Research progress on screening and identification techniques of insect semiochemicals
-
摘要: 在化学生态学领域中,触角电位仪 (EAG)、气相色谱-触角电位联用仪 (GC-EAD)、气相色谱-质谱联用仪 (GC-MS)、单感器记录仪 (SSR) 和气相色谱-单感器记录联用仪 (GC-SSR) 是开展昆虫信息化合物的鉴定及活性组分筛选的重要技术手段,常用于昆虫对信息化合物感受机制、昆虫与植物的互作关系研究。本文详细分析了这几种技术的作用机理,综述了近些年昆虫电生理技术的应用和研究进展,可为昆虫信息化合物的研究提供技术参考。
-
关键词:
- 触角电位仪 /
- 气相色谱-触角电位联用仪 /
- 气相色谱-质谱联用仪 /
- 单感器记录仪 /
- 气相色谱-单感器记录联用仪
Abstract: In the chemical ecology field, electroantennography (EAG), gas chromatography-electroantennographic detection (GC-EAD), gas chromatography-mass spectrometer (GC-MS), single sensillum recordings (SSR), and gas chromatography-single sensillum recordings (GC-SSR) play significant roles in the identification, screening of insect infochemicals and are widely used in chemoreception mechanism of semiochemical, and the investigation of the interactions between insects and plants. Here, the functions and mechanisms of the five above-mentioned technologies were expounded, their applications were summarized, and will provide technical references for the research of insect semiochemicals from the perspective of chemecology. -
表 1 适用于不同信息素类型的GC-EAD条件 (2012—2022)
Table 1. The application of GC-EAD on pheromones (2012-2022)
类型
Type测试昆虫
Analyte化合物类型
Compound色谱柱
GC column参考文献
Reference性信息素
Sex pheromone三点盲蝽 Adelphocoris fasciaticollis 酯类和醛类 Ester and aldehyde HP-5 [52] 朱红毛斑蛾 Phauda flammans 醛类 Aldehyde HP-5 [53] 杨小舟蛾 Micromelalopha siversi 醛类 Aldehyde HP-5 [54] 草地贪夜蛾 Spodoptera frugiperda 酸酯类 Acid ester HP-5 [55] 三角凹缘天蛾 Neogurelca himachala sangaica 醛类 Aldehyde HP-5MS [56] 潜叶蛾 Holocacista capensis 醛类 Aldehyde HP-INNOWax [57] 团花绢野螟 Diaphania glauculalis 醛类 Aldehyde DB-5 [45] 灰茶尺蠖 Ectropis grisescens 烯烃 Alkene DB-5 [43] 绿盲蝽 Apolygus lucorum 酯类和醛类 Ester and aldehyde DB-5 [58] 叩头甲和Limonius californicus
Limonius canus and Limonius californicus酸类 Acid DB-5 [59] 西印度按实蝇 Anastrepha obliqua 萜类 Terpene DB-5 [60] 绿翅绢野螟 Diaphania angustalis 醛类和醇类 Aldehyde and alcohol DB-5MS [47] 女贞尺蠖 Naxa seriaria 烯烃 Alkene DB-5MS [61] 橡树叶蛾 Tischeria ekebladella 烯烃 Alkene DB-Wax [62] 苜蓿盲蝽 Adelphocoris lineolatus 酯类和醛类 Ester and aldehyde DB-Wax [52] 牧草盲蝽 Lygus pratensis 酯类和醛类 Ester and aldehyde DB-Wax [63] 棉铃虫 Helicoverpa armigera 醛类 Aldehyde DB-Wax and HP-88 [64] 鸢尾蛾 Monochroa divisella 酯类 Ester DB-23 [65] Anthistarcha binocularis 萜类 Terpene Rtx-5 [66] Trissolcus brochymenae 酯类和醛类 Ester and aldehyde Varian CP8945 [67] 荨麻毛虫 Monema flavescens 醛类和醇类 Aldehyde and alcohol DB-23 and TG-5 MS [68] 橄榄果蝇 Bactrocera oleae 烯烃 Alkene SPB-5 [69] 桃红颈天牛 Aromia bungii 醛类 Aldehyde CP-ChiraSil-DEX CB [70] Cydia fagiglandana 和 Cydia splendana
Cydia fagiglandana and Cydia splendana酯类和醇类 Aldehyde and alcohol SUPELCO Equity-5 [71] 果蝇 Bactrocera kraussi 酯类 Ester SH-Rtx-5Sil MS [72] 聚集信息素
Aggregation pheromone豆花薊馬 Megalurothrips usitatus 酯类 Ester HP-5 [73] 落叶松八齿小蠹 Ips subelongatus 萜类 Terpene CycloSil-B [74] 告警信息素
Alarm pheromone墨胸胡蜂 Vespa velutina 酮类和醇类 Ketone and alcohol HP-5 [75] 表 2 适用于不同挥发物类型的GC-EAD条件 (2012—2022年)
Table 2. The application of GC-EAD on volatiles (2012-2022)
类型
Type样品
Sample测试昆虫
Analyte化合物类型
Compound色谱柱
GC column参考文献
Reference植物源挥发物
Plant volatiles玉米植株 Zea mays plant 玉米禾螟
Chilo partellus萜类 Terpene HP-1 [76] 野葛和大豆
Pueratia montana and Glycine max筛豆龟蝽
Megacopta cribraria萜类 Terpene HP-5 [77] 肉桂、薰衣草和桉树精油
Cinnamomum cassia, Lavandula angustifolia
