corn (Xindan 66) through different treatments
化合物
Compound测试浓度
(有效成分)
Concentration,
a.i/(g/hm2)苗前处理
Pre-emergence treatment苗后处理
Post-emergence treatment鲜重/(g/5株)
Fresh weight/
(g/5 plants)方差分析 a
Analysis of
variance a抑制率
Inhibition
rate/%鲜重/(g/5株)
Fresh weight/
(g/5 plants)方差分析 a
Analysis of
variance a抑制率
Inhibition
rate/%5% 1% 5% 1% 氯磺隆 chlorslfuron 0 6.141 a A 0 8.981 ab AB 0 30 3.733 d BC 39.2 6.358 bc BC 29.2 60 2.414 e CD 60.7 4.003 cd C 55.4 H01 30 5.938 ab A 3.3 9.001 ab AB 0 60 5.320 abc AB 13.4 10.038 a AB 0 H02 30 4.725 bcd AB 23.1 9.078 ab AB 0 60 4.563 cd AB 25.7 8.734 ab AB 2.8 H03 30 5.847 ab A 4.8 10.865 a A 0 60 4.963 abc AB 19.2 10.538 a AB 0 H04 30 5.981 ab A 2.6 11.000 a A 0 60 5.857 ab A 4.6 8.907 ab AB 0.8 a 同一列内不同字母分别表示在5%或1%水平上差异显著。有一个标记相同字母的即为差异不显著,有不同标记字母的即为差异显著。a Different letters within the same column indicate significant difference at 5% or 1% level, respectively. The same letter indicates that there was no significant difference, and different letters indicate that there was a significant difference. 表 5 目标化合物的HPLC分析条件及其在土壤中的添加回收率
Table 5. HPLC analysis condition and recovery rate of taeget compounds
化合物
CompoundHPLC 分析条件
HPLC analysis condition提取溶剂
Extraction solvent添加水平
Spiked level/
(mg/kg)平均添加
回收率
Average
recovery/%相对标准偏差
RSD/%检测波长
Wavelength/
nm流速
Flow rate/
(mL/min)流动相
Mobile phaseV(甲醇) : V(磷酸
水溶液,pH 3.0)
V(CH3OH) : V(H3PO4
aq., pH 3.0)V(丙酮) : V(二氯甲烷) : V(甲醇) :
V(磷酸水溶液,pH 1.5)
V(CH3COCH3) : V(CH2Cl2) :
V(MeOH) : V(H3PO4 aq., pH 1.5)H01 235 0.65 62 : 38 30 : 10 : 30 : 10 5 82 2.3 2 77 2.3 0.5 73 1.8 H02 235 0.65 60 : 40 30 : 10 : 30 : 10 5 80 2.3 2 84 1.4 0.5 97 1.6 H03 235 0.65 65 : 35 30 : 10 : 30 : 10 5 76 2.0 2 73 1.2 0.5 72 1.3 H04 235 0.70 67 : 33 30 : 10 : 30 : 10 5 73 2.1 2 81 2.1 0.5 81 1.3 氯磺隆
chlorslfuron235 0.70 62 : 38 40 : 5 : 10 : 10 5 73 1.1 2 73 2.4 0.5 81 1.2 表 6 目标化合物在碱性土壤中的降解
Table 6. Degradation results of the target compounds in alkaline soil
化合物
Compound一级动力学方程
First-order kinetic
equation决定系数
Coefficient of
determination (R2)降解半衰期
DT50/dH01 Ct = 4.1074 e−0.0156t 0.9991 44.43 H02 Ct = 4.0746e−0.0148t 0.9986 46.83 H03 Ct = 3.9401e−0.0143t 0.9929 48.47 H04 Ct = 3.5422e−0.0130t 0.9933 53.32 氯磺隆
chlorslfuronCt = 3.7060e−0.0044t 0.9982 157.53 -
[1] LEVITT G. Discovery of the sulfonylurea herbicides[M]//Synthesis and chemistry of agrochemicals II[M]. Washington, DC, USA, ACS: 1991, 443: 16-31. [2] DUGGLEBY R G, PANG S S. Acetohydroxyacid synthase[J]. BMB reports, 2000, 33(1): 1-36. [3] PARK T S, LHM Y B, KYUNG K S, et al. Mechanism of sulfonylurea herbicide resistance in broadleaf weed, monochoria korsakowii[J]. Korean J Pestic Sci, 2003, 7(4): 239-247. [4] QU R Y, YANG J F, DEVENDAR P, et al. Discovery of new 2-[(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)oxy]-6-(substituted phenoxy)benzoic acids as flexible inhibitors of Arabidopsis thaliana acetohydroxyacid synthase and its P197L mutant[J]. J Agric Food Chem, 2017, 65(51): 11170-11178. doi: 10.1021/acs.jafc.7b05198 [5] QU R Y, YANG J F, LIU Y C, et al. Computational design of novel inhibitors to overcome weed resistance associated with acetohydroxyacid