• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物的合成与杀虫活性

单喜杰 李海洁 李天泽 徐晖 吕敏

单喜杰, 李海洁, 李天泽, 徐晖, 吕敏. 3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物的合成与杀虫活性[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0066
引用本文: 单喜杰, 李海洁, 李天泽, 徐晖, 吕敏. 3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物的合成与杀虫活性[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0066
SHAN Xijie, LI Haijie, LI Tianze, XU Hui, LYU Min. Synthesis and pesticidal activities of cyclopentanoperhydrophenanthrene 3-aryl-4,5-dihydroisoxazole-5-formate derivatives[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0066
Citation: SHAN Xijie, LI Haijie, LI Tianze, XU Hui, LYU Min. Synthesis and pesticidal activities of cyclopentanoperhydrophenanthrene 3-aryl-4,5-dihydroisoxazole-5-formate derivatives[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0066

3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物的合成与杀虫活性

doi: 10.16801/j.issn.1008-7303.2022.0066
基金项目: 国家自然科学基金 (31872013).
详细信息
    作者简介:

    单喜杰,SXJ18438615950@163.com

    通讯作者:

    吕敏,lvmin@nwsuaf.edu.cn

  • 中图分类号: O625.15;TQ450.11

Synthesis and pesticidal activities of cyclopentanoperhydrophenanthrene 3-aryl-4,5-dihydroisoxazole-5-formate derivatives

Funds: the National Natural Science Foundation of China (31872013).
  • 摘要: 为了寻找具有较高杀虫活性的胆固醇衍生物,将异噁唑啉片段引入母体胆固醇( 1 )的C-3位,制备了20个新的3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物 Ia~It ,并经氢谱、红外光谱和高分辨质谱确证结构。化合物 Ie (R = 3-BrPh) 对小菜蛾Plutella xyllostella幼虫具有较好的杀虫活性,其48 h LC50值 0.940 mg/mL,是母体胆固醇 (LC50:2.566 mg/mL) 的2.7倍;化合物 Ig (R = 3-FPh) 和 Ij (R = 4-CF3Ph) 对苹果黄蚜Aphis citricola具有较好的杀虫活性,其48 h LD50值为0.042与0.041 μg/头,是胆固醇 (LD50:0.228 μg/头) 的5.4和5.6倍。初步构效关系表明,在苯环间位引入溴原子可提高对小菜蛾的杀虫活性;在苯环对位或间位引入氟原子、或者在对位引入三氟甲基可提高对苹果黄蚜的杀虫活性。
  • 1  目标化合物I的设计

    1.  Design of target compounds I

    2  目标化合物Ia~It的合成路线

    2.  Synthetic route of target compounds Ia-It

    表  1  化合物1、2和Ia~It在1 mg/mL下对小菜蛾幼虫的杀虫活性

    Table  1.   Insecticidal activity of compounds 1, 2 and Ia-It against the larvae of P. xylostella at 1 mg/mL

    化合物
    Compound
    校正死亡率 (平均值 ± 标准误差)
    Corrected mortality rate (mean ± SE)/%
    24 h48 ha
    117.7 ± 4.420.4 ± 4.4 g
    222.2 ± 5.824.9 ± 5.7 fg
    Ia35.5 ± 2.247.7 ± 4.4 bc
    Ib22.2 ± 4.438.6 ± 3.8 cde
    Ic24.4 ± 5.847.7 ± 5.8 bc
    Id20.0 ± 3.836.3 ± 4.4 cdef
    Ie35.5 ± 2.252.2 ± 0 b
    If24.4 ± 5.838.6 ± 3.8 cde
    Ig31.1 ± 2.243.1 ± 2.2 bcd
    Ih17.7 ± 2.229.5 ± 2.2 efg
    Ii33.3 ± 3.834.1 ± 2.2 def
    Ij31.1 ± 2.245.4 ± 0 bcd
    Ik22.2 ± 2.236.3 ± 2.2 cdef
    Il17.7 ± 4.434.1 ± 2.2 def
    Im33.3 ± 3.843.1 ± 5.8 bcd
    In20.0 ± 3.829.5 ± 4.4 efg
    Io4.4 ± 2.218.2 ± 3.8 g
    Ip31.1 ± 2.245.4 ± 6.6 bcd
    Iq25.0 ± 3.836.3 ± 2.2 cdef
    Ir22.7 ± 2.234.1 ± 2.2 def
    Is22.7 ± 2.240.9 ± 2.2 bcde
    It31.8 ± 3.847.7 ± 2.2 bc
    高效氯氰菊酯 β-cypermethrin42.2 ± 2.286.3 ± 0 a
    注:a多重比较用Duncan’s test (p<0.05),相同的字母表示无显著差异。Note: aMultiple range test using Ducan’s test (p<0.05). The same letters denote treatments that are not significantly different from each other.
    下载: 导出CSV

