Synthesis and pesticidal activities of cyclopentanoperhydrophenanthrene 3-aryl-4,5-dihydroisoxazole-5-formate derivatives
-
摘要: 为了寻找具有较高杀虫活性的胆固醇衍生物,将异噁唑啉片段引入母体胆固醇( 1 )的C-3位,制备了20个新的3-芳基-4,5-二氢异噁唑-5-甲酸环戊烷多氢菲酯类衍生物 Ia~It ,并经氢谱、红外光谱和高分辨质谱确证结构。化合物 Ie (R = 3-BrPh) 对小菜蛾Plutella xyllostella幼虫具有较好的杀虫活性,其48 h LC50值为 0.940 mg/mL,是母体胆固醇 (LC50 值2.566 mg/mL) 的2.7倍;化合物 Ig (R = 3-FPh) 和 Ij (R = 4-CF3Ph) 对苹果黄蚜Aphis citricola具有较好的杀虫活性,其48 h LD50值为0.042与0.041 μg/头,是胆固醇 (LD50 值0.228 μg/头) 的5.4和5.6倍。初步构效关系表明,在苯环间位引入溴原子可提高对小菜蛾的杀虫活性;在苯环对位或间位引入氟原子、或者在对位引入三氟甲基可提高对苹果黄蚜的杀虫活性。Abstract: In order to find cholesterol derivatives with high insecticidal activities, isoxazoline fragments were introduced into the C-3 position of cholesterol ( 1 ), and twenty novel cyclopentanoperhydrophenanthrene 3-aryl-4,5-dihydroisoxazole-5-formate derivatives ( Ia - It ) containing the isoxazoline fragment were prepared. Their structures were characterized by 1H NMR, IR and HRMS. Among them, compound Ie (R = 3-Br-Ph) exhibited good insecticidal activity against Plutella xyllostella with a LC50 value of 0.940 mg/mL at 48 h, which was 2.7 times of that of 1 (LC50: 2.566 mg/mL). Compounds Ig (R = 3-F-Ph) and Ij (R = 4-CF3-Ph) showed the potent aphicidal activity against Aphis citricola with LD50 values of 0.042 and 0.041 μg/nymph at 48 h, respectively, which were 5.4 and 5.6 times of that of 1 (LD50: 0.228 μg/nymph). The preliminary study of structure-activity relationships (SARs) indicated that introduction of the bromine atom at the C-3 position of phenyl can improve the insecticidal activity against P. xyllostella; introduction of the fluorine atom at the C-3 or C-4 position of phenyl, or introduction of the CF3 at the C-4 position of phenyl can improve the aphicidal activity against A. citricola.
-
表 1 化合物1、2和Ia~It在1 mg/mL下对小菜蛾幼虫的杀虫活性
Table 1. Insecticidal activity of compounds 1, 2 and Ia-It against the larvae of P. xylostella at 1 mg/mL
化合物
Compound校正死亡率 (平均值 ± 标准误差)
Corrected mortality rate (mean ± SE)/%24 h 48 ha 1 17.7 ± 4.4 20.4 ± 4.4 g 2 22.2 ± 5.8 24.9 ± 5.7 fg Ia 35.5 ± 2.2 47.7 ± 4.4 bc Ib 22.2 ± 4.4 38.6 ± 3.8 cde Ic 24.4 ± 5.8 47.7 ± 5.8 bc Id 20.0 ± 3.8 36.3 ± 4.4 cdef Ie 35.5 ± 2.2 52.2 ± 0 b If 24.4 ± 5.8 38.6 ± 3.8 cde Ig 31.1 ± 2.2 43.1 ± 2.2 bcd Ih 17.7 ± 2.2 29.5 ± 2.2 efg Ii 33.3 ± 3.8 34.1 ± 2.2 def Ij 31.1 ± 2.2 45.4 ± 0 bcd Ik 22.2 ± 2.2 36.3 ± 2.2 cdef Il 17.7 ± 4.4 34.1 ± 2.2 def Im 33.3 ± 3.8 43.1 ± 5.8 bcd In 20.0 ± 3.8 29.5 ± 4.4 efg Io 4.4 ± 2.2 18.2 ± 3.8 g Ip 31.1 ± 2.2 45.4 ± 6.6 bcd Iq 25.0 ± 3.8 36.3 ± 2.2 cdef Ir 22.7 ± 2.2 34.1 ± 2.2 def Is 22.7 ± 2.2 40.9 ± 2.2 bcde It 31.8 ± 3.8 47.7 ± 2.2 bc 高效氯氰菊酯 β-cypermethrin 42.2 ± 2.2 86.3 ± 0 a 注:a多重比较用Duncan’s test (p<0.05),相同字母表示无显著差异。Note: a Multiple range test using Ducan’s test (p<0.05). The same letters denote treatments that are not significantly different from each other. 表 2 化合物1、Ie和高效氯氰菊酯对小菜蛾幼虫的48 h LC50值
