• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于代谢组学的赤霉酸生物合成研究进展

殷凯楠 吴酬飞 尹良鸿 林海萍

殷凯楠, 吴酬飞, 尹良鸿, 林海萍. 基于代谢组学的赤霉酸生物合成研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0063
引用本文: 殷凯楠, 吴酬飞, 尹良鸿, 林海萍. 基于代谢组学的赤霉酸生物合成研究进展[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0063
YIN Kainan, WU Choufei, YIN Lianghong, LIN Haiping. Research progress on gibberellic acid biosynthesis based on metabonomics[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0063
Citation: YIN Kainan, WU Choufei, YIN Lianghong, LIN Haiping. Research progress on gibberellic acid biosynthesis based on metabonomics[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0063

基于代谢组学的赤霉酸生物合成研究进展

doi: 10.16801/j.issn.1008-7303.2022.0063
基金项目: 浙江省基础公益研究计划项目(LGG22C140001);浙江省重点研发项目(2019C02024).
详细信息
    作者简介:

    殷凯楠,inshdar@qq.com

    通讯作者:

    尹良鸿,ylh4@163.com

    林海萍,zjlxylhp@163.com

  • 中图分类号: Q939.95

Research progress on gibberellic acid biosynthesis based on metabonomics

Funds: Zhejiang Basic Public Welfare Research Project (LGG22C140001); Key Research Project of Zhejiang Province (2019C02024)
  • 摘要: 赤霉酸(gibberellic acid)是应用非常广泛的植物生长激素,目前农业生产上应用的赤霉酸主要来自藤仓赤霉菌Gibberella fujikuroi液态发酵,但产量还远远不能满足市场需求。代谢组学(metabonomics)是系统生物学研究的重要分支,近年来在微生物领域得到广泛应用,并取得了重要进展。文中综述了赤霉酸的种类、生产、应用、研究历程;代谢组学的概念、优点、研究方法、赤霉酸测定;基因改造、非生物胁迫、前体物质对赤霉酸生物合成的影响等领域的国内外研究进展,并对赤霉酸高效合成相关的多组学联合应用前景进行了展望,以期为工业生产中赤霉酸产量的进一步提升提供思路。
  • 图  1  3个菌株的高效液相色谱图[89]

    m567: 野生菌株;6314: ORF3基因缺失突变株;6314Δorf3-1:ORF3DES双基因缺失突变株。

    Figure  1.  High-performance liquid chromatographic analysis of three strains[89]

    m567: Wild-type strain; 6314: ORF3 gene deletion mutant; 6314Δ orf3-1: ORF3 and DES double gene deletion mutant.

    图  2  库德毕赤酵母在砷胁迫下的代谢物差异[96]

    左上: PCA分析图;左下: PLS-DA得分散点图;右: 差异代谢物聚类分析图 a: 正离子模式;b: 负离子模式

    Figure  2.  Metabolite difference of P. kudriavzevii under arsenic stress[96]

    Upper left: PCA plot; Bottom left: PLS-DA score scatter plot; Right: Differential metabolite cluster analysis plot a: Positive ion mode b: Negative ion mode

    图  3  库德毕赤酵母在砷胁迫下的KEGG富集通路气泡图[96]

    a: 正离子模式;b: 负离子模式。

    Figure  3.  Bubble diagram of KEGG enrichment pathway in P. kudriavzevii under arsenic stress[96]

    a: Positive ion mode;b: Negative ion mode.

    图  4  添加前体物质对代谢通量的影响[100]

    注:r值斜杠左边与右边的数字分别表示未添加与添加前体物质的代谢通量。

    Figure  4.  Effect of precursor addition on metabolic flux[100]

    Note: The numbers to the left and right of the r-value slash indicate metabolic flux without and with the addition of the precursor, respectively.

    表  1  基于基因改造的代谢组学在赤霉酸生物合成中的应用

    Table  1.   Application of metabolomics based on genetic modification in the biosynthesis of gibberellic acid (GA)

    分析工具
    Diagnostic tool
    优化位点
    Optimization site
    应用功能       
    Application function       
    参考文献
    Reference
    GC-MS DES 编码GA4去饱和酶 Codes for GA4 desaturase [89]
    GC-MS P450-3 编码13-羟化酶 Codes for 13-hydroxylase [89]
    GC-MS P450-2 编码GA-20氧化酶 Codes for GA-20 oxidase [90]
    GC-MS P450-1 编码P450单加氧酶 Codes for P450 monooxygenase [87]
    GC-MS P450-4 编码Ent-kaurene氧化酶 Codes for Ent-kaurene oxidase [88]
    下载: 导出CSV
  • [1] 庄木坤. 赤霉素高产菌株改造与发酵研究[D]. 武汉: 华中农业大学, 2007.

    ZHUANG M K. Breeding of gibberellic acid overproducting strain and fermentation[D]. Wuhan: Huazhong Agricultural University, 2007.
    [2] BÖMKE C, TUDZYNSKI B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria[J]. Phytochemistry, 2009, 70(15-16): 1876-1893. doi: 10.1016/j.phytochem.2009.05.020
    [3] KAWAIDE H. Biochemical and molecular analyses of gibberellin biosynthesis in fungi[J]. Biosci Biotechnol Biochem, 2006, 70(3): 583-590. doi: 10.1271/bbb.70.583
    [4] 明明. 基于GC-MS代谢组学方法的建立及对酿酒酵母乙醇耐受性机制研究[D]. 吉林: 吉林化工学院, 2019.

