• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

作物叶片表面自由能及喷雾助剂对农药药液在5种作物叶片上润湿性能的影响

封云涛 郭晓君 李娅 李光玉 庾琴 张润祥

封云涛, 郭晓君, 李娅, 李光玉, 庾琴, 张润祥. 作物叶片表面自由能及喷雾助剂对农药药液在5种作物叶片上润湿性能的影响[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0054
引用本文: 封云涛, 郭晓君, 李娅, 李光玉, 庾琴, 张润祥. 作物叶片表面自由能及喷雾助剂对农药药液在5种作物叶片上润湿性能的影响[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0054
FENG Yuntao, GUO Xiaojun, LI Ya, LI Guangyu, YU Qin, ZHANG Runxiang. Effects of surface free energy of crops leaves and spry adjuvants on the wettability of pesticide solution on five crop leaves[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0054
Citation: FENG Yuntao, GUO Xiaojun, LI Ya, LI Guangyu, YU Qin, ZHANG Runxiang. Effects of surface free energy of crops leaves and spry adjuvants on the wettability of pesticide solution on five crop leaves[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0054

作物叶片表面自由能及喷雾助剂对农药药液在5种作物叶片上润湿性能的影响

doi: 10.16801/j.issn.1008-7303.2022.0054
基金项目: 山西农业大学学术恢复科研专项 (2020xshf10);国家重点研发计划 (2016YFD0200505);山西省面上青年基金项目 (201901D211569).
详细信息
    作者简介:

    封云涛,fyt52@126.com

    通讯作者:

    张润祥,zrxzyf@hotmail.com

  • 中图分类号: TQ450.6;S482.92

Effects of surface free energy of crops leaves and spry adjuvants on the wettability of pesticide solution on five crop leaves

Funds: the Academic Restoration and Scientific Research Project of Shanxi Agricultural University(2020xshf10); National Key R&D Program of China(2016YFD0200505); Shanxi Provincial General Youth Fund Project (201901D211569).
  • 摘要: 为了了解不同作物叶片表面润湿性能,科学选用助剂提高化学防治水平,采用光学视频接触角测量仪分别测定了小麦、玉米、辣椒、大豆和苹果5种作物叶片的表面自由能及其分量,进一步测定了2%甲氨基阿维菌素苯甲酸盐微乳剂和20%阿维 • 杀虫单微乳剂两种药液液滴在添加Silwet 408和GY-Spry两种喷雾助剂后其在5种作物叶片上的接触角。结果表明:5种作物叶片正反面表面自由能差异较大,表面自由能最大和最小的分别为辣椒叶片 (54.12、45.08 mJ/m2) 和小麦叶片 (3.76、6.42 mJ/m2);同种作物叶片正反面表面自由能均有差异,其中辣椒叶片正反面和大豆叶片正面自由能以极性分量占主导,表现出亲水性,小麦、玉米、苹果叶片正反面及大豆叶片反面自由能以色散分量占主导,表现出疏水性。在2%甲氨基阿维菌素苯甲酸盐微乳剂5000倍液和20%阿维 • 杀虫单微乳剂750倍液中分别添加两种助剂后,药液液滴在5种作物叶片上的接触角均有不同程度降低,其中添加Silwet 408后两种药液接触角分别降低82.63%~100%和85.07%~100%,添加GY-Spry后分别降低0~57.54%和10.96%~59.13%,说明添加Silwet 408比GY-Spry使接触角降低得更为显著;加入助剂的两钟药剂在5种作物叶面上接触角下降趋势一致,0~30 s内接触角下降程度明显高于30~60 s。本研究表明,喷雾助剂Silwet 408 和GY-Spry能提高2%甲氨基阿维菌素苯甲酸盐微乳剂和20%阿维 • 杀虫单微乳剂对5种靶标的润湿性,效果上Silwet 408 好于GY-Spry。
  • 表  1  五种作物叶片采集信息