Table 2. LC50 values at 48 h of compounds 1, Ie and β-cypermethrin against the larvae of P. xylostella
化合物
Compound回归方程
Regression equation致死中浓度
LC50/(mg/mL)95% 置信区间
Confidence interval 95%/(mg/mL)相关系数
r1 y = −0.869 + 2.124x 2.566 2.069~3.212 0.995 Ie y = 0.043 + 1.612x 0.940 0.711~1.228 0.996 高效氯氰菊酯
β-cypermethriny = 1.175 + 1.772x 0.217 0.167~0.278 0.994 表 3 化合物1、2和Ia~Ip在0.04 μg/头剂量下对苹果黄蚜的杀虫活性
Table 3. Aphicidal activity of compounds 1, 2 and Ia-Ip against A. citricola at 0.04 μg/nymph
化合物
Compound校正死亡率 (平均值 ± 标准误差)
Corrected mortality rate (mean ± SE)/%24 h 48 ha 1 7.9 ± 2.2 13.8 ± 1.9 g 2 13.4 ± 2.9 28.7 ± 1.1 f Ia 21.3 ± 1.1 40.2 ± 4.4 bcde Ib 16.8 ± 2.9 34.5 ± 1.9 def Ic 12.3 ± 1.9 29.9 ± 2.2 f Id 11.2 ± 2.2 29.9 ± 2.2 f Ie 17.9 ± 2.9 34.5 ± 3.3 def If 29.2 ± 3.8 45.9 ± 2.2 bc Ig 24.7 ± 1.1 48.8 ± 2.9 b Ih 20.2 ± 1.1 33.3 ± 1.1 def Ii 25.8 ± 3.3 37.5 ± 2.2 cdef Ij 34.8 ± 1.1 48.8 ± 3.3 b Ik 31.4 ± 2.2 34.1 ± 2.9 def Il 11.2 ± 2.2 30.6 ± 2.9 ef Im 13.4 ± 2.2 31.8 ± 5.0 ef In 29.2 ± 3.3 36.3 ± 2.9 def Io 11.2 ± 1.1 42.0 ± 3.8 bcd Ip 25.8 ± 3.8 30.6 ± 2.9 ef 灭多威 methomylb 55.0 ± 2.9 72.4 ± 3.3 a 注:a多重比较用Duncan’s test (p<0.05),相同字母表示无显著差异;b 剂量为 0.004 μg/头.Note: a Multiple range test using Ducan’s test (p<0.05). The same letters denote treatments that are not significantly different from each other. b 0.004 μg/nymph. 表 4 部分化合物对苹果黄蚜48 h的毒力回归分析
Table 4. Toxicity regression analysis of some compounds against A. citricola at 48 h
化合物
Compound回归方程
Regression equation致死中量
LD50/ (μg/nymph)95% 置信区间
Confidence interval 95%/(μg/nymph)相关系数
r1 y = 1.049 + 1.633x 0.228 0.190~0.282 0.975 If y = 5.472 + 4.069x 0.045 0.042~0.049 0.964 Ig y = 5.477 + 3.983x 0.042 0.039~0.046 0.971 Ij y = 7.176 + 5.155x 0.041 0.038~0.043 0.969 灭多威 methomyl y = 4.310 + 1.391x 0.001 0.000630~0.001218 0.986 -
[1] 张玉, 陈永明, 王苹, 等. 我国小菜蛾登记防治杀虫剂产品现状与展望[J]. 农药, 2021, 60(12): 866-871. doi: 10.16820/j.cnki.1006-0413.2021.12.002ZHANG Y, CHEN Y M, WANG P, et al. Current situation and prospect of registered insecticides against Plutella xylostella in China[J]. Agrochemicals, 2021, 60(12): 866-871. doi: 10.16820/j.cnki.1006-0413.2021.12.002 [2] CHEN L, PAN Q J, WAQAS M S, et al. Morphological traits for sex identification of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae)[J]. J Integr Agric, 2020, 19(6): 1458-1463. doi: 10.1016/S2095-3119(19)62862-5 [3] CARVAJAL-YEPES M, CARDWELL K, NELSON A, et al. A global surveillance system for crop diseases[J]. Science, 2019, 364(6447): 1237-1239. doi: 10.1126/science.aaw1572 [4] 张宏军, 陶岭梅, 刘学, 等. 我国生物农药登记管理情况分析[J]. 中国生物防治学报, 2022, 38(1): 9-17.ZHANG H J, TAO L M, LIU X, et al. Review on registration and management of bio-pesticide in China[J]. Chin J Biol Control, 2022, 38(1): 9-17. [5] 袁善奎. 《寂静的春天》读后感——化学农药的使用: 利益与危害的博弈[J]. 农药科学与管理, 2020, 41(12): 8-13.YUAN S K. Use of chemical pesticides: the game between benefits and harms[J]. Pestic Sci Admin, 2020, 41(12): 8-13. [6] 章冰川, 徐晖. 