    MING M. Development of metabolomics method based on GC-MS and its application for studying mechanism of ethanol tolerance in Sacchromyces cerevisiae[D]. Jilin: Jilin Institute of Chemical Technology, 2019.
    [5] 曾令杰, 丰丕雪, 黄锦翔, 等. 基于非靶向代谢组学分析酿酒酵母甲酸胁迫的响应和耐受性机制[J]. 食品科学, 2022, 43(4): 95-104. doi: 10.7506/spkx1002-6630-20210331-390

    ZENG L J, FENG P X, HUANG J X, et al. Non-targeted metabolomic analysis of response and tolerance mechanism of Saccharomyces cerevisiae to formic acid stress[J]. Food Sci, 2022, 43(4): 95-104. doi: 10.7506/spkx1002-6630-20210331-390
    [6] EGEA I, ALBALADEJO I, MECO V, et al. The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration[J]. Sci Rep, 2018, 8(1): 2791. doi: 10.1038/s41598-018-21187-2
    [7] LI S J, HE Q Q, PENG Q, et al. Metabolomics responses of Bambusa pervariabilis × Dendrocalamopsis grandis varieties to Biotic (pathogenic fungus) stress[J]. Phytochemistry, 2019, 167: 112087.
    [8] YE X X, WANG X Q, WANG Y F, et al. A urine and serum metabolomics study of gastroesophageal reflux disease in TCM syndrome differentiation using UPLC-Q-TOF/MS[J]. J Pharm Biomed Anal, 2021, 206: 114369. doi: 10.1016/j.jpba.2021.114369
    [9] CUI J W, SONG W R, JIN Y P, et al. Research progress on the mechanism of the acupuncture regulating neuro-endocrine-immune network system[J]. Vet Sci, 2021, 8(8): 149. doi: 10.3390/vetsci8080149
    [10] CARRATURO F, LIBRALATO G, ESPOSITO R, et al. Metabolomic profiling of food matrices: preliminary identification of potential markers of microbial contamination[J]. J Food Sci, 2020, 85(10): 3467-3477. doi: 10.1111/1750-3841.15418
    [11] LI S B, TIAN Y F, JIANG P, et al. Recent advances in the application of metabolomics for food safety control and food quality analyses[J]. Crit Rev Food Sci Nutr, 2021, 61(9): 1448-1469. doi: 10.1080/10408398.2020.1761287
    [12] LUO C, ZHANG X Q, HE Y F, et al. A pseudo-targeted metabolomics study based on serum bile acids profiling for the differential diagnosis of benign and malignant breast lesions[J]. Steroids, 2021, 175: 108914. doi: 10.1016/j.steroids.2021.108914
    [13] ZHANG J, WEN X X, LI Y T, et al. Diagnostic approach to thyroid cancer based on amino acid metabolomics in saliva by ultra-performance liquid chromatography with high resolution mass spectrometry[J]. Talanta, 2021, 235: 122729. doi: 10.1016/j.talanta.2021.122729
    [14] XU L, ZHAO Q W, LUO J, et al. Integration of proteomics, lipidomics, and metabolomics reveals novel metabolic mechanisms underlying N, N-dimethylformamide induced hepatotoxicity[J]. Ecotoxicol Environ Saf, 2020, 205: 111166. doi: 10.1016/j.ecoenv.2020.111166
    [15] ZHANG C Y, FLOR S, RUIZ P, et al. 3, 3'-Dichlorobiphenyl is metabolized to a complex mixture of oxidative metabolites, including novel methoxylated metabolites, by HepG2 cells[J]. Environ Sci Technol, 2020, 54(19): 12345-12357. doi: 10.1021/acs.est.0c03476
    [16] RODRIGUES C, VANDENBERGHE L P, DE OLIVEIRA J, et al. New perspectives of gibberellic acid production: a review[J]. Crit Rev Biotechnol, 2012, 32(3): 263-273. doi: 10.3109/07388551.2011.615297
    [17] 陈子豪. 藤仓镰孢菌对多菌灵抗药性分子机制及检测方法研究[D]. 南京: 南京农业大学, 2014.

    CHEN Z H. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides [D]. Nanjing: Nanjing Agricultural University, 2014.
    [18] KHAN S A, HAMAYUN M, KIM H Y, et al. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production[J]. Biotechnol Lett, 2009, 31(2): 283-287. doi: 10.1007/s10529-008-9862-7
    [19] KANG S M, JOO G J, HAMAYUN M, et al. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth[J]. Biotechnol Lett, 2009, 31(2): 277-281. doi: 10.1007/s10529-008-9867-2
    [20] YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annu Rev Plant Biol, 2008, 59: 225-251. doi: 10.1146/annurev.arplant.59.032607.092804
    [21] CANDAU R, AVALOS J, CERDÁ-OLMEDO E. Gibberellins and carotenoids in the wild type and mutants of Gibberella fujikuroi[J]. Appl Environ Microbiol, 1991, 57(11): 3378-3382. doi: 10.1128/aem.57.11.3378-3382.1991
    [22] 李武军, 郑幼霞. 赤霉素产生菌: 藤仓赤霉菌融合重组的研究[J]. 微生物学报, 1995, 35(4): 271-274.