    表  2  化合物1、Ie和高效氯氰菊酯对小菜蛾幼虫的48 h LC50

    Table  2.   LC50 values at 48 h of compounds 1, Ie and β-cypermethrin against the larvae of P. xylostella

    化合物
    Compound
    回归方程
    Regression equation
    致死中浓度
    LC50/(mg/mL)
    95%置信区间
    Confidence interval 95%/(mg/mL)
    相关系数
    r
    1y = −0.869 + 2.124x2.5662.069~3.2120.995
    Iey = 0.043 + 1.612x0.9400.711~1.2280.996
    高效氯氰菊酯
    β-cypermethrin
    y = 1.175 + 1.772x0.2170.167~0.2780.994
    下载: 导出CSV

    表  3  化合物1、2和Ia~Ip在0.04 μg/头剂量下对苹果黄蚜的杀虫活性

    Table  3.   Aphicidal activity of compounds 1, 2 and Ia-Ip against A. citricola at 0.04 μg/nymph

    化合物
    Compound
    校正死亡率 (平均值 ± 标准误差)
    Corrected mortality rate (mean ± SE)/%)
    24 h48 ha
    17.9 ± 2.213.8 ± 1.9 g
    213.4 ± 2.928.7 ± 1.1 f
    Ia21.3 ± 1.140.2 ± 4.4 bcde
    Ib16.8 ± 2.934.5 ± 1.9 def
    Ic12.3 ± 1.929.9 ± 2.2 f
    Id11.2 ± 2.229.9 ± 2.2 f
    Ie17.9 ± 2.934.5 ± 3.3 def
    If29.2 ± 3.845.9 ± 2.2 bc
    Ig24.7 ± 1.148.8 ± 2.9 b
    Ih20.2 ± 1.133.3 ± 1.1 def
    Ii25.8 ± 3.337.5 ± 2.2 cdef
    Ij34.8 ± 1.148.8 ± 3.3 b
    Ik31.4 ± 2.234.1 ± 2.9 def
    Il11.2 ± 2.230.6 ± 2.9 ef
    Im13.4 ± 2.231.8 ± 5.0 ef
    In29.2 ± 3.336.3 ± 2.9 def
    Io11.2 ± 1.142.0 ± 3.8 bcd
    Ip25.8 ± 3.830.6 ± 2.9 ef
    灭多威 methomylb55.0 ± 2.972.4 ± 3.3 a
    注:a多重比较用Duncan’s test (p<0.05),相同字母表示无显著差异;b 剂量为 0.004 μg/头.Note: a Multiple range test using Ducan’s test (p<0.05). The same letters denote treatments that are not significantly different from each other. b 0.004 μg/nymph.
    下载: 导出CSV

    表  4  部分化合物对苹果黄蚜48 h的毒力回归分析

    Table  4.   Toxicity regression analysis of some compounds against A. citricola at 48 h

    化合物
    Compound
    回归方程
    Regression equation
    致死中量
    LD50/ (μg/nymph)
    95%置信区间
    Confidence interval 95%/(μg/nymph)
    相关系数
    r
    1y = 1.049 + 1.633x0.2280.190~0.2820.975
    Ify = 5.472 + 4.069x0.0450.042~0.0490.964
    Igy = 5.477 + 3.983x0.0420.039~0.0460.971
    Ijy = 7.176 + 5.155x0.0410.038~0.0430.969
    灭多威 methomyly = 4.310 + 1.391x0.0010.000630~0.0012180.986
    下载: 导出CSV
  • [1] 张玉, 陈永明, 王苹, 等. 我国小菜蛾登记防治杀虫剂产品现状与展望[J]. 农药, 2021, 60(12): 866-871. doi: 10.16820/j.cnki.1006-0413.2021.12.002

