• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

昆虫信息化合物的筛选及鉴定技术研究进展

钱沉鱼 苑鹏宇 马涛 温秀军

钱沉鱼, 苑鹏宇, 马涛, 温秀军. 昆虫信息化合物的筛选及鉴定技术研究进展[J]. 农药学学报, 2022, 24(6): 1327-1339. doi: 10.16801/j.issn.1008-7303.2022.0068
引用本文: 钱沉鱼, 苑鹏宇, 马涛, 温秀军. 昆虫信息化合物的筛选及鉴定技术研究进展[J]. 农药学学报, 2022, 24(6): 1327-1339. doi: 10.16801/j.issn.1008-7303.2022.0068
QIAN Chenyu, YUAN Pengyu, MA Tao, WEN Xiujun. Research progress on screening and identification techniques of insect semiochemicals[J]. Chinese Journal of Pesticide Science, 2022, 24(6): 1327-1339. doi: 10.16801/j.issn.1008-7303.2022.0068
Citation: QIAN Chenyu, YUAN Pengyu, MA Tao, WEN Xiujun. Research progress on screening and identification techniques of insect semiochemicals[J]. Chinese Journal of Pesticide Science, 2022, 24(6): 1327-1339. doi: 10.16801/j.issn.1008-7303.2022.0068

昆虫信息化合物的筛选及鉴定技术研究进展

doi: 10.16801/j.issn.1008-7303.2022.0068
基金项目: 中央财政林业科技推广示范项目 (2022GDTK-06);国家自然科学基金项目 (31600516).
详细信息
    作者简介:

    钱沉鱼,qianchenyu94@163.com

    通讯作者:

    温秀军,wenxiujun@scau.edu.cn

  • 中图分类号: TQ453.8

Research progress on screening and identification techniques of insect semiochemicals

Funds: the Central Financial Forestry Science and Technology Extension Project (2022GDTK-06); National Natural Science Foundation of China (31600516).
  • 摘要: 在化学生态学领域中,触角电位仪 (EAG)、气相色谱-触角电位联用仪 (GC-EAD)、气相色谱-质谱联用仪 (GC-MS)、单感器记录仪 (SSR) 和气相色谱-单感器记录联用仪 (GC-SSR) 是开展昆虫信息化合物的鉴定及活性组分筛选的重要技术手段,常用于昆虫对信息化合物感受机制、昆虫与植物的互作关系研究。本文详细分析了这几种技术的作用机理,综述了近些年昆虫电生理技术的应用和研究进展,可为昆虫信息化合物的研究提供技术参考。
  • 图  1  EAG仪器原理示意图[32]

    Figure  1.  Schematic diagram of EAG equipment[32]

    图  2  GC-EAD仪器操作原理图

    Figure  2.  Schematic diagram of GC-EAD equipment

    图  3  地中海果蝇雄性信息素的GC × GC-TOFMS分析及EAD响应[101]

    Figure  3.  The GC × GC-TOFMS analysis and GC-EADs response of C. capitata male pheromone[101]

    表  1  适用于不同信息素类型的GC-EAD条件 (2012—2022)

    Table  1.   The application of GC-EAD on pheromones (2012-2022)

    类型
    Type
    测试昆虫  
    Analyte  
    化合物类型  
    Compound  
    色谱柱
    GC column
    参考文献
    Reference
    性信息素
    Sex pheromone
    三点盲蝽 Adelphocoris fasciaticollis 酯类和醛类 Ester and aldehyde HP-5 [52]
    朱红毛斑蛾 Phauda flammans 醛类 Aldehyde HP-5 [53]
    杨小舟蛾 Micromelalopha siversi 醛类 Aldehyde HP-5 [54]
    草地贪夜蛾 Spodoptera frugiperda 酸酯类 Acid ester HP-5 [55]
    三角凹缘天蛾 Neogurelca himachala sangaica 醛类 Aldehyde HP-5MS [56]
    潜叶蛾 Holocacista capensis 醛类 Aldehyde HP-INNOWax [57]
    团花绢野螟 Diaphania glauculalis 醛类 Aldehyde DB-5 [45]
    灰茶尺蠖 Ectropis grisescens 烯烃 Alkene DB-5 [43]
    绿盲蝽 Apolygus lucorum 酯类和醛类 Ester and aldehyde DB-5 [58]
    叩头甲和Limonius californicus
    Limonius canus and Limonius californicus
    酸类 Acid DB-5 [59]
    西印度按实蝇 Anastrepha obliqua 萜类 Terpene DB-5 [60]
    绿翅绢野螟 Diaphania angustalis 醛类和醇类 Aldehyde and alcohol DB-5MS [47]
    女贞尺蠖 Naxa seriaria 烯烃 Alkene DB-5MS [61]
    橡树叶蛾 Tischeria ekebladella 烯烃 Alkene DB-Wax [62]
    苜蓿盲蝽 Adelphocoris lineolatus 酯类和醛类 Ester and aldehyde DB-Wax [52]
    牧草盲蝽 Lygus pratensis 酯类和醛类 Ester and aldehyde DB-Wax [63]
    棉铃虫 Helicoverpa armigera 醛类 Aldehyde DB-Wax and HP-88 [64]
    鸢尾蛾 Monochroa divisella 酯类 Ester DB-23 [65]
    Anthistarcha binocularis 萜类 Terpene Rtx-5 [66]
    Trissolcus brochymenae 酯类和醛类 Ester and aldehyde Varian CP8945 [67]
    荨麻毛虫 Monema flavescens 醛类和醇类 Aldehyde and alcohol DB-23 and TG-5 MS [68]
    橄榄果蝇 Bactrocera oleae 烯烃 Alkene SPB-5 [69]
    桃红颈天牛 Aromia bungii 醛类 Aldehyde CP-ChiraSil-DEX CB [70]
    Cydia fagiglandanaCydia splendana
    Cydia fagiglandana and Cydia splendana
    酯类和醇类 Aldehyde and alcohol SUPELCO Equity-5 [71]
    果蝇 Bactrocera kraussi 酯类 Ester SH-Rtx-5Sil MS [72]
    聚集信息素
    Aggregation pheromone
    豆花薊馬 Megalurothrips usitatus 酯类 Ester HP-5 [73]
    落叶松八齿小蠹 Ips subelongatus 萜类 Terpene CycloSil-B [74]
    告警信息素
    Alarm pheromone
    墨胸胡蜂 Vespa velutina 酮类和醇类 Ketone and alcohol HP-5 [75]
    下载: 导出CSV