    LI W J, ZHENG Y X. Studies on fused recombination of Gibberella fujikur oi-gibberellin-producing strain[J]. Acta Microbiol Sin, 1995, 35(4): 271-274.
    [23] 彭辉, 施天穹, 聂志奎, 等. 微生物发酵产赤霉素的研究进展[J]. 化工进展, 2016, 35(11): 3611-3618. doi: 10.16085/j.issn.1000-6613.2016.11.034

    PENG H, SHI T Q, NIE Z K, et al. Fermentative production of gibberellins: a review[J]. Chem Ind Eng Prog, 2016, 35(11): 3611-3618. doi: 10.16085/j.issn.1000-6613.2016.11.034
    [24] ATAY A, KOYUNCU F. Manipulating regular bearing in ‘Golden Delicious’/M9 apple trees using GA4+7 and ethephon[J]. Int J Fruit Sci, 2016, 16: 10-22. doi: 10.1080/15538362.2015.1028697
    [25] PESTEANU A. Effect of application with gibberellin GA4+7 on russeting of ‘Golden Delicious’ apples[J]. Biomed Chromatogr, 2015, 72: 395-401.
    [26] LALE G, GADRE R. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium[J]. J Ind Microbiol Biotechnol, 2010, 37(3): 297-306. doi: 10.1007/s10295-009-0673-1
    [27] ESCAMILLA E M, DENDOOVEN L, MAGAÑA I P, et al. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors[J]. J Biotechnol, 2000, 76(2-3): 147-155. doi: 10.1016/S0168-1656(99)00182-0
    [28] 张文宣, 刘义雄, 周金龙, 等. 赤霉素GA4 + 7在5000 L发酵罐中的中试发酵工艺[J]. 农药, 2011, 50(11): 805-807. doi: 10.3969/j.issn.1006-0413.2011.11.007

    ZHANG W X, LIU Y X, ZHOU J L, et al. The fermentation technology conditions of pilot plant for gibberellin A4 + A7 in 5000 L tank[J]. Agrochemicals, 2011, 50(11): 805-807. doi: 10.3969/j.issn.1006-0413.2011.11.007
    [29] 于敏, 徐恒, 张华, 等. 植物激素在种子休眠与萌发中的调控机制[J]. 植物生理学报, 2016, 52(5): 599-606. doi: 10.13592/j.cnki.ppj.2016.0061

    YU M, XU H, ZHANG H, et al. Regulation of plant hormones on seed dormancy and germination[J]. Plant Physiol J, 2016, 52(5): 599-606. doi: 10.13592/j.cnki.ppj.2016.0061
    [30] 宋松泉, 刘军, 黄荟, 等. 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制[J]. 中国科学:生命科学, 2020, 50(6): 599-615. doi: 10.1360/SSV-2019-0289

    SONG S Q, LIU J, HUANG H, et al. Gibberellin metabolism and signaling and its molecular mechanism in regulating seed germination and dormancy[J]. Sci Sin Vitae, 2020, 50(6): 599-615. doi: 10.1360/SSV-2019-0289
    [31] INADA S, SHIMMEN T. Regulation of elongation growth by gibberellin in root segments of Lemna minor[J]. Plant Cell Physiol, 2000, 41(8): 932-9. doi: 10.1093/pcp/pcd018
    [32] 刘彩红, 李成云. GA3 浸种对羊草种子发芽和幼苗生长的影响[J]. 草业科学, 2011, 28(5): 797-801. doi: 10.3969/j.issn.1001-0629.2011.05.017

    LIU C H, LI C Y. Effects of soaking time and GA3 concentration on germination and growth of Leymus chinense seeds[J]. Pratacultural Science, 2011, 28(5): 797-801. doi: 10.3969/j.issn.1001-0629.2011.05.017
    [33] 聂莹莹, 徐丽君, 辛晓平, 等. 赤霉素浓度对苜蓿种子萌发的影响[J]. 畜牧与饲料科学, 2020, 41(6): 72-77. doi: 10.12160/j.issn.1672-5190.2020.06.014

    NIE Y Y, XU L J, XIN X P, et al. Effects of different concentrations of gibberellin on seed germination of alfalfa[J]. Animal Husb Feed Sci, 2020, 41(6): 72-77. doi: 10.12160/j.issn.1672-5190.2020.06.014
    [34] 李保珠, 赵翔, 安国勇. 赤霉素的研究进展[J]. 中国农学通报, 2011, 27(1): 1-5.