    ZHANG Y, CHEN Y M, WANG P, et al. Current situation and prospect of registered insecticides against Plutella xylostella in China[J]. Agrochemicals, 2021, 60(12): 866-871. doi: 10.16820/j.cnki.1006-0413.2021.12.002
    [2] CHEN L, PAN Q J, WAQAS M S, et al. Morphological traits for sex identification of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae)[J]. J Integr Agric, 2020, 19(6): 1458-1463. doi: 10.1016/S2095-3119(19)62862-5
    [3] CARVAJAL-YEPES M, CARDWELL K, NELSON A, et al. A global surveillance system for crop diseases[J]. Science, 2019, 364(6447): 1237-1239. doi: 10.1126/science.aaw1572
    [4] 张宏军, 陶岭梅, 刘学, 等. 我国生物农药登记管理情况分析[J]. 中国生物防治学报, 2022, 38(1): 9-17.

    ZHANG H J, TAO L M, LIU X, et al. Review on registration and management of bio-pesticide in China[J]. Chin J Biol Control, 2022, 38(1): 9-17.
    [5] 袁善奎. 《寂静的春天》读后感——化学农药的使用: 利益与危害的博弈[J]. 农药科学与管理, 2020, 41(12): 8-13.

    YUAN S K. Use of chemical pesticides: the game between benefits and harms[J]. Pestic Sci Admin, 2020, 41(12): 8-13.
    [6] 章冰川, 徐晖. 苦参碱及其类似物的农用生物活性及结构修饰研究进展[J]. 农药学学报, 2019, 21(Z1): 609-626. doi: 10.16801/j.issn.1008-7303.2019.0099

    ZHANG B C, XU H. Research progress of agricultural bioactivities and structural modifications of matrine and its analogues[J]. Chin J Pestic Sci, 2019, 21(Z1): 609-626. doi: 10.16801/j.issn.1008-7303.2019.0099
    [7] ZHANG F, MACSHANE B, SEARCY R, et al. Mathematical models for cholesterol metabolism and transport[J]. Processes, 2022, 10(1): 155. doi: 10.3390/pr10010155
    [8] CHERNIKOV I V, GLADKIKH D V, KARELINA U A, et al. Trimeric small interfering RNAs and their cholesterol-containing conjugates exhibit improved accumulation in tumors, but dramatically reduced silencing activity[J]. Molecules, 2020, 25(8): 1877. doi: 10.3390/molecules25081877
    [9] KLOUDOVA-SPALENKOVA A, HOLY P, SOUCEK P. Oxysterols in cancer management: from therapy to biomarkers[J]. Br J Pharmacol, 2021, 178(16): 3235-3247. doi: 10.1111/bph.15273
    [10] LOMBARDI L, FALANGA A, DEL GENIO V, et al. A boost to the antiviral activity: cholesterol tagged peptides derived from glycoprotein B of Herpes Simplex virus type I[J]. Int J Biol Macromol, 2020, 162: 882-893. doi: 10.1016/j.ijbiomac.2020.06.134
    [11] GLITSCHER M, MARTIN D H, WOYTINEK K, et al. Targeting cholesterol metabolism as efficient antiviral strategy against the hepatitis E virus[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(1): 159-180. doi: 10.1016/j.jcmgh.2021.02.002
    [12] CHEN L L, SHEN T F, LIU Y Q, et al. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification[J]. BMC Vet Res, 2020, 16(1): 419. doi: 10.1186/s12917-020-02630-x
    [13] BAH S Y, DICKINSON P, FORSTER T, et al. Immune oxysterols: role in mycobacterial infection and inflammation[J]. J Steroid Biochem Mol Biol, 2017, 169: 152-163. doi: 10.1016/j.jsbmb.2016.04.015
    [14] HOLMAN S D L, WILLS A G, FAZAKERLEY N J, et al. Electrochemical synthesis of isoxazolines: method and mechanism[J]. Chem Eur J, 2022: e202103728.
    [15] 沈笑天, 冀经伦, 陈士慧, 等. 一类具有良好杀虫活性的异噁唑啉类衍生物的合成[J]. 化学研究与应用, 2022, 34(2): 373-380. doi: 10.3969/j.issn.1004-1656.2022.02.021