    Table  1.   Five kinds of crop leaves collection details

    作物
    Crop
    品种
    Variety
    叶片时期
    Leaf blade period
    采样时间  
    Collection time  
    采样地点
    Collection site
    小麦
    Wheat
    晋太102
    Jintai 102
    拔节期
    Jointing stage
    2020.05.19
    May 19th, 2020
    山西省榆次市东阳镇
    Dongyang Town, Yuci City, Shanxi Province
    玉米
    Corn
    晋单86
    Jindan 86
    拔节期
    Jointing stage
    2020.05.26
    May 26th, 2020
    山西省榆次市东阳镇
    Dongyang Town, Yuci City, Shanxi Province
    辣椒
    Pepper
    红泽1号
    Hongze 1
    结果期
    Fruiting stage
    2020.07.20
    July 20th, 2020
    山西农业大学龙城校区试验温室
    Shanxi Agricultural University Longcheng Campus Experimental Greenhouse
    大豆
    Soybean
    晋豆19号
    Jindou 19
    幼苗期 (4~8片复叶)
    Seedling stage
    (4-8 compound leaves)
    2020.05.10
    May 10th, 2020
    山西农业大学龙城校区试验温室
    Shanxi Agricultural University Longcheng Campus Experimental Greenhouse
    苹果
    Apple
    红富士
    Fuji apple
    果实膨大期
    Fruit expansion stage
    2021.06.25
    June 25th, 2021
    山西省榆次市东阳镇
    Dongyang Town, Yuci City, Shanxi Province
    下载: 导出CSV

    表  2  五种作物叶片的表面自由能及其分量

    Table  2.   Surface free energy and its dispersion and polarity of five crop leaves

    作物  
    Crop  
    叶面
    Leaf surface
    接触角 (30 s)
    Contact angle (30 s)/(°)
    表面自由能
    Surface free
    energy/
    (mJ/m2)
    色散分量 (所占比例/%)
    Dispersion
    (Proportion/%)/
    (mJ/m2)
    极性分量 (所占比例/%)
    Polarity
    (Proportion/%)/
    (mJ/m2)
    N,N-二甲基甲酰胺
    DMF
    乙二醇
    Ethylene glycol
    自来水
    Running water
    小麦 Wheat 正面 Adaxial leaf 119.26 ± 0.67 120.06 ± 1.21 124.31 ± 0.66 3.76 2.19(58.24) 1.56(41.76)
    反面 Abaxial leaf 112.22 ± 1.03 106.50 ± 0.89 117.82 ± 0.24 6.42 5.06(78.80) 1.36(21.20)
    玉米 Corn 正面 Adaxial leaf 83.61 ± 0.22 75.40 ± 0.56 127.01 ± 0.67 22.69 21.64(95.37) 1.05 (4.63)
    反面 Abaxial leaf 81.12 ± 0.82 76.71 ± 0.77 124.14 ± 0.58 17.83 15.35(86.09) 2.48(13.91)
    辣椒 Pepper 正面 Adaxial leaf 60.50 ± 0.98 57.74 ± 0.85 50.32 ± 1.02 54.12 2.30(4.25) 51.82(95.75)
    反面 Abaxial leaf 47.12 ± 0.33 46.77 ± 0.35 53.94 ± 0.36 45.08 10.91(24.20) 34.17(75.80)
    大豆 Soybean 正面 Adaxial leaf 47.79 ± 0.63 53.01 ± 1.18 61.16 ± 0.86 39.28 13.60(34.62) 25.67(65.38)
    反面 Abaxial leaf 92.93 ± 0.87 88.00 ± 1.16 104.13 ± 0.87 13.15 9.75(74.14) 3.41(25.86)
    苹果 Apple 正面 Adaxial leaf 58.70 ± 0.56 55.19 ± 0.87 70.42 ± 1.02 41.08 35.26(85.83) 5.82(14.17)
    反面 Abaxial leaf 70.91 ± 0.85 60.70 ± 0.93 108.85 ± 0.51 38.57 38.28 (99.24) 0.29(0.76)
    下载: 导出CSV