    LI B Z, ZHAO X, AN G Y. Recent advances in research of gibberellin[J]. Chin Agric Sci Bull, 2011, 27(1): 1-5.
    [35] KĘPCZYŃSKI J, BIAŁECKA B, LIGHT M E, et al. Regulation of Avena fatua seed germination by smoke solutions, gibberellin A_3 and ethylene[J]. Plant Growth Regul, 2006, 49(1): 9-16. doi: 10.1007/s10725-006-0008-4
    [36] 李振华. 烟草种子萌发的激素效应研究进展[J]. 云南农业大学学报(自然科学版), 2013, 28(3): 416-423.

    LI Z H. Advances in hormones during tobacco seed germination[J]. J Yunnan Agric Univ (Nat Sci Ed), 2013, 28(3): 416-423.
    [37] 徐梦岚, 符真珠, 张和臣, 等. 牡丹休眠研究进展[J]. 北方园艺, 2021(7): 129-134.

    XU M L, FU Z Z, ZHANG H C, et al. Research progress on dormancy of Paeonia suffruticosa[J]. North Hortic, 2021(7): 129-134.
    [38] 王书宏, 杜永吉. 外源激素对干旱胁迫下草莓光合特性的影响[J]. 中国农学通报, 2008, 24(12): 367-371.

    WANG S H, DU Y J. Effects of exogenous hormones on photosynthetic parameters of strawberry under drought stress[J]. Chin Agric Sci Bull, 2008, 24(12): 367-371.
    [39] ALICJA P N, ANDRZEJ B, ELŻBIETA Z, et al. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris(Chlorophyceae)[J]. Plant Physiol Biochem, 2012, 52: 52-65. doi: 10.1016/j.plaphy.2011.11.009
    [40] AFTAB T, KHAN M A, IDREES M, et al. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application[J]. J Plant Interact, 2010, 5: 273-281. doi: 10.1080/17429141003647137
    [41] 刘文婷. 3种外源植物激素对苇状羊茅苗期耐旱性的影响[D]. 兰州: 兰州大学, 2021.

    LIU W T. Effects of three exogenous plant growth regulators on drought resistance of Festuca arundinacea in seedling stage[D]. Lanzhou: Lanzhou University, 2021.
    [42] 郝鹏, 王紫, 王柏秋, 等. 赤霉素浸泡对辣椒幼苗质量的影响[J]. 园艺与种苗, 2021, 41(1): 39-40. doi: 10.16530/j.cnki.cn21-1574/s.2021.01.014

    HAO P, WANG Z, WANG B Q, et al. Effect of pepper seedlings quality with gibberellin soaking[J]. Hortic Seed, 2021, 41(1): 39-40. doi: 10.16530/j.cnki.cn21-1574/s.2021.01.014
    [43] 杜晨曦, 王金丽, 周华坤, 等. 赤霉素对植物种子萌发及幼苗生长影响的研究进展[J]. 湖北农业科学, 2019, 58(22): 9-14. doi: 10.14088/j.cnki.issn0439-8114.2019.22.002

    DU C X, WANG J L, ZHOU H K, et al. Research progress on the effects of gibberellin on plant seed germination and seedling growth[J]. Hubei Agric Sci, 2019, 58(22): 9-14. doi: 10.14088/j.cnki.issn0439-8114.2019.22.002
    [44] 刘果, 高丽琼, 彭彦, 等. 外源激素对低温胁迫下南美油藤幼苗叶片生理生化指标的影响[J]. 南方农业学报, 2020, 51(9): 2181-2190. doi: 10.3969/j.issn.2095-1191.2020.09.017

    LIU G, GAO L Q, PENG Y, et al. Effects of exogenous hormones on physiological and biochemical indexes of Plukenetia volubilis under low temperature stress[J]. J Southern Agric, 2020, 51(9): 2181-2190. doi: 10.3969/j.issn.2095-1191.2020.09.017
    [45] 石全梅. 药用丹参对盐胁迫的生理响应及外源GA3的缓解效应[D]. 南京: 南京农业大学, 2015.

    SHI Q M. Physiological responses of Danshen (Salvia miltiorrhiza Bge. var. Zhongjiang) to salt stress and its alleviation effect via exogenous GA3 addition[D]. Nanjing: Nanjing Agricultural University, 2015.
    [46] 韦丁一, 高少凡, 苏海英, 等. 赤霉素及其抑制剂对油菜抗倒伏性的影响分析[J]. 江苏农业科学, 2022, 50(12): 69-74.

    WEI D Y, GAO S F, SU H Y, et al. Effects of gibberellin and its inhibitors on lodging resistance in Brassica napus L.[J]. Jiangsu Agric Sci, 2022, 50(12): 69-74.
    [47] 高建芹, 陈松, 彭琦, 等. 苗期喷施烯效唑对油菜生长及产量和品质的影响[J]. 江苏农业学报, 2016, 32(2): 305-312. doi: 10.3969/j.issn.1000-4440.2016.02.011

    GAO J Q, CHEN S, PENG Q, et al. Effect of uniconazole application on seedling growth and seed yield and quality in Brassica napus L.[J]. Jiangsu J Agric Sci, 2016, 32(2): 305-312. doi: 10.3969/j.issn.1000-4440.2016.02.011
    [48] 张大雷. 赤霉素和多效唑对直播水稻产量及倒伏性的影响研究[D]. 武汉: 华中农业大学, 2016

    ZHANG D L. Effects of gibberellin and paclobutrazol on the yield and lodging of direct-seeded rice[D]. Wuhan: Huazhong Agricultural University, 2016.
    [49] 李佼佼, 杨文革, 胡永红. 赤霉素A4+7 的分子生物学研究进展[J]. 河南农业科学, 2013, 42(5): 1-4. doi: 10.3969/j.issn.1004-3268.2013.05.001

    LI J J, YANG W G, HU Y H. Research advances in molecular biology of GA4 + 7[J]. J Henan Agric Sci, 2013, 42(5): 1-4. doi: 10.3969/j.issn.1004-3268.2013.05.001
    [50] 樊炎迪. GA4 对铁皮石斛生长生理及品质的影响[D]. 杭州: 浙江农林大学, 2020.