    表  2  适用于不同挥发物类型的GC-EAD条件 (2012—2022年)

    Table  2.   The application of GC-EAD on volatiles (2012-2022)

    类型
    Type
    样品    
    Sample    
    测试昆虫  
    Analyte  
    化合物类型   
    Compound   
    色谱柱
    GC column
    参考文献
    Reference
    植物源挥发物
    Plant volatiles
    玉米植株 Zea mays plant 玉米禾螟
    Chilo partellus
    萜类 Terpene HP-1 [76]
    野葛和大豆
    Pueratia montana and Glycine max
    筛豆龟蝽
    Megacopta cribraria
    萜类 Terpene HP-5 [77]
    肉桂、薰衣草和桉树精油
    Cinnamomum cassia, Lavandula angustifolia
    and Eucalyptus robusta essential oil
    盒子树蛾
    Cydalima perspectalis
    萜类 Terpene HP-5 [78]
    Camellia sinensis 茶黑毒蛾
    Dasychira baibarana
    酯类、醇类和酮类
    Ester, alcohol and ketone
    HP-5 [79]
    槐树 Sophora japonica 异色瓢虫
    Harmonia axyridis
    醛类 Aldehyde HP-5MS [80]
    欧洲云杉 Picea abies 云杉八齿小蠹
    Ips typographus
    芳香烃、萜类
    Aromatic hydrocarbon, terpene
    HP-5MS [81]
    蛇床花 Cnidium monnieri 异色瓢虫
    Harmonia axyridis
    芳香烃
    Aromatic hydrocarbon
    HP-5MS [82]
    红枫、黑樱桃和南方红橡木等
    Acer rubrum, Prunus serotina and
    Quercus falcata, etc.
    南部松小蠹
    Dendroctonus frontalis
    醇类、醛类和酸
    Alcohol, aldehyde, and acid
    HP-INNOWax [83]
    迷迭香 Rosmarinus officinalis 茶尺蠖
    Ectropis obliqua
    萜类 Terpene DB-5 [84]
    烟草 Nicotiana tabacum 烟青虫
    Helicoverpa assulta
    醛类 Aldehyde DB-5 [85]
    向日葵 Helianthus annuus 棕纹蝽
    Halyomorpha halys
    萜类 Terpene DB-5 [86]
    小果咖啡和中果咖啡
    Coffea arabica and Coffea canephora
    白茎螟
    Xylotrechus quadripes
    萜类 Terpene DB-5MS [87]
    豌豆 Pisum sativum 豆荚小卷蛾
    Cydia nigricana
    萜类 Terpene DB-Wax [88]
    豇豆和扁豆的花
    Flower of Vigna unguiculata and
    Lablab purpureus
    豆荚螟
    Maruca vitrata
    萜类 Terpene DB-Wax [89]
    蓖麻 Ricinus communis 红颈常室茧蜂和绿
    盲蝽
    Peristenus spretus and Apolygus lucorum
    烃类和酮类
    Hydrocarbon and ketone
    DB-Wax [90]
    杏树 Armeniaca spp. 脐腹小蠹
    Scolytus schevyrewi
    萜类 Terpene DB-Wax [91]
    花生植株
    Arachis hypogaea plant
    暗黑鳃金龟
    Holotrichia parallela
    萜类和醛类
    Terpene and aldehyde
    DB-Wax [92]
    沙针 Osyris wightiana 斑翅果蝇
    Drosophila suzukii
    萜类、醇类和酯类
    Terpene, alcohol and ester
    DB-Wax [93]
    迪萨兰 Disa forficaria 天牛
    Chorothyse hessei
    酯类和酸类
    Ester and acid
    ZB-SemiVolatiles [94]
    番石榴或甜橙
    Psidium guajava or Citrus sinensis
    按实蝇
    Anastrepha striata
    酯类和醇类
    Ester and alcohol
    VF-5 MS [95]
    Periploca laevigata 家蝇
    Musca domestica
    萜类和硫化物
    Terpene and sulfide
    ZB-5 [96]
    欧洲云杉 Picea abies 云杉球果小卷蛾Cydia strobilella 单萜 Monoterpene HP-INNOWax [97]
    表皮挥发物
    Cuticular hydrocarbon
    美国白蛾、柞蚕和舞毒蛾的蛹
    Pupa of Hyphantria cunea, Antheraea
    pernyi and Lymantria dispar
    白蛾周氏啮小蜂
    Chouioia cunea
    烷烃 Alkane HP-5MS [98]
    番荔枝实蝇、纳塔尔实蝇和
    Ceratitis fasciventri
    Ceratitis anonae, Ceratitis rosa and Ceratitis fasciventri
    酯类、萜类和酮类
    Ester, terpene and ketone
    Rxi-5Sil MS [99]
    截尾丽虎天牛 Plagionotus detritus 酮类 Ketone HP-5 [100]
    地中海果蝇 Ceratitis capitata 酯类、萜类和酮类
    Ester, terpene and ketone
    Rxi-5Sil MS [101]
    下载: 导出CSV
  • [1] BREZOLIN A N, MARTINAZZO J, MUENCHEN D K, et al. Tools for detecting insect semiochemicals: a review[J]. Anal Bioanal Chem, 2018, 410(17): 4091-4108. doi: 10.1007/s00216-018-1118-3
    [2] BECK J J, VANNETTE R L. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems[J]. J Agr Food Chem, 2017, 65(1): 23-28. doi: 10.1021/acs.jafc.6b04298
    [3] RODRÍGUEZ L C, NIEMEYER H M. Integrated pest management, semiochemicals and microbial pest-control agents in Latin American agriculture[J]. Crop Prot, 2005, 24(7): 615-623. doi: 10.1016/j.cropro.2004.11.006
    [4] KARLSON P, LUSCHER M. Pheromones': a new term for a class of biologically active substances[J]. Nature, 1959, 183(4653): 55-56. doi: 10.1038/183055a0
    [5] BUTENANDT A, BECKMANN R, STAMM D. Über den sexuallockstoff des seidenspinners, II. konstitution und konfiguration des bombykols[J]. Biol Chem, 1961, 324: 84-87.