    表  3  自来水及其添加喷雾助剂后在5种作物叶片上0~60 s静态接触角

    Table  3.   The static contact angle of running water with and without adjuvants on the leaves of five different crops within 0-60 s

    作物
    Crop
    叶面
    Leaf surface
    接触角 (0~60 s)
    Contact angle (0-60 s)/(°)
    自来水
    Running water
    自来水 + 0.03% Silwet 408
    Running water + 0.03% Silwet 408
    自来水 + 0.3% GY-Spry
    Running water + 0.3% GY-Spry
    小麦 Wheat 正面 Adaxial leaf 128.67~127.57 71.94~14.90 96.06~60.39
    反面 Abaxial leaf 114.80~113.49 45.63~11.61 99.13~52.99
    玉米 Corn 正面 Adaxial leaf 129.69~129.13 98.78~18.29 111.69~81.32
    反面 Abaxial leaf 123.35~122.85 79.39~16.12 111.16~75.39
    辣椒 Pepper 正面 Adaxial leaf 83.57~76.42 48.04~10.39 70.81~46.80
    反面 Abaxial leaf 77.37~77.43 49.66~10.43 63.36~39.62
    大豆 Soybean 正面 Adaxial leaf 104.33~102.40 62.53~0 95.38~58.92
    反面 Abaxial leaf 112.72~112.54 68.39~0 101.9~60.49
    苹果 Apple 正面 Adaxial leaf 94.49~89.78 43.91~0 71.29~41.23
    反面 Abaxial leaf 124.82~121.49 51.07~0 65.93~28.26
    下载: 导出CSV

    表  4  两种药剂及其添加喷雾助剂后在5种作物叶片上0~60 s静态接触角

    Table  4.   The static contact angle of two pesticides with and without adjuvants on the leaves of five different crops within 0-60 s

    作物
    Crop
    叶面
    Leaf surface
    接触角 (0~30~60 s)
    Contact angle (0-30-60 s)/(°)
    2% 甲氨基阿维菌素苯甲酸盐微乳剂 5000 倍
    emamectin benzoate 2% ME 5000 times
    20% 阿维 • 杀虫单微乳剂 750 倍
    abamectin + monosultap 20% ME 750 times
    -- + 0.03% Silwet 408 + 0.3% GY-Spry-- + 0.03% Silwet 408 + 0.3% GY-Spry
    小麦 Wheat 正面 Adaxial leaf 132.85~122.37 56.45~18.69~0 118.84~88.84~79.76 96.91~78.00 64.85~10.62~0 100.38~71.76~65.39
    反面 Abaxial leaf 121.97~99.44 50.39~11.11~0 100.89~68.55~61.26 115.71~96.73 48.95~10.48~0 112.08~83.51~76.73
    玉米 Corn 正面 Adaxial leaf 124.24~116.75 81.63~19.79~14.93 122.53~118.85~116.16 91.48~68.03 83.16~14.18~10.16 68.62~60.46~57.79
    反面 Abaxial leaf 114.43~108.07 59.23~17.02~14.09 119.28~113.43~109.34 103.53~74.11 74.03~14.54~10.19 71.95~62.21~57.77
    辣椒 Pepper 正面 Adaxial leaf 89.39~75.88 53.00~15.52~9.53 71.55~51.61~46.46 77.73~61.91 34.04~5.11~0 68.78~52.39~48.45
    反面 Abaxial leaf 88.20~71.20 54.61~17.64~12.37 59.67~45.42~43.23 77.52~62.19 28.53~8.37~5.72 70.49~54.46~50.46
    大豆 Soybean 正面 Adaxial leaf 96.45~93.62 54.46~0~0 84.95~48.14~44.02 102.79~81.11 48.99~0~0 80.60~73.74~72.22
    反面 Abaxial leaf 110.83~106.47 53.50~0~0 89.11~58.79~50.6 106.99~88.71 66.78~0~0 101.77~81.04~75.86
    苹果 Apple 正面 Adaxial leaf 70.34~50.31 47.60~0~0 72.02~46.23~36.09 75.45~53.91 42.73~0~0 70.30~49.69~45.96
    反面 Abaxial leaf 123.56~62.03 48.05~0~0 70.06~33.67~26.34 109.2~67.43 41.02~0~0 65.40~34.54~27.56
    下载: 导出CSV
  • [1] 顾惕人, 朱步瑶, 李外郎, 等. 表面化学[M]. 北京: 科学出版社, 1994.