and Eucalyptus robusta essential oil盒子树蛾
Cydalima perspectalis萜类 Terpene HP-5 [78] 茶 Camellia sinensis 茶黑毒蛾
Dasychira baibarana酯类、醇类和酮类
Ester, alcohol and ketoneHP-5 [79] 槐树 Sophora japonica 异色瓢虫
Harmonia axyridis醛类 Aldehyde HP-5MS [80] 欧洲云杉 Picea abies 云杉八齿小蠹
Ips typographus芳香烃、萜类
Aromatic hydrocarbon, terpeneHP-5MS [81] 蛇床花 Cnidium monnieri 异色瓢虫
Harmonia axyridis芳香烃
Aromatic hydrocarbonHP-5MS [82] 红枫、黑樱桃和南方红橡木等
Acer rubrum, Prunus serotina and
Quercus falcata, etc.南部松小蠹
Dendroctonus frontalis醇类、醛类和酸
Alcohol, aldehyde, and acidHP-INNOWax [83] 迷迭香 Rosmarinus officinalis 茶尺蠖
Ectropis obliqua萜类 Terpene DB-5 [84] 烟草 Nicotiana tabacum 烟青虫
Helicoverpa assulta醛类 Aldehyde DB-5 [85] 向日葵 Helianthus annuus 棕纹蝽
Halyomorpha halys萜类 Terpene DB-5 [86] 小果咖啡和中果咖啡
Coffea arabica and Coffea canephora白茎螟
Xylotrechus quadripes萜类 Terpene DB-5MS [87] 豌豆 Pisum sativum 豆荚小卷蛾
Cydia nigricana萜类 Terpene DB-Wax [88] 豇豆和扁豆的花
Flower of Vigna unguiculata and
Lablab purpureus豆荚螟
Maruca vitrata萜类 Terpene DB-Wax [89] 蓖麻 Ricinus communis 红颈常室茧蜂和绿
盲蝽
Peristenus spretus and Apolygus lucorum烃类和酮类
Hydrocarbon and ketoneDB-Wax [90] 杏树 Armeniaca spp. 脐腹小蠹
Scolytus schevyrewi萜类 Terpene DB-Wax [91] 花生植株
Arachis hypogaea plant暗黑鳃金龟
Holotrichia parallela萜类和醛类
Terpene and aldehydeDB-Wax [92] 沙针 Osyris wightiana 斑翅果蝇
Drosophila suzukii萜类、醇类和酯类
Terpene, alcohol and esterDB-Wax [93] 迪萨兰 Disa forficaria 天牛
Chorothyse hessei酯类和酸类
Ester and acidZB-SemiVolatiles [94] 番石榴或甜橙
Psidium guajava or Citrus sinensis按实蝇
Anastrepha striata酯类和醇类
Ester and alcoholVF-5 MS [95] Periploca laevigata 家蝇
Musca domestica萜类和硫化物
Terpene and sulfideZB-5 [96] 欧洲云杉 Picea abies 云杉球果小卷蛾Cydia strobilella 单萜 Monoterpene HP-INNOWax [97] 表皮挥发物
Cuticular hydrocarbon美国白蛾、柞蚕和舞毒蛾的蛹
Pupa of Hyphantria cunea, Antheraea
pernyi and Lymantria dispar白蛾周氏啮小蜂
Chouioia cunea烷烃 Alkane HP-5MS [98] 番荔枝实蝇、纳塔尔实蝇和
Ceratitis fasciventri
Ceratitis anonae, Ceratitis rosa and Ceratitis fasciventri酯类、萜类和酮类
Ester, terpene and ketoneRxi-5Sil MS [99] 截尾丽虎天牛 Plagionotus detritus 酮类 Ketone HP-5 [100] 地中海果蝇 Ceratitis capitata 酯类、萜类和酮类
Ester, terpene and ketoneRxi-5Sil MS [101] -
[1] BREZOLIN A N, MARTINAZZO J, MUENCHEN D K, et al. Tools for detecting insect semiochemicals: a review[J]. Anal Bioanal Chem, 2018, 410(17): 4091-4108. doi: 10.1007/s00216-018-1118-3 [2] BECK J J, VANNETTE R L. Harnessing insect-microbe chemical communications to control insect pests of agricultural systems[J]. J Agr Food Chem, 2017, 65(1): 23-28. doi: 10.1021/acs.jafc.6b04298 [3] RODRÍGUEZ L C, NIEMEYER H M. Integrated pest management, semiochemicals and microbial pest-control agents in Latin American agriculture[J]. Crop Prot, 2005, 24(7): 615-623. doi: 10.1016/j.cropro.2004.11.006 [4] KARLSON P, LUSCHER M. Pheromones': a new term for a class of biologically active substances[J]. Nature, 1959, 183(4653): 55-56. doi: 10.1038/183055a0 [5] BUTENANDT A, BECKMANN R, STAMM D. Über den sexuallockstoff des seidenspinners, II. konstitution und konfiguration des bombykols[J]. Biol Chem, 1961, 324: 84-87. [6] SHARMA A, SANDHI R K, REDDY G V P. A review of interactions between insect biological control agents and semiochemicals[J]. Insects, 2019, 10(12): 439. doi: 10.3390/insects10120439 [7] HAENNIGER S, GOERGEN G, AKINBULUMA M D, et al. Sexual communication of Spodoptera frugiperda from West Africa: adaptation of an invasive