    [6] SHARMA A, SANDHI R K, REDDY G V P. A review of interactions between insect biological control agents and semiochemicals[J]. Insects, 2019, 10(12): 439. doi: 10.3390/insects10120439
    [7] HAENNIGER S, GOERGEN G, AKINBULUMA M D, et al. Sexual communication of Spodoptera frugiperda from West Africa: adaptation of an invasive species and implications for pest management[J]. Sci Rep, 2020, 10(1): 2892. doi: 10.1038/s41598-020-59708-7
    [8] REDDY G V P, GUERRERO A. Interactions of insect pheromones and plant semiochemicals[J]. Trends Plant Sci, 2004, 9(5): 253-261. doi: 10.1016/j.tplants.2004.03.009
    [9] PINEDA-RÍOS J M, CIBRIÁN-TOVAR J, HERNÁNDEZ-FUENTES L M, et al. α-terpineol: an aggregation pheromone in Optatus palmaris (Coleoptera: Curculionidae) (Pascoe, 1889) enhanced by its host-plant volatiles[J]. Molecules, 2021, 26(10): 2861. doi: 10.3390/molecules26102861
    [10] DU Y, CHEN J. The odorant binding protein, SiOBP5, mediates alarm pheromone olfactory recognition in the red imported fire ant, Solenopsis invicta[J]. Biomolecules, 2021, 11(11): 1595. doi: 10.3390/biom11111595
    [11] LEAL W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annu Rev Entomol, 2013, 58: 373-391. doi: 10.1146/annurev-ento-120811-153635
    [12] JIANG X C, PREGITZER P, GROSSE-WILDE E, et al. Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae)[J]. J Insect Sci, 2016, 16(1): 33. doi: 10.1093/jisesa/iew015
    [13] LEITCH O, LENNARD C, KIRKBRIDE K P, et al. Drosophila melanogaster odorant receptors as volatile compound detectors in forensic science: a proof-of-concept study[J]. Anal Bioanal Chem, 2018, 410(29): 7739-7747. doi: 10.1007/s00216-018-1390-2
    [14] CAO S, LIU Y, GUO M, et al. A conserved odorant receptor tuned to floral volatiles in three heliothinae species[J]. PLoS One, 2016, 11(5): e0155029. doi: 10.1371/journal.pone.0155029
    [15] JONES P L, PASK G M, RINKER D C, et al. Functional agonism of insect odorant receptor ion channels[J]. Proc Natl Acad Sci USA, 2011, 108(21): 8821-8825. doi: 10.1073/pnas.1102425108
    [16] STENGL M. Pheromone transduction in moths[J]. Front Cell Neurosci, 2010, 4: 133.
    [17] SHIOTA Y, SAKURAI T, DAIMON T, et al. In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori[J]. Sci Rep, 2018, 8(1): 13529. doi: 10.1038/s41598-018-31978-2
    [18] ZHANG Y, SHEN C, XIA D S, et al. Characterization of the expression and functions of two odorant-binding proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea)[J]. Insects, 2019, 10(11): 409. doi: 10.3390/insects10110409
    [19] YANG Y T, LUO L, TIAN L X, et al. Function and characterization analysis of BodoOBP8 from Bradysia odoriphaga (Diptera: Sciaridae) in the recognition of plant volatiles and sex pheromones[J]. Insects, 2021, 12(10): 879. doi: 10.3390/insects12100879
    [20] TANG L D, LIU J M, LIU L H, et al. De novo transcriptome identifies olfactory genes in Diachasmimorpha longicaudata (Ashmead)[J]. Genes, 2020, 11(2): 144. doi: 10.3390/genes11020144
    [21] SUN Y L, HUANG L Q, PELOSI P, et al. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species[J]. PLoS One, 2012, 7(1): e30040. doi: 10.1371/journal.pone.0030040
    [22] XU M, GUO H, HOU C, et al. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta[J]. Sci Rep, 2016, 6: 22998. doi: 10.1038/srep22998
    [23] REIS A C, NETA P L S, JORDÃO J P, et al. Aggregation pheromone of the bearded weevil, Rhinostomus barbirostris (Coleoptera: Curculionidae): identification, synthesis, absolute configuration and bioactivity[J]. J Chem Ecol, 2018, 44(5): 463-470. doi: 10.1007/s10886-018-0957-x
    [24] LI W Z, TENG X H, ZHANG H F, et al. Comparative host selection responses of specialist (Helicoverpa assulta) and generalist (Helicoverpa armigera) moths in complex plant environments[J]. PLoS One, 2017, 12(2): e0171948. doi: 10.1371/journal.pone.0171948
    [25] 马涛, 黄志嘉, 朱映, 等. 灰茶尺蠖触角感器的扫描电镜观察[J]. 植物保护, 2019, 45(6): 256-258. doi: 10.16688/j.zwbh.2018451