synthase (AHAS) P197L mutant[J]. Pest Manag Sci, 2017, 73(7): 1373-1381. doi: 10.1002/ps.4460 [6] HEAP I. The international survey of herbicide resistant weeds[EB/OL]. [2022-04-12]. https://weedscience.org/Home.aspx. [7] ANDERSON R L, BARRETT M R. Residual phytotoxicity of chlorsulfuron in two soils[J]. J Environ Qual, 1985, 14(1): 111-114. [8] THIRUNARAYANAN K, ZIMDAHL R L, SMIKA D E. Chlorsulfuron adsorption and degradation in soil[J]. Weed Sci, 1985, 33(4): 558-563. doi: 10.1017/S0043174500082849 [9] FREDRICKSON D R, SHEA P J. Effect of soil pH on degradation, movement, and plant uptake of chlorsulfuron[J]. Weed Sci, 1986, 34(2): 328-332. doi: 10.1017/S0043174500066911 [10] WALKER A, COTTERILL E G, WELCH S J. Adsorption and degradation of chlorsulfuron and metsulfuron-methyl in soils from different depths[J]. Weed Res, 1989, 29(4): 281-287. doi: 10.1111/j.1365-3180.1989.tb00913.x [11] 中华人民共和国农业部. 中华人民共和国农业部公告第2032号[DB/OL]. 2013-12-09. http://www.moa.gov.cn/nybgb/2014/dyq/201712/t20171219_6104266.htm.Ministry of Agriculture of the People’s Republic of China. Bulletin of the Ministry of Agriculture of the People’s Republic of China No. 2032. [DB/OL]. 2013-12-09. http://www.moa.gov.cn/nybgb/2014/dyq/201712/t20171219_6104266.htm. [12] HUA X W, ZHOU S A, CHEN M G, et al. Controllable effect of structural modification of sulfonylurea herbicides on soil degradation[J]. Chin J Chem, 2016, 34(11): 1135-1142. doi: 10.1002/cjoc.201600438 [13] ZHOU S A, HUA X W, WEI W, et al. Research on controllable alkaline soil degradation of 5-substituted chlorsulfuron[J]. Chin Chem Lett, 2018, 29(6): 945-948. doi: 10.1016/j.cclet.2017.09.046 [14] 周沙. 新型鱼尼丁受体调控剂和土壤降解可控的超高效磺酰脲类除草剂的基础研究[D]. 天津: 南开大学, 2018.ZHOU S. The research on novel ryr insecticides and sulfonylurea herbicides with controllable degradation[D]. Tianjin: Nankai University, 2018. [15] ZHOU S, LI J X, HUA X W, et al. Residue mornitoring and crop safety in soil of 5-dialkylamino sulfonylurea compounds[J]. Chin J Pestic Sci, 2021, 23(3): 537-544. [16] YOU Z G, CHEN W F, WEI F X, et al. Selectivity of foramsulfuron in various corn hybrids and inbreds belonging to different corn subspecies[C]//Proceedings II of the 18th Asian-Pacific Weed Science Society Conference, 2001: 315-324. [17] KUK Y I, BUGOS N R. Cross-resistance profile of mesosulfuron-methyl-resistant Italian ryegrass in the southern United States[J]. Pest Manag Sci, 2010, 63(4): 349-357. [18] MENG F F, WU L, GU Y C, et al. Research on the controllable degradation of N-methylamido and dialkylamino substituted at the 5th position of the benzene ring in chlorsulfuron in acidic soil[J]. RSC Adv, 2020, 10(30): 17870-17880. doi: 10.1039/D0RA00811G [19] KLOECKNER U, NACHTSHEIM B J. Mild hypervalent iodine mediated oxidative nitration of N-aryl sulfonamides[J]. Chem Commun (Camb), 2014, 50(72): 10485-10487. doi: 10.1039/C4CC04738A [20] 化学农药环境安全评价试验准则 第1部分: 土壤降解试验: GB/T 31270.1—2014[S]. 北京: 中国标准出版社, 2015.Test guidelines on environmental safety assessment for chemical pesticides—Part 1: transformation in soils: GB/T 31270.1—2014[S]. Beijing: Standards Press of China, 2015. -