    GU T R, ZHU B Y, LI W L, et al. Surface chemistry[M]. Beijing: Science Press, 1994.
    [2] 石辉, 王会霞, 李秧秧. 植物叶表面的润湿性及其生态学意义[J]. 生态学报, 2011, 31(15): 4287-4298.

    SHI H, WANG H X, LI Y Y. Wettability on plant leaf surfaces and its ecological significance[J]. Acta Ecol Sin, 2011, 31(15): 4287-4298.
    [3] 陈青, 仓业峥, 张健, 等. 农药液滴在植物枝叶表面润湿特性研究进展[J]. 中国农机化学报, 2020, 41(10): 35-40. doi: 10.13733/j.jcam.issn.2095-5553.2020.10.006

    CHEN Q, CANG Y Z, ZHANG J, et al. Research progress in wettability of pesticide droplets on plant branches and leaves[J]. Chin Agric Mech, 2020, 41(10): 35-40. doi: 10.13733/j.jcam.issn.2095-5553.2020.10.006
    [4] 王志玲, 王正, 阎昊鹏. 麦秆表面自由能及其分量研究[J]. 高分子材料科学与工程, 2007, 23(3): 207-210. doi: 10.3321/j.issn:1000-7555.2007.03.051

    WANG Z L, WANG Z, YAN H P. Study on wheat straw surface free energy and its polar and non polar part[J]. Polym Mater Sci Eng, 2007, 23(3): 207-210. doi: 10.3321/j.issn:1000-7555.2007.03.051
    [5] 范仁俊, 张晓曦, 周璐, 等. 利用OWRK 法预测桃叶表面润湿性能的研究[J]. 农药学学报, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13

    FAN R J, ZHANG X X, ZHOU L, et al. Research on the wettability of peach leaf surfaces by OWRK method[J]. Chin J Pestic Sci, 2011, 13(1): 79-83. doi: 10.3969/j.issn.1008-7303.2011.01.13
    [6] 王会霞, 石辉, 李秧秧. 西安市常见绿化植物叶片润湿性能及其影响因素[J]. 生态学杂志, 2010, 29(4): 630-636. doi: 10.13292/j.1000-4890.2010.0099

    WANG H X, SHI H, LI Y Y. Leaf surface wettability of major plant species for urban greening in Xi'an and related affecting factors[J]. Chin J Ecol, 2010, 29(4): 630-636. doi: 10.13292/j.1000-4890.2010.0099
    [7] 徐燕莉. 表面活性剂的功能[M]. 北京: 化学工业出版社, 2000: 71.

    XU Y L. Function of surfactant[M]. Beijing: Chemical Industry Press, 2000: 71.
    [8] 高越, 赵劲宇, 史高川, 等. 基于叶片的表面自由能与分量明确 4 种经济作物的叶面润湿性能[J]. 山西农业科学, 2017, 45(8): 1331-1334. doi: 10.3969/j.issn.1002-2481.2017.08.27

    GAO Y, ZHAO J Y, SHI G C, et al. Analysis of leaf surface wettability for 4 kinds of industrial crop based on the leaves surface free energy and component[J]. J Shanxi Agric Sci, 2017, 45(8): 1331-1334. doi: 10.3969/j.issn.1002-2481.2017.08.27
    [9] 封云涛, 李光玉, 郭晓君, 等. 两种表面活性助剂在农药减量化防治小菜蛾中的应用[J]. 农药学学报, 2015, 17(5): 603-609. doi: 10.3969/j.issn.1008-7303.2015.05.15