    MA T, HUANG Z J, ZHU Y, et al. Observation of the ultrastructure of antenna sensilla of Ectropis grisescens (Lepidoptera: Geometridae)[J]. Plant Prot, 2019, 45(6): 256-258. doi: 10.16688/j.zwbh.2018451
    [26] 马涛, 林娜, 刘小蓓, 等. 昆虫性信息素提取与分析[J]. 实验技术与管理, 2018, 35(12): 68-71.

    MA T, LIN N, LIU X B, et al. Extraction and analysis of insect sex pheromone[J]. Exp Technol Manag, 2018, 35(12): 68-71.
    [27] PANKIW T. Cued in: honey bee pheromones as information flow and collective decision-making[J]. Apidologie, 2004, 35(2): 217-226. doi: 10.1051/apido:2004009
    [28] YEW J Y, CHUNG H. Insect pheromones: an overview of function, form, and discovery[J]. Prog Lipid Res, 2015, 59: 88-105. doi: 10.1016/j.plipres.2015.06.001
    [29] BOHMAN B, WEINSTEIN A M, MOZURAITIS R, et al. Identification of (Z)-8-heptadecene and n-pentadecane as electrophysiologically active compounds in Ophrys insectifera and its Argogorytes pollinator[J]. Int J Mol Sci, 2020, 21(2): 620. doi: 10.3390/ijms21020620
    [30] SCHNEIDER D. Elektrophysiologische untersuchungen von chemo- und mechanorezeptoren der antenne des seidenspinners Bombyx mori L.[J]. Zeitschrift Für Vergleichende Physiol, 1957, 40(1): 8-41.
    [31] SCOLARI F, VALERIO F, BENELLI G, et al. Tephritid fruit fly semiochemicals: current knowledge and future perspectives[J]. Insects, 2021, 12(5): 408. doi: 10.3390/insects12050408
    [32] HAASE A, RIGOSI E, FRASNELLI E, et al. A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies[J]. Eur Biophys J, 2011, 40(11): 1247-1258. doi: 10.1007/s00249-011-0748-6
    [33] CRNJAR R, SCALERA G, LISCIA A, et al. Morphology and EAG mapping of the antennal olfactory receptors in Dacus oleae[J]. Entomol Exp Appl, 1989, 51(1): 77-85. doi: 10.1111/j.1570-7458.1989.tb01216.x
    [34] LARSON N R, O'NEAL S T, BERNIER U R, et al. Terpenoid-induced feeding deterrence and antennal response of honey bees[J]. Insects, 2020, 11(2): 83. doi: 10.3390/insects11020083
    [35] ZHAO H T, PENG Z, HUANG L, et al. Expression profile and ligand screening of a putative odorant-binding protein, AcerOBP6, from the Asian honeybee[J]. Insects, 2021, 12(11): 955. doi: 10.3390/insects12110955
    [36] DU Y, GRODOWITZ M J, CHEN J. Electrophysiological responses of eighteen species of insects to fire ant alarm pheromone[J]. Insects, 2019, 10(11): E403. doi: 10.3390/insects10110403
    [37] JACOB V E J M. Current source density analysis of electroantennogram recordings: a tool for mapping the olfactory response in an insect antenna[J]. Front Cell Neurosci, 2018, 12: 287.
    [38] JACOB V, SCOLARI F, DELATTE H, et al. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila[J]. Sci Rep, 2017, 7(1): 15304. doi: 10.1038/s41598-017-15431-4
    [39] MOORHOUSE J E, YEADON R, BEEVOR P S, et al. Method for use in studies of insect chemical communication[J]. Nature, 1969, 223(5211): 1174-1175. doi: 10.1038/2231174a0
    [40] ARN H, STÄDLER E, RAUSCHER S. The electroantennographic detector: a selective and sensitive tool in the gas chromatographic analysis of insect pheromones[J]. Zeitschrift Für Naturforschung C, 1975, 30(11-12): 722-725.
    [41] HASSEMER M J, SANT'ANA J, De OLIVEIRA M W M, et al. Chemical composition of Alphitobius diaperinus (Coleoptera: Tenebrionidae) abdominal glands and the influence of 1,4-benzoquinones on its behavior[J]. J Econ Entomol, 2015, 108(4): 2107-2116. doi: 10.1093/jee/tov147
    [42] BŪDA V, APŠEGAITĖ V, BLAŽYTĖ-ČEREŠKIENĖ L, et al. Response of moth Plodia interpunctella to volatiles of fungus-infected and uninfected wheat grain[J]. J Stored Prod Res, 2016, 69: 152-158. doi: 10.1016/j.jspr.2016.08.001
    [43] MA T, XIAO Q, YU Y G, et al. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GC × GC/TOFMS[J]. J Agric Food Chem, 2016, 64(16): 3161-3166. doi: 10.1021/acs.jafc.6b00339
    [44] 温秀军, Blanka Kalinova, 刘满光, 等. 皮暗斑螟性信息素研究[J]. 林业科学, 2009, 45(12): 83-89. doi: 10.11707/j.1001-7488.20091214