苦参碱及其类似物的农用生物活性及结构修饰研究进展[J]. 农药学学报, 2019, 21(Z1): 609-626. doi: 10.16801/j.issn.1008-7303.2019.0099ZHANG B C, XU H. Research progress of agricultural bioactivities and structural modifications of matrine and its analogues[J]. Chin J Pestic Sci, 2019, 21(Z1): 609-626. doi: 10.16801/j.issn.1008-7303.2019.0099 [7] ZHANG F, MACSHANE B, SEARCY R, et al. Mathematical models for cholesterol metabolism and transport[J]. Processes, 2022, 10(1): 155. doi: 10.3390/pr10010155 [8] CHERNIKOV I V, GLADKIKH D V, KARELINA U A, et al. Trimeric small interfering RNAs and their cholesterol-containing conjugates exhibit improved accumulation in tumors, but dramatically reduced silencing activity[J]. Molecules, 2020, 25(8): 1877. doi: 10.3390/molecules25081877 [9] KLOUDOVA-SPALENKOVA A, HOLY P, SOUCEK P. Oxysterols in cancer management: from therapy to biomarkers[J]. Br J Pharmacol, 2021, 178(16): 3235-3247. doi: 10.1111/bph.15273 [10] LOMBARDI L, FALANGA A, DEL GENIO V, et al. A boost to the antiviral activity: cholesterol tagged peptides derived from glycoprotein B of Herpes Simplex virus type I[J]. Int J Biol Macromol, 2020, 162: 882-893. doi: 10.1016/j.ijbiomac.2020.06.134 [11] GLITSCHER M, MARTIN D H, WOYTINEK K, et al. Targeting cholesterol metabolism as efficient antiviral strategy against the hepatitis E virus[J]. Cell Mol Gastroenterol Hepatol, 2021, 12(1): 159-180. doi: 10.1016/j.jcmgh.2021.02.002 [12] CHEN L L, SHEN T F, LIU Y Q, et al. Enhancing the antibacterial activity of antimicrobial peptide PMAP-37(F34-R) by cholesterol modification[J]. BMC Vet Res, 2020, 16(1): 419. doi: 10.1186/s12917-020-02630-x [13] BAH S Y, DICKINSON P, FORSTER T, et al. Immune oxysterols: role in mycobacterial infection and inflammation[J]. J Steroid Biochem Mol Biol, 2017, 169: 152-163. doi: 10.1016/j.jsbmb.2016.04.015 [14] HOLMAN S D L, WILLS A G, FAZAKERLEY N J, et al. Electrochemical synthesis of isoxazolines: method and mechanism[J]. Chem Eur J, 2022: e202103728. [15] 沈笑天, 冀经伦, 陈士慧, 等. 一类具有良好杀虫活性的异噁唑啉类衍生物的合成[J]. 化学研究与应用, 2022, 34(2): 373-380. doi: 10.3969/j.issn.1004-1656.2022.02.021SHEN X T, JI J L, CHEN S H, et al. Synthesis of isoxazoline derivatives with good insecticidal activity[J]. Chem Res Appl, 2022, 34(2): 373-380. doi: 10.3969/j.issn.1004-1656.2022.02.021 [16] IBRAHIM S, GHABI A, AMIRI N, et al. Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities[J]. Monatsh Chem, 2021, 152(5): 523-535. doi: 10.1007/s00706-021-02764-0 [17] AISSA I, ABDELKAFI-KOUBAA Z, CHOUAIB K, et al. Glioblastoma-specific anticancer activity of newly synthetized 3,5-disubstituted isoxazole and 1,4-disubstituted triazole-linked tyrosol conjugates[J]. Bioorg Chem, 2021, 114: 105071. doi: 10.1016/j.bioorg.2021.105071 [18] GOGGIN D E, CAWTHRAY G R, FLEMATTI G R, et al. Pyroxasulfone-resistant annual ryegrass (Lolium rigidum) has enhanced capacity for glutathione transferase-mediated pyroxasulfone conjugation[J]. J Agric Food Chem, 2021, 69(23): 6414-6422. doi: 10.1021/acs.jafc.0c07458 [19] LIU Z Q, KHAN M M, FAJAR A, et al. Toxicity of fluralaner against vegetable pests and its sublethal impact on a biocontrol predatory ladybeetle[J]. Ecotoxicol Environ Saf, 2021, 225: 112743. doi: 10.1016/j.ecoenv.2021.112743 [20] 乐贵洲, 刘波. 1, 3-偶极子[3 + n](n≥3)环加成反应的研究进展[J]. 