    FAN Y D. Effect of GA4 on growth physiology and quality of Dendrobium offcinale[D]. Hangzhou: Zhejiang A&F University, 2020.
    [51] NICHOLSON J K, LINDON J C, HOLMES E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189. doi: 10.1080/004982599238047
    [52] FIEHN O, KOPKA J, DÖRMANN P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18(11): 1157-1161. doi: 10.1038/81137
    [53] 孔宏伟, 戴伟东, 许国旺. 基于液相色谱-质谱联用的代谢组学研究中代谢物的结构鉴定进展[J]. 色谱, 2014, 32(10): 1052-1057. doi: 10.3724/SP.J.1123.2014.05017

    KONG H W, DAI W D, XU G W. Advances of metabolite identification in liquid chromatographymass spectrometry based metabolomics[J]. Chin J Chromatogr, 2014, 32(10): 1052-1057. doi: 10.3724/SP.J.1123.2014.05017
    [54] 俞邱豪, 张九凯, 叶兴乾, 等. 基于代谢组学的食品真实属性鉴别研究进展[J]. 色谱, 2016, 34(7): 657-664. doi: 10.3724/SP.J.1123.2016.03040

    YU Q H, ZHANG J K, YE X Q, et al. Progress on metabolomics for authenticity identification of food[J]. Chin J Chromatogr, 2016, 34(7): 657-664. doi: 10.3724/SP.J.1123.2016.03040
    [55] 杨波, 杨强, 张爱华, 等. 基于代谢组学技术的中医药研究进展[J]. 中国医药导报, 2019, 16(24): 24-28.

    YANG B, YANG Q, ZHANG A H, et al. Research progress of traditional Chinese medicine based on metabolomics technology[J]. China Med Her, 2019, 16(24): 24-28.
    [56] 戴宇樵, 吕才有. 代谢组学技术在茶学中的应用研究进展[J]. 江苏农业科学, 2019, 47(2): 24-28. doi: 10.15889/j.issn.1002-1302.2019.02.005

    DAI Y Q, LV C Y. Research progress of application of metabolomics technology in tea science[J]. Jiangsu Agric Sci, 2019, 47(2): 24-28. doi: 10.15889/j.issn.1002-1302.2019.02.005
    [57] 王映芬, 付翔杰, 张巍, 等. 基于质谱技术的乳腺癌代谢组学研究进展[J]. 中南医学科学杂志, 2019, 47(5): 546-549. doi: 10.15972/j.cnki.43-1509/r.2019.05.026

    WANG Y F, FU X J, ZHANG W, et al. Advances in the study of breast cancer metabolomics based on mass spectrometry[J]. Med Sci J Central South China, 2019, 47(5): 546-549. doi: 10.15972/j.cnki.43-1509/r.2019.05.026
    [58] YA H Y, LI H R, LIU X H, et al. Profiling of widely targeted metabolomics for the identification of chemical composition in epidermis, xylem and pith of Gleditsiae spina[J]. Biomed Chromatogr, 2022, 36(5): e5331.
    [59] LONG P P, WEN M C, GRANATO D, et al. Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation[J]. Food Chem, 2020, 311: 125895. doi: 10.1016/j.foodchem.2019.125895
    [60] RIBBENSTEDT A, ZIARRUSTA H, BENSKIN J P. Development, characterization and comparisons of targeted and non-targeted metabolomics methods[J]. PLoS One, 2018, 13(11): e0207082. doi: 10.1371/journal.pone.0207082
    [61] 刘霞, 王映红. 基于NMR的代谢组学技术在药用植物研究中的应用[J]. 药学学报, 2017, 52(4): 541-549. doi: 10.16438/j.0513-4870.2016-1001

    LIU X, WANG Y H. The application of NMR-based metabolomics technique to medicinal plants[J]. Acta Pharm Sin, 2017, 52(4): 541-549. doi: 10.16438/j.0513-4870.2016-1001
    [62] 杨庆霞. 代谢组学数据分析的算法研究及在线工具开发[D]. 重庆: 重庆大学, 2020.