    WEN X J, KALINOVA B, LIU M G, et al. Candidate sex pheromone components of persimmon bark borer, Euzophera batangensis[J]. Sci Silvae Sin, 2009, 45(12): 83-89. doi: 10.11707/j.1001-7488.20091214
    [45] MA T, LIU Z T, ZHANG Y Y, et al. Electrophysiological and behavioral responses of Diaphania glauculalis males to female sex pheromone[J]. Environ Sci Pollut Res Int, 2015, 22(19): 15046-15054. doi: 10.1007/s11356-015-4711-4
    [46] MA T, LIU Z T, LU J, et al. A key compound: (Z)-9-tetradecen-1-ol as sex pheromone active component of Hypsipyla robusta (Lepidoptera: Pyralidae)[J]. Chemoecology, 2015, 25(6): 325-330. doi: 10.1007/s00049-015-0195-4
    [47] MA T, LIU Z, WANG C, et al. Production, identification, and field evaluation of sex pheromone from calling females in Diaphania angustalis (Lepidoptera: Crambidae)[J]. Environ Sci Pollut Res Int, 2017, 24(31): 24485-24493. doi: 10.1007/s11356-017-0119-7
    [48] MYRICK A J, BAKER T C. Chopper-stabilized gas chromatography-electroantennography. Part I. Background, signal processing and example[J]. Biosens Bioelectron, 2012, 31(1): 197-204. doi: 10.1016/j.bios.2011.10.017
    [49] MYRICK A J, BAKER T C. Increasing signal-to-noise ratio in gas chromatography-electroantennography using a deans switch effluent chopper[J]. J Chem Ecol, 2018, 44(2): 111-126. doi: 10.1007/s10886-017-0916-y
    [50] SHUTTLEWORTH A, JOHNSON S D. Using two confluent capillary columns for improved gas chromatography-electroantennographic detection (GC-EAD)[J]. Entomol Exp Appl, 2020, 168(2): 191-197. doi: 10.1111/eea.12873
    [51] LI C Y, CAO J M, WANG X F, et al. Efficacy of an improved method to screen semiochemicals of insect[J]. PeerJ, 2021, 9: e11510. doi: 10.7717/peerj.11510
    [52] ZHANG T, MEI X, ZHANG L, et al. Identification of female sex pheromone of a plant bug, Adelphocoris fasciaticollis Reuter (Hemiptera: Miridae)[J]. J Appl Entomol, 2015, 139(1-2): 87-93. doi: 10.1111/jen.12153
    [53] ZHENG X L, LIU J Y, ZHANG Z L, et al. Diel rhythms of sexual behavior and pheromone responses in Phauda flammans Walker (Lepidoptera: Zygaenidae)[J]. Pest Manag Sci, 2019, 75(11): 3070-3075. doi: 10.1002/ps.5423
    [54] LIU F, GUO L, ZHANG S F, et al. Synthesis and bioactivity of (13Z,15E)-octadecadienal: a sex pheromone component from Micromelalopha Siversi Staudinger (Lepidoptera: Notodontidae)[J]. Pest Manag Sci, 2021, 77(1): 264-272. doi: 10.1002/ps.6015
    [55] JIANG N J, MO B T, GUO H, et al. Revisiting the sex pheromone of the fall armyworm Spodoptera frugiperda, a new invasive pest in South China[J]. Insect Sci, 2022, 29(3): 865-878. doi: 10.1111/1744-7917.12956
    [56] UEHARA T, KITAHARA H, NAKA H, et al. Single-component pheromone consisting of bombykal in a diurnal hawk moth, Neogurelca himachala sangaica[J]. J Chem Ecol, 2016, 42(6): 517-522. doi: 10.1007/s10886-016-0714-y
    [57] WANG H L, GEERTSEMA H, VAN NIEUKERKEN E J, et al. Identification of the female-produced sex pheromone of the leafminer Holocacista capensis infesting grapevine in South Africa[J]. J Chem Ecol, 2015, 41(8): 724-731. doi: 10.1007/s10886-015-0611-9
    [58] ZHANG T, MEI X, ZHANG X, et al. Identification and field evaluation of the sex pheromone of Apolygus lucorum (Hemiptera: Miridae) in China[J]. Pest Manag Sci, 2020, 76(5): 1847-1855. doi: 10.1002/ps.5714
    [59] GRIES R, ALAMSETTI S K, van HERK W G, et al. Limoniic acid: major component of the sex pheromones of the click beetles Limonius canus and L. californicus[J]. J Chem Ecol, 2021, 47(2): 123-133. doi: 10.1007/s10886-020-01241-y
    [60] De AQUINO N C, FERREIRA L L, TAVARES R, et al. Bioactive male-produced volatiles from Anastrepha obliqua and their role in attraction of conspecific females[J]. J Chem Ecol, 2021, 47(2): 167-174. doi: 10.1007/s10886-021-01248-z
    [61] LEE S C, KOO E C, LEE D H, et al. Identification of the female-produced sex pheromone of the dotted white geometrid Naxa seriaria (Lepidoptera: Geometridae)[J]. J Chem Ecol, 2020, 46(10): 927-934. doi: 10.1007/s10886-020-01214-1
    [62] MOLNÁR B P, TRÖGER A, TOSHOVA T B, et al. Identification of the female-produced sex pheromone of Tischeria ekebladella, an oak leafmining moth[J]. J Chem Ecol, 2012, 38(10): 1298-1305. doi: 10.1007/s10886-012-0184-9
    [63] ZHANG T, ZHANG X F, WYCKHUYS K A G, et al. Optimization and field demonstration of the Lygus pratensis (Hemiptera: Miridae) sex pheromone[J]. Pest Manag Sci, 2021, 77(2): 817-823. doi: 10.1002/ps.6083
    [64] ZHANG J P, SALCEDO C, FANG Y L, et al. An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera[J]. J Insect Physiol, 2012, 58(9): 1209-1216. doi: 10.1016/j.jinsphys.2012.05.018