species and implications for pest management[J]. Sci Rep, 2020, 10(1): 2892. doi: 10.1038/s41598-020-59708-7 [8] REDDY G V P, GUERRERO A. Interactions of insect pheromones and plant semiochemicals[J]. Trends Plant Sci, 2004, 9(5): 253-261. doi: 10.1016/j.tplants.2004.03.009 [9] PINEDA-RÍOS J M, CIBRIÁN-TOVAR J, HERNÁNDEZ-FUENTES L M, et al. α-terpineol: an aggregation pheromone in Optatus palmaris (Coleoptera: Curculionidae) (Pascoe, 1889) enhanced by its host-plant volatiles[J]. Molecules, 2021, 26(10): 2861. doi: 10.3390/molecules26102861 [10] DU Y, CHEN J. The odorant binding protein, SiOBP5, mediates alarm pheromone olfactory recognition in the red imported fire ant, Solenopsis invicta[J]. Biomolecules, 2021, 11(11): 1595. doi: 10.3390/biom11111595 [11] LEAL W S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes[J]. Annu Rev Entomol, 2013, 58: 373-391. doi: 10.1146/annurev-ento-120811-153635 [12] JIANG X C, PREGITZER P, GROSSE-WILDE E, et al. Identification and characterization of two “sensory neuron membrane proteins” (SNMPs) of the desert locust, Schistocerca gregaria (Orthoptera: Acrididae)[J]. J Insect Sci, 2016, 16(1): 33. doi: 10.1093/jisesa/iew015 [13] LEITCH O, LENNARD C, KIRKBRIDE K P, et al. Drosophila melanogaster odorant receptors as volatile compound detectors in forensic science: a proof-of-concept study[J]. Anal Bioanal Chem, 2018, 410(29): 7739-7747. doi: 10.1007/s00216-018-1390-2 [14] CAO S, LIU Y, GUO M, et al. A conserved odorant receptor tuned to floral volatiles in three heliothinae species[J]. PLoS One, 2016, 11(5): e0155029. doi: 10.1371/journal.pone.0155029 [15] JONES P L, PASK G M, RINKER D C, et al. Functional agonism of insect odorant receptor ion channels[J]. Proc Natl Acad Sci USA, 2011, 108(21): 8821-8825. doi: 10.1073/pnas.1102425108 [16] STENGL M. Pheromone transduction in moths[J]. Front Cell Neurosci, 2010, 4: 133. [17] SHIOTA Y, SAKURAI T, DAIMON T, et al. In vivo functional characterisation of pheromone binding protein-1 in the silkmoth, Bombyx mori[J]. Sci Rep, 2018, 8(1): 13529. doi: 10.1038/s41598-018-31978-2 [18] ZHANG Y, SHEN C, XIA D S, et al. Characterization of the expression and functions of two odorant-binding proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea)[J]. Insects, 2019, 10(11): 409. doi: 10.3390/insects10110409 [19] YANG Y T, LUO L, TIAN L X, et al. Function and characterization analysis of BodoOBP8 from Bradysia odoriphaga (Diptera: Sciaridae) in the recognition of plant volatiles and sex pheromones[J]. Insects, 2021, 12(10): 879. doi: 10.3390/insects12100879 [20] TANG L D, LIU J M, LIU L H, et al. De novo transcriptome identifies olfactory genes in Diachasmimorpha longicaudata (Ashmead)[J]. Genes, 2020, 11(2): 144. doi: 10.3390/genes11020144 [21] SUN Y L, HUANG L Q, PELOSI P, et al. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species[J]. PLoS One, 2012, 7(1): e30040. doi: 10.1371/journal.pone.0030040 [22] XU M, GUO H, HOU C, et al. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta[J]. Sci Rep, 2016, 6: 22998. doi: 10.1038/srep22998 [23] REIS A C, NETA P L S, JORDÃO J P, et al. Aggregation pheromone of the bearded weevil, Rhinostomus barbirostris (Coleoptera: Curculionidae): identification, synthesis, absolute configuration and bioactivity[J]. J Chem Ecol, 2018, 44(5): 463-470. doi: 10.1007/s10886-018-0957-x [24] LI W Z, TENG X H, ZHANG H F, et al. Comparative host selection responses of specialist (Helicoverpa assulta) and generalist (Helicoverpa armigera) moths in complex plant environments[J]. PLoS One, 2017, 12(2): e0171948. doi: 10.1371/journal.pone.0171948 [25] 马涛, 黄志嘉, 朱映, 等. 