    YANG Q X. Algorithm research and online tool development of data analysis for metabolomics[D]. Chongqing: Chongqing University, 2020.
    [63] LI A P, LI Z Y, SUN H F, et al. Comparison of two different Astragali Radix by a 1H NMR-based metabolomic approach[J]. J Proteome Res, 2015, 14(5): 2005-2016. doi: 10.1021/pr501167u
    [64] ALONSO A, MARSAL S, JULIÀ A. Analytical methods in untargeted metabolomics: state of the art in 2015[J]. Front Bioeng Biotechnol, 2015, 3: 23.
    [65] EVERETT J R, LOO R L, PULLEN F S. Pharmacometabonomics and personalized medicine[J]. Ann Clin Biochem, 2013, 50(Pt 6): 523-545.
    [66] 刘龙桀. 基于GC-MS非靶向代谢组学对东北红豆杉的代谢差异分析[D]. 哈尔滨: 东北林业大学, 2021

    LIU L J. Metabolic differences of Taxus cuspidata based on GC-MS non-targeted metabonomics[D]. Harbin: Northeast Forestry University, 2021.
    [67] 赵洁妤. 基于CE-MS的代谢组学分析新方法及其在烟叶研究中的应用[D]. 大连: 大连理工大学, 2016

    ZHAO J Y. New analytical methods of CE-MS based metabolomics and their applications in tobacco leaf studies[D]. Dalian: Dalian University of Technology, 2016.
    [68] 谭冬飞. 基于组学技术的复原乳识别及牛奶光氧化研究[D]. 北京: 中国农业科学院, 2021.

    TAN D F. Study on recognition of reconstituted milk and photo-oxidation of milk based on omics technology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
    [69] 徐天润, 刘心昱, 许国旺. 基于液相色谱-质谱联用技术的代谢组学分析方法研究进展[J]. 分析测试学报, 2020, 39(1): 10-18. doi: 10.3969/j.issn.1004-4957.2020.01.002

    XU T R, LIU X Y, XU G W. Advances of analytical methods for liquid chromatography-mass spectrometry-based metabolomics[J]. J Instrum Anal, 2020, 39(1): 10-18. doi: 10.3969/j.issn.1004-4957.2020.01.002
    [70] 王芬. 高氮调控苹果果实碳氮代谢的机制及氮素调控技术研究[D]. 泰安: 山东农业大学, 2021.

    WANG F. The mechanism of high nitrogen regulating carbon and nitrogen metabolism in apple fruit and nitrogen regulation techniques[D]. Taian: Shandong Agricultural University, 2021.
    [71] 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0861

    ZHANG F, CHEN W. Research progress of metabolomics in plant stress biology[J]. Biotechnol Bull, 2021, 37(8): 1-11. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0861
    [72] MASSADEH R K, EL-ELIMAT T, AL-GHARAIBEH M, et al. UPLC-HRESI-MS and GC-MS analysis of the leaves of Nicotiana glauca[J]. Acta Pharm, 2022, 72(1): 97-108. doi: 10.2478/acph-2022-0001
    [73] BJERRUM J T. Metabonomics: analytical techniques and associated chemometrics at a glance[J]. Methods Mol Biol, 2015, 1277: 1-14.
    [74] 许国旺, 路鑫, 杨胜利. 代谢组学研究进展[J]. 中国医学科学院学报, 2007, 29(6): 701-711. doi: 10.3321/j.issn:1000-503x.2007.06.001

    XU G W, LU X, YANG S L. Recent advances in metabonomics[J]. Acta Acad Med Sin, 2007, 29(6): 701-711. doi: 10.3321/j.issn:1000-503x.2007.06.001
    [75] 孙晓东. 东北地区传统发酵豆酱中真菌区系及功能菌株的代谢组学研究[D]. 大连: 大连理工大学, 2020.

    SUN X D. Study on mycobiota in traditionally fermented soybean pastes in northeast China and metabonomics of functional strains[D]. Dalian: Dalian University of Technology, 2020.
    [76] 毛琼丽, 石豪, 严玲, 等. 超高效液相色谱仪的应用及前景展望[J]. 化学分析计量, 2021, 30(11): 95-102.

    MAO Q L, SHI H, YAN L, et al. Application and prospect of ultra-high performance liquid chromatography[J]. Chem Anal Meterage, 2021, 30(11): 95-102.
    [77] CASTILLO G, MARTINEZ S. Reversed-phase C18 high-performance liquid chromatography of gibberellins GA3 and GA1[J]. J Chromatogr A, 1997, 782(1): 137-139. doi: 10.1016/S0021-9673(97)00427-5
    [78] 徐真. 麦芽和啤酒中赤霉酸的研究[D]. 无锡: 江南大学, 2012.

    XU Z. Research on gibberellic acid in malt and beer[D]. Wuxi: Jiangnan University, 2012.
    [79] 黄红林. 果品、蔬菜中赤霉素GA3 残留量的测定[D]. 武汉: 华中师范大学, 2004.