    FENG Y T, LI G Y, GUO X J, et al. Study on application of two kinds of surfactant in dose-reduced chemical control of Plutella xylostella(Linnaeus)[J]. Chin J Pestic Sci, 2015, 17(5): 603-609. doi: 10.3969/j.issn.1008-7303.2015.05.15
    [10] 封云涛, 郭晓君, 李光玉, 等. 添加表面活性助剂对 2 种药剂防治小菜蛾的增效作用[J]. 植物保护, 2017, 43(2): 212-215. doi: 10.3969/j.issn.0529-1542.2017.02.038

    FENG Y T, GUO X J, LI G Y, et al. The synergism of insecticides with surfactants for control of Plutella xylostella[J]. Plant Prot, 2017, 43(2): 212-215. doi: 10.3969/j.issn.0529-1542.2017.02.038
    [11] 王潇楠, 王思威, 刘艳萍, 等. 四种喷雾助剂对 25% 噻虫嗪水分散粒剂在豇豆叶片表面润湿性能的影响[J/OL]. 吉林农业大学学报, 2020, [2021-12-25]. https://doi.org/10.13327/j.jjlau.2020.5837.

    WANG X N, WANG S W, LIU Y P, et al. Influence of four adjuvants on wettability of 25% thiamethoxam WG on cowpea leaves[J/OL]. J Jilin Agric Univ, 2020. [2021-12-25]. https://doi.org/10.13327/j.jjlau.2020.5837
    [12] 徐广春, 徐德进, 徐鹿, 等. 有机硅助剂对氯虫苯甲酰胺防治稻纵卷叶螟的增效作用研究[J]. 农药学学报, 2020, 22(2): 285-292. doi: 10.16801/j.issn.1008-7303.2020.0060

    XU G C, XU D J, XU L, et al. Study on the synergistic effect of organosilicon adjuvant on chlorantraniliprole in the control of rice leaffolder, Cnaphalocrocis medinalis Guenée[J]. Chin J Pestic Sci, 2020, 22(2): 285-292. doi: 10.16801/j.issn.1008-7303.2020.0060
    [13] 潘文轩, 王索, 高宁, 等. 助剂对40%丁香·戊唑醇悬浮剂在玉米叶片上润湿性能及药效的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(5): 138-145.

    PAN W X, WANG S, GAO N, et al. Effect of adjuvants on wetting performance and efficacy of coumoxystrobin and tebuconazol 40% SC on corn leaves[J]. J Northwest A&F Univ (Nat Sci Ed), 2021, 49(5): 138-145.
    [14] ZHU Y Q, YU C X, LI Y, et al. Research on the changes in wettability of rice (Oryza sativa.) leaf surfaces at different development stages using the OWRK method[J]. Pest Manag Sci, 2014, 70(3): 462-469. doi: 10.1002/ps.3594
    [15] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. J Appl Polym Sci, 1969, 13(8): 1741-1747. doi: 10.1002/app.1969.070130815
    [16] FOWKES F M. Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids[J]. J Phys Chem, 1963, 67(12): 2538-2541. doi: 10.1021/j100806a008
    [17] 张晨辉. 表面活性剂对液滴在靶标表面润湿粘附行为的影响机制及调控[D]. 北京: 中国农业大学, 2017.

    ZHANG C H. The influence and regulatory mechanism about wetting and adhesion behavior of droplet on target solid surfaces by adding surfactants[D]. Beijing: China Agricultural University, 2017.
    [18] 徐广春, 顾中言, 徐德进, 等. 辣椒叶片表观表面自由能的计算方法[J]. 中国农业科学, 2018, 51(16): 3084-3094. doi: 10.3864/j.issn.0578-1752.2018.16.005

    XU G C, GU Z Y, XU D J, et al. Calculation methods for the surface free energy of pepper leaf surface[J]. Sci Agric Sin, 2018, 51(16): 3084-3094. doi: 10.3864/j.issn.0578-1752.2018.16.005
    [19] 徐广春, 顾中言, 许小龙, 等. 常用药剂在灰飞虱主要寄主植物上的润湿性能分析[C]//江苏省昆虫学会会议论文集. 江苏: 扬州, 2012: 54-59.