灰茶尺蠖触角感器的扫描电镜观察[J]. 植物保护, 2019, 45(6): 256-258. doi: 10.16688/j.zwbh.2018451MA T, HUANG Z J, ZHU Y, et al. Observation of the ultrastructure of antenna sensilla of Ectropis grisescens (Lepidoptera: Geometridae)[J]. Plant Prot, 2019, 45(6): 256-258. doi: 10.16688/j.zwbh.2018451 [26] 马涛, 林娜, 刘小蓓, 等. 昆虫性信息素提取与分析[J]. 实验技术与管理, 2018, 35(12): 68-71.MA T, LIN N, LIU X B, et al. Extraction and analysis of insect sex pheromone[J]. Exp Technol Manag, 2018, 35(12): 68-71. [27] PANKIW T. Cued in: honey bee pheromones as information flow and collective decision-making[J]. Apidologie, 2004, 35(2): 217-226. doi: 10.1051/apido:2004009 [28] YEW J Y, CHUNG H. Insect pheromones: an overview of function, form, and discovery[J]. Prog Lipid Res, 2015, 59: 88-105. doi: 10.1016/j.plipres.2015.06.001 [29] BOHMAN B, WEINSTEIN A M, MOZURAITIS R, et al. Identification of (Z)-8-heptadecene and n-pentadecane as electrophysiologically active compounds in Ophrys insectifera and its Argogorytes pollinator[J]. Int J Mol Sci, 2020, 21(2): 620. doi: 10.3390/ijms21020620 [30] SCHNEIDER D. Elektrophysiologische untersuchungen von chemo- und mechanorezeptoren der antenne des seidenspinners Bombyx mori L.[J]. Zeitschrift Für Vergleichende Physiol, 1957, 40(1): 8-41. [31] SCOLARI F, VALERIO F, BENELLI G, et al. Tephritid fruit fly semiochemicals: current knowledge and future perspectives[J]. Insects, 2021, 12(5): 408. doi: 10.3390/insects12050408 [32] HAASE A, RIGOSI E, FRASNELLI E, et al. A multimodal approach for tracing lateralisation along the olfactory pathway in the honeybee through electrophysiological recordings, morpho-functional imaging, and behavioural studies[J]. Eur Biophys J, 2011, 40(11): 1247-1258. doi: 10.1007/s00249-011-0748-6 [33] CRNJAR R, SCALERA G, LISCIA A, et al. Morphology and EAG mapping of the antennal olfactory receptors in Dacus oleae[J]. Entomol Exp Appl, 1989, 51(1): 77-85. doi: 10.1111/j.1570-7458.1989.tb01216.x [34] LARSON N R, O'NEAL S T, BERNIER U R, et al. Terpenoid-induced feeding deterrence and antennal response of honey bees[J]. Insects, 2020, 11(2): 83. doi: 10.3390/insects11020083 [35] ZHAO H T, PENG Z, HUANG L, et al. Expression profile and ligand screening of a putative odorant-binding protein, AcerOBP6, from the Asian honeybee[J]. Insects, 2021, 12(11): 955. doi: 10.3390/insects12110955 [36] DU Y, GRODOWITZ M J, CHEN J. Electrophysiological responses of eighteen species of insects to fire ant alarm pheromone[J]. Insects, 2019, 10(11): E403. doi: 10.3390/insects10110403 [37] JACOB V E J M. Current source density analysis of electroantennogram recordings: a tool for mapping the olfactory response in an insect antenna[J]. Front Cell Neurosci, 2018, 12: 287. [38] JACOB V, SCOLARI F, DELATTE H, et al. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila[J]. Sci Rep, 2017, 7(1): 15304. doi: 10.1038/s41598-017-15431-4 [39] MOORHOUSE J E, YEADON R, BEEVOR P S, et al. Method for use in studies of insect chemical communication[J]. Nature, 1969, 223(5211): 1174-1175. doi: 10.1038/2231174a0 [40] ARN H, STÄDLER E, RAUSCHER S. The electroantennographic detector: a selective and sensitive tool in the gas chromatographic analysis of insect pheromones[J]. Zeitschrift Für Naturforschung C, 1975, 30(11-12): 722-725. [41] HASSEMER M J, SANT'ANA J, De OLIVEIRA M W M, et al. Chemical composition of Alphitobius diaperinus (Coleoptera: Tenebrionidae) abdominal glands and the influence of 1,4-benzoquinones on its behavior[J]. J Econ Entomol, 2015, 108(4): 2107-2116. doi: 10.1093/jee/tov147 [42] BŪDA V, APŠEGAITĖ V, BLAŽYTĖ-ČEREŠKIENĖ L, et al. Response of moth Plodia interpunctella to volatiles of fungus-infected and uninfected wheat grain[J]. J Stored Prod Res, 2016, 69: 152-158. doi: 10.1016/j.jspr.2016.08.001 [43] MA T, XIAO Q, YU Y G, et al. Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GC × GC/TOFMS[J]. J Agric Food Chem, 2016, 64(16): 3161-3166. doi: 10.1021/acs.jafc.6b00339 [44] 温秀军, Blanka Kalinova, 刘满光, 等. 皮暗斑螟性信息素研究[J]. 林业科学, 2009, 45(12): 83-89. doi: 10.11707/j.1001-7488.20091214WEN X J, KALINOVA B, LIU M G, et al. Candidate sex pheromone components of persimmon bark borer, Euzophera batangensis[J]. Sci Silvae Sin, 2009, 45(12): 83-89. doi: 10.11707/j.1001-7488.20091214 [45] MA T, LIU Z T, ZHANG Y Y, et al. Electrophysiological and behavioral responses of Diaphania glauculalis males to female sex pheromone[J]. Environ Sci Pollut Res Int, 2015, 22(19): 15046-15054. doi: 10.1007/s11356-015-4711-4 [46] MA T, LIU Z T, LU J, et al. A key compound: (Z)-9-tetradecen-1-ol as sex pheromone active component of Hypsipyla robusta (Lepidoptera: Pyralidae)[J]. Chemoecology, 2015, 25(6): 325-330. doi: 10.1007/s00049-015-0195-4 [47] MA T, LIU Z, WANG C, et al. Production, identification, and field evaluation of sex pheromone from calling females in Diaphania angustalis (Lepidoptera: Crambidae)[J]. Environ Sci Pollut Res Int, 2017, 24(31): 24485-24493. doi: 10.1007/s11356-017-0119-7 [48] MYRICK A J, BAKER T C. Chopper-stabilized gas chromatography-electroantennography. Part I. Background, signal processing and example[J]. Biosens Bioelectron, 2012, 31(1): 197-204. doi: 10.1016/j.bios.2011.10.017 [49] MYRICK A J, BAKER T C. Increasing signal-to-noise ratio in gas chromatography-electroantennography using a deans switch effluent chopper[J]. J Chem Ecol, 2018, 44(2): 111-126. doi: 10.1007/s10886-017-0916-y [50] SHUTTLEWORTH A, JOHNSON S D. Using two confluent capillary columns for improved gas chromatography-electroantennographic detection (GC-EAD)[J]. Entomol Exp Appl, 2020, 168(2): 191-197. doi: 10.1111/eea.12873 [51] LI C Y, CAO J M, WANG X F, et al. Efficacy of an improved method to screen semiochemicals of insect[J]. PeerJ, 2021, 9: e11510. doi: 10.7717/peerj.11510 [52] ZHANG T, MEI X, ZHANG L, et al. Identification of female sex pheromone of a plant bug, Adelphocoris fasciaticollis Reuter (Hemiptera: Miridae)[J]. J Appl Entomol, 2015, 139(1-2): 87-93. doi: 10.1111/jen.12153 [53] ZHENG X L, LIU J Y, ZHANG Z L, et al. Diel rhythms of sexual behavior and pheromone responses in Phauda flammans Walker (Lepidoptera: Zygaenidae)[J]. Pest Manag Sci, 2019, 75(11): 3070-3075. doi: 10.1002/ps.5423 [54] LIU F, GUO L, ZHANG S F, et al. Synthesis and bioactivity of (13Z,15E)-octadecadienal: a sex pheromone component from Micromelalopha Siversi Staudinger (Lepidoptera: Notodontidae)[J]. Pest Manag