    [65] TABATA J, KUBOTA S. Sex pheromone of the iris gelechiid moth Monochroa divisella[J]. Entomol Exp Appl, 2017, 164(2): 113-119. doi: 10.1111/eea.12596
    [66] LEAL SOARES A M, B FRANÇA P H, TRIANA M F, et al. Identification of Δ6-unsaturated, monoenyl type I pheromone compounds from the cashew stem borer Anthistarcha binocularis (Lepidoptera: Gelechiidae)[J]. Pest Manag Sci, 2020, 76(4): 1435-1442. doi: 10.1002/ps.5656
    [67] SALERNO G, IACOVONE A, CARLIN S, et al. Identification of sex pheromone components in Trissolcus brochymenae females[J]. J Insect Physiol, 2012, 58(12): 1635-1642. doi: 10.1016/j.jinsphys.2012.10.003
    [68] YANG S Z, LIU H X, YANG M H, et al. Female sex pheromone of a nettle caterpillar, Monema flavescens, in China[J]. Entomol Exp Appl, 2016, 161(3): 161-167. doi: 10.1111/eea.12503
    [69] CANALE A, GERMINARA S G, CARPITA A, et al. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants[J]. Chemoecology, 2013, 23(3): 155-164. doi: 10.1007/s00049-013-0131-4
    [70] YASUI H, FUJIWARA-TSUJII N, YASUDA T, et al. Electroantennographic responses and field attraction of an emerging invader, the red-necked longicorn beetle Aromia bungii (Coleoptera: Cerambycidae), to the chiral and racemic forms of its male-produced aggregation-sex pheromone[J]. Appl Entomol Zool, 2019, 54(1): 109-114. doi: 10.1007/s13355-018-0600-x
    [71] FERRACINI C, POGOLOTTI C, RAMA F, et al. Pheromone-mediated mating disruption as management option for Cydia spp. in chestnut orchard[J]. Insects, 2021, 12(10): 905. doi: 10.3390/insects12100905
    [72] NOUSHINI S, PARK S J, PEREZ J, et al. Electrophysiological responses of Bactrocera kraussi (Hardy) (Tephritidae) to rectal gland secretions and headspace volatiles emitted by conspecific males and females[J]. Molecules, 2021, 26(16): 5024. doi: 10.3390/molecules26165024
    [73] LIU P P, QIN Z F, FENG M Y, et al. The male-produced aggregation pheromone of the bean flower Thrips Megalurothrips usitatus in China: identification and attraction of conspecifics in the laboratory and field[J]. Pest Manag Sci, 2020, 76(9): 2986-2993. doi: 10.1002/ps.5844
    [74] CHEN D F, LI Y J, ZHANG Q H, et al. Population divergence of aggregation pheromone responses in Ips subelongatus in northeastern China[J]. Insect Sci, 2016, 23(5): 728-738. doi: 10.1111/1744-7917.12221
    [75] CHENG Y N, WEN P, DONG S H, et al. Poison and alarm: the Asian hornet Vespa velutina uses sting venom volatiles as an alarm pheromone[J]. J Exp Biol, 2017, 220(pt 4): 645-651.
    [76] TAMIRU A, BRUCE T J A, RICHTER A, et al. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene[J]. Ecol Evol, 2017, 7(8): 2835-2845. doi: 10.1002/ece3.2893
    [77] YANG L, HU X P, ALLAN S A, et al. Electrophysiological and behavioral responses of the kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae), to volatile compounds from kudzu and soybean plants[J]. J Agric Food Chem, 2019, 67(15): 4177-4183. doi: 10.1021/acs.jafc.8b06765
    [78] SZELÉNYI M O, ERDEI A L, JÓSVAI J K, et al. Essential oil headspace volatiles prevent invasive box tree moth (Cydalima perspectalis) oviposition-insights from electrophysiology and behaviour[J]. Insects, 2020, 11(8): 465. doi: 10.3390/insects11080465
    [79] MAGSI F H, LUO Z X, ZHAO Y J, et al. Electrophysiological and behavioral responses of Dasychira baibarana (Lepidoptera: Lymantriidae) to tea plant volatiles[J]. Environ Entomol, 2021, 50(3): 589-598. doi: 10.1093/ee/nvab016
    [80] XIU C L, XU B, PAN H S, et al. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae)[J]. J Integr Agric, 2019, 18(4): 873-883. doi: 10.1016/S2095-3119(18)61927-6
    [81] SCHIEBE C, UNELIUS C R, GANJI S, et al. Styrene, (+)-trans-(1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle Ips typographus[J]. J Chem Ecol, 2019, 45(5-6): 474-489. doi: 10.1007/s10886-019-01070-8
    [82] CAI Z P, FANG O Y, SU J W, et al. Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri[J]. Biol Control, 2020, 143: 104189. doi: 10.1016/j.biocontrol.2020.104189
    [83] SHEPHERD W P, SULLIVAN B T. Southern pine beetle, Dendroctonus frontalis, antennal and behavioral responses to nonhost leaf and bark volatiles[J]. J Chem Ecol, 2013, 39(4): 481-493. doi: 10.1007/s10886-013-0265-4
    [84] ZHANG Z Q, BIAN L, SUN X L, et al. Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae)[J]. Pest Manag Sci, 2015, 71(1): 96-104. doi: 10.1002/ps.3771
    [85] WANG C, LI G N, MIAO C J, et al. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons[J]. Pest Manag Sci, 2020, 76(9): 3159-3167. doi: 10.1002/ps.5870