    HUANG H L. The determination of gibberellic acid residue in vegetable and fruit[D]. Wuhan: Central China Normal University, 2004.
    [80] 王耀楠, 貌达, 王梦婷, 等. 超高效液相色谱-串联质谱法测定功能饮料中的牛磺酸和赖氨酸[J]. 食品安全质量检测学报, 2021, 12(22): 8730-8736. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.013

    WANG Y N, MAO D, WANG M T, et al. Determination of taurine and lysine in functional drinks by ultra performance liquid chromatography-tandem mass spectrometry[J]. J Food Safety Quality, 2021, 12(22): 8730-8736. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.22.013
    [81] 邓六爱, 刘峰, 张念英, 等. 高效液相色谱-串联质谱法测定茶叶中赤霉素的研究[J]. 农产品加工, 2021(22): 50-53. doi: 10.16693/j.cnki.1671-9646(X).2021.11.046

    DENG L A, LIU F, ZHANG N Y, et al. Determination of gibberellin in tea by high performance liquid chromatography tandem mass spectrometry[J]. Farm Prod Process, 2021(22): 50-53. doi: 10.16693/j.cnki.1671-9646(X).2021.11.046
    [82] 韦航, 邹强, 荣杰峰, 等. 高效液相色谱-串联质谱同时测定豆芽中8种生长调节剂残留量[J]. 广东化工, 2016, 43(23): 118-120. doi: 10.3969/j.issn.1007-1865.2016.23.053

    WEI H, ZOU Q, RONG J F, et al. Determination of eight growth regulators in bean sprouts by HPLC-MS/MS[J]. Guangdong Chem Ind, 2016, 43(23): 118-120. doi: 10.3969/j.issn.1007-1865.2016.23.053
    [83] 王小鹏, 黄敏兴, 许卓妍, 等. 超高效液相色谱-串联质谱法测定甘蔗中11种多酚类物质[J]. 甘蔗糖业, 2021, 50(2): 72-77. doi: 10.3969/j.issn.1005-9695.2021.02.013

    WANG X P, HUANG M X, XU Z Y, et al. Determinatian of 11 polyphenolic compounds in sugarcane by ultra performance liquid chromatography-tandem mass spectrometry[J]. Sugarcane and Canesugar, 2021, 50(2): 72-77. doi: 10.3969/j.issn.1005-9695.2021.02.013
    [84] 李伟, 石丽花, 王春红, 等. 超高效液相色谱-串联质谱法测定松花粉中赤霉素的含量[J]. 特产研究, 2017, 39(3): 28-32. doi: 10.16720/j.cnki.tcyj.2017.03.006

    LI W, SHI L H, WANG C H, et al. Determination of gibberellin in massoniana pollen by UPLC/Q-TOF/MS[J]. Special Wild Econ Animal Plant Res, 2017, 39(3): 28-32. doi: 10.16720/j.cnki.tcyj.2017.03.006
    [85] 王冰璇, 司文, 吴烨飞, 等. 藤仓赤霉菌赤霉素生物合成及代谢调控研究进展[J]. 生物工程学报, 2020, 36(2): 189-200. doi: 10.13345/j.cjb.190194

    WANG B X, SI W, WU Y F, et al. Research progress in biosynthesis and metabolism regulation of gibberellins in Gibberella fujikuroi[J]. Chin J Biotechnol, 2020, 36(2): 189-200. doi: 10.13345/j.cjb.190194
    [86] HEDDEN P, PHILLIPS A L, ROJAS M C, et al. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution?[J]. J Plant Growth Regul, 2001, 20(4): 319-331. doi: 10.1007/s003440010037
    [87] ROJAS M C, HEDDEN P, GASKIN P, et al. The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis[J]. PNAS, 2001, 98(10): 5838-5843. doi: 10.1073/pnas.091096298
    [88] TUDZYNSKI B, HEDDEN P, CARRERA E, et al. The P450-4 gene of Gibberella fujikuroi encodes ent-kaurene oxidase in the gibberellin biosynthesis pathway[J]. Appl Environ Microbiol, 2001, 67(8): 3514-3522. doi: 10.1128/AEM.67.8.3514-3522.2001
    [89] TUDZYNSKI B, MIHLAN M, ROJAS M C, et al. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: Des and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively[J]. J Biol Chem, 2003, 278(31): 28635-28643. doi: 10.1074/jbc.M301927200
    [90] TUDZYNSKI B, ROJAS M C, GASKIN P, et al. The gibberellin 20-oxidase of Gibberella fujikuroi is a multifunctional monooxygenase[J]. J Biol Chem, 2002, 277(24): 21246-21253. doi: 10.1074/jbc.M201651200
    [91] SILVA E, DENDOOVEN L, REYNELL J, et al. Morphological development and gibberellin production by different strains of Gibberella fujikuroi in shake flasks and bioreactor[J]. World J Microbiol Biotech, 1999, 15: 753-755. doi: 10.1023/A:1008976000179
    [92] 张万存, 陈龙云, 高沙, 等. 不同培养时间下蝉棒束孢菌丝体的代谢组研究[J]. 菌物学报, 2015, 34(2): 252-268. doi: 10.13346/j.mycosystema.130213

    ZHANG W C, CHEN L Y, GAO S, et al. Metabolomic analysis of the mycelia of Isaria cicadae at different incubation time[J]. Mycosystema, 2015, 34(2): 252-268. doi: 10.13346/j.mycosystema.130213
    [93] JEFFERYS E G. The gibberellin fermentation[J]. Adv Appl Microbiol, 1970, 13: 283-316.
    [94] 储修云, 印天寿, 唐玉华. 微量元素添加剂促进赤霉素分泌及赤霉素速测技术研究[J]. 广东微量元素科学, 1995(6): 1-7. doi: 10.16755/j.cnki.issn.1006-446x.1995.06.001