    XU G C, GU Z Y, XU X L, et al. Wettability analysis of common insecticides on the main host plants of grey planthopper[C] //Proceedings of Jiangsu Insect Society. Jiangsu: Yangzhou, 2012: 54-59.
    [20] 张晨辉, 赵欣, 雷津美, 等. 非离子表面活性剂Triton X-100溶液在不同生长期小麦叶片表面的润湿行为[J]. 物理化学学报, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051

    ZHANG C H, ZHAO X, LEI J M, et al. Wettability of Triton X-100 on wheat (Triticum aestivum) leaf surfaces with respect to developmental changes[J]. Acta Phys Chimica Sin, 2017, 33(9): 1846-1854. doi: 10.3866/PKU.WHXB201705051
    [21] 郭瑞峰, 张鹏九, 刘中芳, 等. 基于苹果叶片表面自由能的吡虫啉田间减量化研究[J]. 中国果树, 2020(1): 64-67.

    GUO R F, ZHANG P J, LIU Z F, et al. The usage reduction of imidacloprid insecticide based on the surface free energy of apple leaves[J]. China Fruits, 2020(1): 64-67.
    [22] BREWER C A, SMITH W K. Influence of simulated dewfall on photosynthesis and yield in soybean isolines (Glycine max [L.]Merr. cv Williams) with different trichome densities[J]. Int J Plant Sci, 1994, 155(4): 460-466. doi: 10.1086/297183
    [23] 王斌, 司乃国, 郭静, 等. 不同助剂对嘧菌酯防治 3 种植物病害的增效作用[J]. 农药学学报, 2020, 22(2): 293-298. doi: 10.16801/j.issn.1008-7303.2020.0061

    WANG B, SI N G, GUO J, et al. Synergistic effect of different adjuvants on azoxystrobin against three plant diseases[J]. Chin J Pestic Sci, 2020, 22(2): 293-298. doi: 10.16801/j.issn.1008-7303.2020.0061
    [24] 景亮亮, 柴军发, 高强, 等. 6 种喷雾助剂对 3 种药剂表面张力与接触角的影响[J]. 浙江农业学报, 2020, 32(10): 1823-1833. doi: 10.3969/j.issn.1004-1524.2020.10.11

    JING L L, CHAI J F, GAO Q, et al. Effect of 6 kinds of spray adjuvant on surface tension and contact angle of 3 kinds of pesticides[J]. Acta Agric Zhejiangensis, 2020, 32(10): 1823-1833. doi: 10.3969/j.issn.1004-1524.2020.10.11
    [25] 杨帆, 杨绍丽, 陈浩, 等. 不同助剂提高烯酰吗啉防治莴苣霜霉病的效果研究[J]. 农药学学报, 2021, 23(1): 168-175. doi: 10.16801/j.issn.1008-7303.2020.0131

    YANG F, YANG S L, CHEN H, et al. Study on the effect of different adjuvants on dimethomorph against lettuce downy mildew[J]. Chin J Pestic Sci, 2021, 23(1): 168-175. doi: 10.16801/j.issn.1008-7303.2020.0131
    [26] 胡双双, 戴素明, 张阳, 等. 柑橘木虱防控药剂筛选及矿物油对其增效作用评价[J]. 植物保护, 2022, 48(2): 247-254.

    HU S S, DAI S M, ZHANG Y, et al. Screening of insecticides for controlling Diaphorina citri and synergism of mineral oil to insecticides[J]. Plant Prot, 2022, 48(2): 247-254.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-04-11
  • 网络出版日期:  2022-08-16

目录

    /

    返回文章
    返回