    [86] WONG W H L, GRIES R M, ABRAM P K, et al. Attraction of brown marmorated stink bugs, Halyomorpha halys, to blooming sunflower semiochemicals[J]. J Chem Ecol, 2021, 47(7): 614-627. doi: 10.1007/s10886-021-01281-y
    [87] RAJUS S, BHAGAVAN S G, KHARVA H, et al. Behavioral ecology of the coffee white stem borer: toward ecology-based pest management of India's coffee plantations[J]. Front Ecol Evol, 2021, 9: 607555. doi: 10.3389/fevo.2021.607555
    [88] THÖMING G, KNUDSEN G K. Attraction of pea moth Cydia nigricana to pea flower volatiles[J]. Phytochemistry, 2014, 100: 66-75. doi: 10.1016/j.phytochem.2014.01.005
    [89] WANG P, ZHANG N, ZHOU L L, et al. Antennal and behavioral responses of female Maruca vitrata to the floral volatiles of Vigna unguiculata and Lablab purpureus[J]. Entomol Exp Appl, 2014, 152(3): 248-257. doi: 10.1111/eea.12216
    [90] XIU C L, DAI W J, PAN H S, et al. Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum[J]. Biol Control, 2019, 135: 41-47. doi: 10.1016/j.biocontrol.2019.05.004
    [91] ZHU X F, XU B Q, KADER A, et al. Behavioral responses of Scolytus schevyrewi (Coleoptera: Curculionidae: Scolytinae) to volatiles from apricot tree (Rosales: Rosaceae)[J]. Environ Entomol, 2020, 49(3): 586-592. doi: 10.1093/ee/nvaa027
    [92] ZHANG M M, CUI Z H, ZHANG N, et al. Electrophysiological and behavioral responses of Holotrichia parallela to volatiles from peanut[J]. Insects, 2021, 12(2): 158. doi: 10.3390/insects12020158
    [93] LIU Y, CUI Z H, SHI M, et al. Antennal and behavioral responses of Drosophila suzukii to volatiles from a non-crop host, Osyris wightiana[J]. Insects, 2021, 12(2): 166. doi: 10.3390/insects12020166
    [94] COHEN C, LILTVED W R, COLVILLE J F, et al. Sexual deception of a beetle pollinator through floral mimicry[J]. Curr Biol, 2021, 31(9): 1962-1969.e6. doi: 10.1016/j.cub.2021.03.037
    [95] DIAZ-SANTIZ E, ROJAS J C, CRUZ-LÓPEZ L, et al. Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles[J]. Insect Sci, 2016, 23(5): 720-727. doi: 10.1111/1744-7917.12222
    [96] ZITO P, DÖTTERL S, SAJEVA M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators[J]. J Chem Ecol, 2015, 41(4): 340-349. doi: 10.1007/s10886-015-0568-8
    [97] JAKOBSSON J, SVENSSON G P, LÖFSTEDT C, et al. Antennal and behavioural responses of the spruce seed moth, Cydia strobilella, to floral volatiles of Norway spruce, Picea abies, and temporal variation in emission of active compounds[J]. Entomol Exp Appl, 2016, 160(3): 209-218. doi: 10.1111/eea.12474
    [98] LI M, YANG Y X, YAO Y H, et al. Isolation and identification of attractants from the pupae of three lepidopteran species for the parasitoid Chouioia cunea Yang[J]. Pest Manag Sci, 2020, 76(5): 1920-1928. doi: 10.1002/ps.5724
    [99] BŘÍZOVÁ R, VANÍČKOVÁ L, FAŤAROVÁ M, et al. Analyses of volatiles produced by the African fruit fly species complex (Diptera, Tephritidae)[J]. Zookeys, 2015(540): 385-404.
    [100] IMREI Z, DOMINGUE M J, LOHONYAI Z, et al. Identification of pheromone components of Plagionotus detritus (Coleoptera: Cerambycidae), and attraction of conspecifics, competitors, and natural enemies to the pheromone blend[J]. Insects, 2021, 12(10): 899. doi: 10.3390/insects12100899
    [101] VANÍČKOVÁ L, DO NASCIMENTO R R, HOSKOVEC M, et al. Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone[J]. J Agric Food Chem, 2012, 60(29): 7168-7176. doi: 10.1021/jf301474d
    [102] BINYAMEEN M, ANDERSON P, IGNELL R, et al. Identification of plant semiochemicals and characterization of new olfactory sensory neuron types in a polyphagous pest moth, Spodoptera littoralis[J]. Chem Senses, 2014, 39(8): 719-733. doi: 10.1093/chemse/bju046
    [103] BŪDA V, BLAŽYTĖ-ČEREŠKIENĖ L, RADŽIUTĖ S, et al. Male-produced (−)-δ-heptalactone, pheromone of fruit fly Rhagoletis batava (Diptera: Tephritidae), a sea buckthorn berries pest[J]. Insects, 2020, 11(2): 138. doi: 10.3390/insects11020138
    [104] MEKONNEN B, CHESETO X, PIRK C, et al. re-analysis of abdominal gland volatilome secretions of the African weaver ant, Oecophylla longinoda (Hymenoptera: Formicidae)[J]. Molecules, 2021, 26(4): 871. doi: 10.3390/molecules26040871
    [105] MILONAS P G, ANASTASAKI E, PARTSINEVELOS G. Oviposition-induced volatiles affect electrophysiological and behavioral responses of egg parasitoids[J]. Insects, 2019, 10(12): 437. doi: 10.3390/insects10120437
    [106] GUAN X S, ZHAO Z J, CAI S Y, et al. Analysis of volatile organic compounds using cryogen-free thermal modulation based comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry[J]. J Chromatogr A, 2019, 1587: 227-238. doi: 10.1016/j.chroma.2018.12.025