    CHU X Y, YIN T S, TANG Y H. Study on trace element additives in stimulating GA secretion and the rapid method for GA determination[J]. Trace Elem Sci, 1995(6): 1-7. doi: 10.16755/j.cnki.issn.1006-446x.1995.06.001
    [95] 李冠军, 刘鑫铭, 梁安洁, 等. 两株木麻黄内生真菌代谢产物对NaCl胁迫的响应[J]. 应用与环境生物学报, 2019, 25(4): 902-908. doi: 10.19675/j.cnki.1006-687x.2019.05034

    LI G J, LIU X M, LIANG A J, et al. Effects of NaCl stress on metabolites of two endophytic fungi of Casuarina equisetifolia[J]. Chin J Appl Environ Biol, 2019, 25(4): 902-908. doi: 10.19675/j.cnki.1006-687x.2019.05034
    [96] 戚晓雪, 徐莹, 汪东风. 基于非靶向代谢组学研究砷酸盐胁迫下库德毕赤酵母代谢物的变化[J/OL]. 食品与发酵工业, 2022. [2022-05-11]. https://doi.org/10.13995/j.cnki.11-1802/ts.031651

    QI X X, XU Y, WANG D F. metabolite changes of Pichia kudriavzevii under arsenic stress based on untargeted metebolomics[J/OL]. Food Ferment Ind, 2022. [2022-05-11]. https://doi.org/10.13995/j.cnki.11-1802/ts.031651
    [97] 汪泽. 基于代谢组学分析提高ε-聚赖氨酸发酵产量研究[D]. 无锡: 江南大学, 2020.

    WANG Z. Increase ε-poly-L-lysine production based on metabolomics analysis[D]. Wuxi: Jiangnan University, 2020.
    [98] GUAN N Z, LI J H, SHIN H D, et al. Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici[J]. Metabolomics, 2015, 11(5): 1106-1116. doi: 10.1007/s11306-014-0766-3
    [99] CIHANGIR N. Stimulation of the gibberellic acid synthesis by Aspergillus niger in submerged culture using a precursor[J]. World J Microbiol Biotechnol, 2002, 18: 727-729. doi: 10.1023/A:1020401507706
    [100] 王卫. 高产赤霉素菌株选育及发酵工艺优化[D]. 长沙: 中南林业科技大学, 2015.

    WANG W. Screening high gibberellin acid producing strains from Gibberella fujikuroi and optimization on the fermentation conditions[D]. Changsha: Central South University of Forestry & Technology, 2015.
    [101] 王卫, 黎继烈, 沈珺珺, 等. 赤霉素发酵前体的筛选与发酵工艺优化[J]. 中国医药工业杂志, 2016, 47(6): 692-695. doi: 10.16522/j.cnki.cjph.2016.06.006

    WANG W, LI J L, SHEN J J, et al. Selection of precursors for producing gibberellin acid by Gibberella fujikuroi and optimization of the fermentation process[J]. Chin J Pharm, 2016, 47(6): 692-695. doi: 10.16522/j.cnki.cjph.2016.06.006
    [102] 郭凤丹, 王兴军, 侯蕾, 等. 植物代谢组学研究进展[J]. 山东农业科学, 2017, 49(12): 154-162. doi: 10.14083/j.issn.1001-4942.2017.12.035

    GUO F D, WANG X J, HOU L, et al. Research progress of metabolomics in plants[J]. Shandong Agric Sci, 2017, 49(12): 154-162. doi: 10.14083/j.issn.1001-4942.2017.12.035
    [103] 田菁, 王宇哲, 闫世雄, 等. 代谢组学技术发展及其在农业动植物研究中的应用[J]. 遗传, 2020, 42(5): 452-465. doi: 10.16288/j.yczz.19-287

    TIAN J, WANG Y Z, YAN S X, et al. Metabolomics technology and its applications in agricultural animal and plant research[J]. Hereditas, 2020, 42(5): 452-465. doi: 10.16288/j.yczz.19-287
    [104] MALONEK S, BÖMKE C, BORNBERG-BAUER E, et al. Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex[J]. Phytochemistry, 2005, 66(11): 1296-1311. doi: 10.1016/j.phytochem.2005.04.012
    [105] 李佳伟, 马钰聪, 杨鑫雷, 等. 花生种皮色素合成相关通路的转录组-代谢组学联合分析[J]. 植物遗传资源学报, 2022, 23(1): 240-254.

    LI J W, MA Y C, YANG X L, et al. Transcriptomics-metabolomics combined analysis highlight the mechanism of testa pigment formation in peanut(Arachis hypogaea L.)[J]. J Plant Genet Resour, 2022, 23(1): 240-254.
    [106] WANG F, JI G S, XU Z B, et al. Metabolomics and transcriptomics provide insights into anthocyanin biosynthesis in the developing grains of purple wheat (Triticum aestivum L.)[J]. J Agric Food Chem, 2021, 69(38): 11171-11184. doi: 10.1021/acs.jafc.1c01719
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-11
  • 录用日期:  2022-05-19
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回