有机化学, 2020, 40(10): 3132-3153. doi: 10.6023/cjoc202005092LE G Z, LIU B. Research progress on [3 + n] (n≥3) cycloaddition of 1,3-diploes[J]. Chin J Org Chem, 2020, 40(10): 3132-3153. doi: 10.6023/cjoc202005092 [21] IKBAL C, BEN H K M, BEN H M H. Insect growth regulator activity of Cestrum parqui Saponins: an interaction with cholesterol metabolism[J]. Commun Agric Appl Biol Sci, 2006, 71(2): 489-496. [22] ZOLOTAR R M, BYKHOVETS A I, SOKOLOV S N, et al. Structure-activity relationship of insecticidal steroids. IV. 3β-Chlorosubstituted derivatives of cholesterol and β-sitosterol[J]. Chem Nat Compd, 2002, 38(1): 70-73. doi: 10.1023/A:1015789917352 [23] YANG C, SHAO Y H, ZHI X Y, et al. Semisynthesis and quantitative structure-activity relationship (QSAR) study of some cholesterol-based hydrazone derivatives as insecticidal agents[J]. Bioorg Med Chem Lett, 2013, 23(17): 4806-4812. doi: 10.1016/j.bmcl.2013.06.099 [24] XU H, ZHANG K, LV M, et al. Construction of cholesterol oxime ether derivatives containing isoxazoline/isoxazole fragments and their agricultural bioactive properties/control efficiency[J]. J Agric Food Chem, 2021, 69(29): 8098-8109. doi: 10.1021/acs.jafc.1c01884 [25] LI T Z, LV M, XU H. Construction of new oxime esters of cholesterol containing piperic acid-like fragments as insecticidal agents against Aphis citricola Van der Goot (Homoptera: Aphididae) and Plutella xylostella Linnaeus (Lepidoptera: Plutellidae)[J]. Bioorg Med Chem Lett, 2022, 62: 128634. doi: 10.1016/j.bmcl.2022.128634 [26] YANG R G, ZHANG Y Y, XU H. Synthesis of novel isoxazoline-containing podophyllotoxin/2′(2′,6′)-(di)halogenopodophyllotoxin derivatives and their insecticidal/acaricidal activities[J]. Bioorg Med Chem Lett, 2018, 28(8): 1410-1416. doi: 10.1016/j.bmcl.2018.02.018 [27] LI S C, SUN Z Q, ZHANG B C, et al. Non-food bioactive products: semisynthesis, biological activities, and mechanisms of action of oximinoether derivatives of matrine from Sophora flavescens[J]. Ind Crops Prod, 2019, 131: 134-141. doi: 10.1016/j.indcrop.2019.01.049 [28] MA T, YAN H, SHI X L, et al. Comprehensive evaluation of effective constituents in total alkaloids from Sophora alopecuroides L. and their joint action against aphids by laboratory toxicity and field efficacy[J]. Ind Crops Prod, 2018, 111: 149-157. doi: 10.1016/j.indcrop.2017.10.021 [29] PATIL S N, LIU F. Regioselective synthesis and structural studies of substituted γ-hydroxybutenolides with use of a tandem Baylis-Hillman/singlet oxygenation reaction[J]. J Org Chem, 2008, 73: 4476-4483. doi: 10.1021/jo702762u -