    [107] van DEURSE M M, BEENS J, JANSSEN H G, et al. Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography[J]. J Chromatogr A, 2000, 878(2): 205-213. doi: 10.1016/S0021-9673(00)00300-9
    [108] De GODOY L A F, HANTAO L W, PEDROSO M P, et al. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography[J]. Anal Chimica Acta, 2011, 699(1): 120-125. doi: 10.1016/j.aca.2011.05.003
    [109] KALINOVÁ B, JIROS P, ZD'ÁREK J, et al. GCxGC/TOF MS technique-A new tool in identification of insect pheromones: analysis of the persimmon bark borer sex pheromone gland[J]. Talanta, 2006, 69(3): 542-547. doi: 10.1016/j.talanta.2005.10.045
    [110] KINDL J, JIROŠ P, KALINOVÁ B, et al. Females of the bumblebee parasite, Aphomia sociella, excite males using a courtship pheromone[J]. J Chem Ecol, 2012, 38(4): 400-407. doi: 10.1007/s10886-012-0100-3
    [111] LI H W, YOU Y W, ZHANG L. Single sensillum recordings for locust palp sensilla basiconica[J]. JoVE, 2018(136): e57863.
    [112] SU C Y, MARTELLI C, EMONET T, et al. Temporal coding of odor mixtures in an olfactory receptor neuron[J]. Proc Natl Acad Sci USA, 2011, 108(12): 5075-5080. doi: 10.1073/pnas.1100369108
    [113] LIU F, CHEN L, APPEL A G, et al. Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus[J]. J Insect Physiol, 2013, 59(11): 1169-1177. doi: 10.1016/j.jinsphys.2013.08.016
    [114] BARBOSA-CORNELIO R, CANTOR F, COY-BARRERA E, et al. Tools in the investigation of volatile semiochemicals on insects: from sampling to statistical analysis[J]. Insects, 2019, 10(8): 241. doi: 10.3390/insects10080241
    [115] PARK K C, LEE J A, SUCKLING D M. Antennal olfactory sensory neurones responsive to host and nonhost plant volatiles in gorse pod moth Cydia succedana[J]. Physiol Entomol, 2018, 43(2): 86-99. doi: 10.1111/phen.12234
    [116] SUH E, BOHBOT J, ZWIEBEL L J. Peripheral olfactory signaling in insects[J]. Curr Opin Insect Sci, 2014, 6: 86-92. doi: 10.1016/j.cois.2014.10.006
    [117] YE Z, LIU F, LIU N N. Olfactory responses of southern house mosquito, Culex quinquefasciatus, to human odorants[J]. Chem Senses, 2016, 41(5): 441-447. doi: 10.1093/chemse/bjv089
    [118] ANDERSSON M N, LARSSON M C, SVENSSON G P, et al. Characterization of olfactory sensory neurons in the white clover seed weevil, Apion fulvipes (Coleoptera: Apionidae)[J]. J Insect Physiol, 2012, 58(10): 1325-1333. doi: 10.1016/j.jinsphys.2012.07.006
    [119] AMMAGARAHALLI B, GEMENO C. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae)[J]. J Insect Physiol, 2014, 71: 128-136. doi: 10.1016/j.jinsphys.2014.10.011
    [120] BINYAMEEN M, ANDERSON P, IGNELL R, et al. Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: differences in sensitivity and temporal characteristics[J]. Chem Senses, 2012, 37(7): 613-629. doi: 10.1093/chemse/bjs043
    [121] HARRACA V, IGNELL R, LÖFSTEDT C, et al. Characterization of the antennal olfactory system of the bed bug (Cimex lectularius)[J]. Chem Senses, 2010, 35(3): 195-204. doi: 10.1093/chemse/bjp096
    [122] LIU F, HAYNES K F, APPEL A G, et al. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius[J]. J Chem Ecol, 2014, 40(6): 522-533. doi: 10.1007/s10886-014-0435-z
    [123] LIU F, LIU N. Using single sensillum recording to detect olfactory neuron responses of bed bugs to semiochemicals[J]. J Vis Exp, 2016(107): e53337.
    [124] DONG W Y, WANG B, WANG G R. Morphological and ultrastructural characterization of antennal sensilla and the detection of floral scent volatiles in Eupeodes corollae (Diptera: Syrphidae)[J]. Front Neuroanat, 2021, 15: 791900. doi: 10.3389/fnana.2021.791900
    [125] FIELD L, PICKETT J, WADHAMS L. Molecular studies in insect olfaction[J]. Insect Mol Biol, 2000, 9(6): 545-551. doi: 10.1046/j.1365-2583.2000.00221.x
    [126] STENSMYR M C, DEKKER T, HANSSON B S. Evolution of the olfactory code in the Drosophila melanogaster subgroup[J]. Proc Biol Sci, 2003, 270(1531): 2333-2340. doi: 10.1098/rspb.2003.2512
    [127] GHANINIA M, IGNELL R, HANSSON B S. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti[J]. Eur J Neurosci, 2007, 26(6): 1611-1623. doi: 10.1111/j.1460-9568.2007.05786.x
    [128] BARATA N, MUSTAPARTA H, PICKETT J A, et al. Encoding of host and non-host plant odours by receptor neurones in the Eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae)[J]. J Comp Physiol A, 2002, 188(2): 121-133. doi: 10.1007/s00359-002-0282-1
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  106
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 录用日期:  2022-06-09
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2022-12-02

目录

    /

    返回文章
    返回