    SHEN X T, JI J L, CHEN S H, et al. Synthesis of isoxazoline derivatives with good insecticidal activity[J]. Chem Res Appl, 2022, 34(2): 373-380. doi: 10.3969/j.issn.1004-1656.2022.02.021
    [16] IBRAHIM S, GHABI A, AMIRI N, et al. Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities[J]. Monatsh Chem, 2021, 152(5): 523-535. doi: 10.1007/s00706-021-02764-0
    [17] AISSA I, ABDELKAFI-KOUBAA Z, CHOUAIB K, et al. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates[J]. Bioorg Chem, 2021, 114: 105071. doi: 10.1016/j.bioorg.2021.105071
    [18] GOGGIN D E, CAWTHRAY G R, FLEMATTI G R, et al. Pyroxasulfone-resistant annual ryegrass (Lolium rigidum) has enhanced capacity for glutathione transferase-mediated pyroxasulfone conjugation[J]. J Agric Food Chem, 2021, 69(23): 6414-6422. doi: 10.1021/acs.jafc.0c07458
    [19] LIU Z Q, KHAN M M, FAJAR A, et al. Toxicity of fluralaner against vegetable pests and its sublethal impact on a biocontrol predatory ladybeetle[J]. Ecotoxicol Environ Saf, 2021, 225: 112743. doi: 10.1016/j.ecoenv.2021.112743
    [20] 乐贵洲, 刘波. 1, 3-偶极子[3 + n](n≥3)环加成反应的研究进展[J]. 有机化学, 2020, 40(10): 3132-3153. doi: 10.6023/cjoc202005092

    LE G Z, LIU B. Research progress on [3 + n] (n≥3) cycloaddition of 1,3-diploes[J]. Chin J Org Chem, 2020, 40(10): 3132-3153. doi: 10.6023/cjoc202005092
    [21] IKBAL C, BEN H K M, BEN H M H. Insect growth regulator activity of Cestrum parqui Saponins: an interaction with cholesterol metabolism[J]. Commun Agric Appl Biol Sci, 2006, 71(2): 489-496.
    [22] ZOLOTAR R M, BYKHOVETS A I, SOKOLOV S N, et al. Structure-activity relationship of insecticidal steroids. IV. 3β-Chlorosubstituted derivatives of cholesterol and β-sitosterol[J]. Chem Nat Compd, 2002, 38(1): 70-73. doi: 10.1023/A:1015789917352
    [23] YANG C, SHAO Y H, ZHI X Y, et al. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents[J]. Bioorg Med Chem Lett, 2013, 23(17): 4806-4812. doi: 10.1016/j.bmcl.2013.06.099
    [24] XU H, ZHANG K, LV M, et al. Construction of cholesterol oxime ether derivatives containing isoxazoline/isoxazole fragments and their agricultural bioactive properties/control efficiency[J]. J Agric Food Chem, 2021, 69(29): 8098-8109. doi: 10.1021/acs.jafc.1c01884
    [25] LI T Z, LV M, XU H. Construction of new oxime esters of cholesterol containing piperic acid-like fragments as insecticidal agents against Aphis citricola Van der Goot (Homoptera: Aphididae) and Plutella xylostella Linnaeus (Lepidoptera: Plutellidae)[J]. Bioorg Med Chem Lett, 2022, 62: 128634. doi: 10.1016/j.bmcl.2022.128634
    [26] YANG R G, ZHANG Y Y, XU H. Synthesis of novel isoxazoline-containing podophyllotoxin/2′(2′,6′)-(di)halogenopodophyllotoxin derivatives and their insecticidal/acaricidal activities[J]. Bioorg Med Chem Lett, 2018, 28(8): 1410-1416. doi: 10.1016/j.bmcl.2018.02.018
    [27] LI S C, SUN Z Q, ZHANG B C, et al. Non-food bioactive products: semisynthesis, biological activities, and mechanisms of action of oximinoether derivatives of matrine from Sophora flavescens[J]. Ind Crops Prod, 2019, 131: 134-141. doi: 10.1016/j.indcrop.2019.01.049
    [28] MA T, YAN H, SHI X L, et al. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy[J]. Ind Crops Prod, 2018, 111: 149-157. doi: 10.1016/j.indcrop.2017.10.021
    [29] PATIL S N, LIU F. Regioselective synthesis and structural studies of substituted γ-hydroxybutenolides with use of a tandem Baylis-Hillman/singlet oxygenation reaction[J]. J Org Chem, 2008, 73: 4476-4483. doi: 10.1021/jo702762u
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  8
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-07-18

目录

    /

    返回文章
    返回