Sci, 2021, 77(1): 264-272. doi: 10.1002/ps.6015 [55] JIANG N J, MO B T, GUO H, et al. Revisiting the sex pheromone of the fall armyworm Spodoptera frugiperda, a new invasive pest in South China[J]. Insect Sci, 2022, 29(3): 865-878. doi: 10.1111/1744-7917.12956 [56] UEHARA T, KITAHARA H, NAKA H, et al. Single-component pheromone consisting of bombykal in a diurnal hawk moth, Neogurelca himachala sangaica[J]. J Chem Ecol, 2016, 42(6): 517-522. doi: 10.1007/s10886-016-0714-y [57] WANG H L, GEERTSEMA H, VAN NIEUKERKEN E J, et al. Identification of the female-produced sex pheromone of the leafminer Holocacista capensis infesting grapevine in South Africa[J]. J Chem Ecol, 2015, 41(8): 724-731. doi: 10.1007/s10886-015-0611-9 [58] ZHANG T, MEI X, ZHANG X, et al. Identification and field evaluation of the sex pheromone of Apolygus lucorum (Hemiptera: Miridae) in China[J]. Pest Manag Sci, 2020, 76(5): 1847-1855. doi: 10.1002/ps.5714 [59] GRIES R, ALAMSETTI S K, van HERK W G, et al. Limoniic acid: major component of the sex pheromones of the click beetles Limonius canus and L. californicus[J]. J Chem Ecol, 2021, 47(2): 123-133. doi: 10.1007/s10886-020-01241-y [60] De AQUINO N C, FERREIRA L L, TAVARES R, et al. Bioactive male-produced volatiles from Anastrepha obliqua and their role in attraction of conspecific females[J]. J Chem Ecol, 2021, 47(2): 167-174. doi: 10.1007/s10886-021-01248-z [61] LEE S C, KOO E C, LEE D H, et al. Identification of the female-produced sex pheromone of the dotted white geometrid Naxa seriaria (Lepidoptera: Geometridae)[J]. J Chem Ecol, 2020, 46(10): 927-934. doi: 10.1007/s10886-020-01214-1 [62] MOLNÁR B P, TRÖGER A, TOSHOVA T B, et al. Identification of the female-produced sex pheromone of Tischeria ekebladella, an oak leafmining moth[J]. J Chem Ecol, 2012, 38(10): 1298-1305. doi: 10.1007/s10886-012-0184-9 [63] ZHANG T, ZHANG X F, WYCKHUYS K A G, et al. Optimization and field demonstration of the Lygus pratensis (Hemiptera: Miridae) sex pheromone[J]. Pest Manag Sci, 2021, 77(2): 817-823. doi: 10.1002/ps.6083 [64] ZHANG J P, SALCEDO C, FANG Y L, et al. An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera[J]. J Insect Physiol, 2012, 58(9): 1209-1216. doi: 10.1016/j.jinsphys.2012.05.018 [65] TABATA J, KUBOTA S. Sex pheromone of the iris gelechiid moth Monochroa divisella[J]. Entomol Exp Appl, 2017, 164(2): 113-119. doi: 10.1111/eea.12596 [66] LEAL SOARES A M, B FRANÇA P H, TRIANA M F, et al. Identification of Δ6-unsaturated, monoenyl type I pheromone compounds from the cashew stem borer Anthistarcha binocularis (Lepidoptera: Gelechiidae)[J]. Pest Manag Sci, 2020, 76(4): 1435-1442. doi: 10.1002/ps.5656 [67] SALERNO G, IACOVONE A, CARLIN S, et al. Identification of sex pheromone components in Trissolcus brochymenae females[J]. J Insect Physiol, 2012, 58(12): 1635-1642. doi: 10.1016/j.jinsphys.2012.10.003 [68] YANG S Z, LIU H X, YANG M H, et al. Female sex pheromone of a nettle caterpillar, Monema flavescens, in China[J]. Entomol Exp Appl, 2016, 161(3): 161-167. doi: 10.1111/eea.12503 [69] CANALE A, GERMINARA S G, CARPITA A, et al. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants[J]. Chemoecology, 2013, 23(3): 155-164. doi: 10.1007/s00049-013-0131-4 [70] YASUI H, FUJIWARA-TSUJII N, YASUDA T, et al. Electroantennographic responses and field attraction of an emerging invader, the red-necked longicorn beetle Aromia bungii (Coleoptera: Cerambycidae), to the chiral and racemic forms of its male-produced aggregation-sex pheromone[J]. Appl Entomol Zool, 2019, 54(1): 109-114. doi: 10.1007/s13355-018-0600-x [71] FERRACINI C, POGOLOTTI C, RAMA F, et al. Pheromone-mediated mating disruption as management option for Cydia spp. in chestnut orchard[J]. Insects, 2021, 12(10): 905. doi: 10.3390/insects12100905 [72] NOUSHINI S, PARK S J, PEREZ J, et al. Electrophysiological responses of Bactrocera kraussi (Hardy) (Tephritidae) to rectal gland secretions and headspace volatiles emitted by conspecific males and females[J]. Molecules, 2021, 26(16): 5024. doi: 10.3390/molecules26165024 [73] LIU P P, QIN Z F, FENG M Y, et al. The male-produced aggregation pheromone of the bean flower Thrips Megalurothrips usitatus in China: identification and attraction of conspecifics in the laboratory and field[J]. Pest Manag Sci, 2020, 76(9): 2986-2993. doi: 10.1002/ps.5844 [74] CHEN D F, LI Y J, ZHANG Q H, et al. Population divergence of aggregation pheromone responses in Ips subelongatus in northeastern China[J]. Insect Sci, 2016, 23(5): 728-738. doi: 10.1111/1744-7917.12221 [75] CHENG Y N, WEN P, DONG S H, et al. Poison and alarm: the Asian hornet Vespa velutina uses sting venom volatiles as an alarm pheromone[J]. J Exp Biol, 2017, 220(pt 4): 645-651. [76] TAMIRU A, BRUCE T J A, RICHTER A, et al. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene[J]. Ecol Evol, 2017, 7(8): 2835-2845. doi: 10.1002/ece3.2893 [77] YANG L, HU X P, ALLAN S A, et al. Electrophysiological and behavioral responses of the kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae), to volatile compounds from kudzu and soybean plants[J]. J Agric Food Chem, 2019, 67(15): 4177-4183. doi: 10.1021/acs.jafc.8b06765 [78] SZELÉNYI M O, ERDEI A L, JÓSVAI J K, et al. Essential oil headspace volatiles prevent invasive box tree moth (Cydalima perspectalis) oviposition-insights from electrophysiology and behaviour[J]. Insects, 2020, 11(8): 465. doi: 10.3390/insects11080465 [79] MAGSI F H, LUO Z X, ZHAO Y J, et al. Electrophysiological and behavioral responses of Dasychira baibarana (Lepidoptera: Lymantriidae) to tea plant volatiles[J]. Environ Entomol, 2021, 50(3): 589-598. doi: 10.1093/ee/nvab016 [80] XIU C L, XU B, PAN H S, et al. Volatiles from Sophora japonica flowers attract Harmonia axyridis adults (Coleoptera: Coccinellidae)[J]. J Integr Agric, 2019, 18(4): 873-883. doi: 10.1016/S2095-3119(18)61927-6 [81] SCHIEBE C, UNELIUS C R, GANJI S, et al. Styrene, (+)-trans-(1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle Ips typographus[J]. J Chem Ecol, 2019, 45(5-6): 474-489. doi: 10.1007/s10886-019-01070-8 [82] CAI Z P, FANG O Y, SU J W, et al. Attraction of adult Harmonia axyridis to volatiles of the insectary plant Cnidium monnieri[J]. Biol Control, 2020, 143: 104189. doi: 10.1016/j.biocontrol.2020.104189 [83] SHEPHERD W P, SULLIVAN B T. Southern pine beetle, Dendroctonus frontalis, antennal and behavioral responses to nonhost leaf and bark volatiles[J]. J Chem Ecol, 2013, 39(4): 481-493. doi: 10.1007/s10886-013-0265-4 [84] ZHANG Z Q, BIAN L, SUN X L, et al. Electrophysiological and behavioural responses of the tea geometrid Ectropis obliqua (Lepidoptera: Geometridae) to volatiles from a non-host plant, rosemary, Rosmarinus officinalis (Lamiaceae)[J]. Pest Manag Sci, 2015, 71(1): 96-104. doi: 10.1002/ps.3771 [85] WANG C, LI G N, MIAO C J, et al. Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons[J]. Pest Manag Sci, 2020, 76(9): 3159-3167. doi: 10.1002/ps.5870 [86] WONG W H L, GRIES R M, ABRAM P K, et al. Attraction of brown marmorated stink bugs, Halyomorpha halys, to blooming sunflower semiochemicals[J]. J Chem Ecol, 2021, 47(7): 614-627. doi: 10.1007/s10886-021-01281-y [87] RAJUS S, BHAGAVAN S G, KHARVA H, et al. Behavioral ecology of the coffee white stem borer: toward ecology-based pest management of India's coffee plantations[J]. Front Ecol Evol, 2021, 9: 607555. doi: 10.3389/fevo.2021.607555 [88] THÖMING G, KNUDSEN G K. Attraction of pea moth Cydia nigricana to pea flower volatiles[J]. Phytochemistry, 2014, 100: 66-75. doi: 10.1016/j.phytochem.2014.01.005 [89] WANG P, ZHANG N, ZHOU L L, et al. Antennal and behavioral responses of female Maruca vitrata to the floral volatiles of Vigna unguiculata and Lablab purpureus[J]. Entomol Exp Appl, 2014, 152(3): 248-257. doi: 10.1111/eea.12216 [90] XIU C L, DAI W J, PAN H S, et al. Herbivore-induced plant volatiles enhance field-level parasitism of the mirid bug Apolygus lucorum[J]. Biol Control, 2019, 135: 41-47. doi: 10.1016/j.biocontrol.2019.05.004 [91] ZHU X F, XU B Q, KADER A, et al. Behavioral responses of Scolytus schevyrewi (Coleoptera: Curculionidae: Scolytinae) to volatiles from apricot tree (Rosales: Rosaceae)[J]. Environ Entomol, 2020, 49(3): 586-592. doi: 10.1093/ee/nvaa027 [92] ZHANG M M, CUI Z H, ZHANG N, et al. Electrophysiological and behavioral responses of Holotrichia parallela to volatiles from peanut[J]. Insects, 2021, 12(2): 158. doi: 10.3390/insects12020158 [93] LIU Y, CUI Z H, SHI M, et al. Antennal and behavioral responses of Drosophila suzukii to volatiles from a non-crop host, Osyris wightiana[J]. Insects, 2021, 12(2): 166. doi: 10.3390/insects12020166 [94] COHEN C, LILTVED W R, COLVILLE J F, et al. Sexual deception of a beetle pollinator through floral mimicry[J]. Curr Biol, 2021, 31(9): 1962-1969.e6. doi: 10.1016/j.cub.2021.03.037 [95] DIAZ-SANTIZ E, ROJAS J C, CRUZ-LÓPEZ L, et al. Olfactory response of Anastrepha striata (Diptera: Tephritidae) to guava and sweet orange volatiles[J]. Insect Sci, 2016, 23(5): 720-727. doi: 10.1111/1744-7917.12222 [96] ZITO P, DÖTTERL S, SAJEVA M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators[J]. J Chem Ecol, 2015, 41(4): 340-349. doi: 10.1007/s10886-015-0568-8 [97] JAKOBSSON J, SVENSSON G P, LÖFSTEDT C, et al. Antennal and behavioural responses of the spruce seed moth, Cydia strobilella, to floral volatiles of Norway spruce, Picea abies, and temporal variation in emission of active compounds[J]. Entomol Exp Appl, 2016, 160(3): 209-218. doi: 10.1111/eea.12474 [98] LI M, YANG Y X, YAO Y H, et al. Isolation and identification of attractants from the pupae of three lepidopteran species for the parasitoid Chouioia cunea Yang[J]. Pest Manag Sci, 2020, 76(5): 1920-1928. doi: 10.1002/ps.5724 [99] BŘÍZOVÁ R, VANÍČKOVÁ L, FAŤAROVÁ M, et al. Analyses of volatiles produced by the African fruit fly species complex (Diptera, Tephritidae)[J]. Zookeys, 2015(540): 385-404. [100] IMREI Z, DOMINGUE M J, LOHONYAI Z, et al. Identification of pheromone components of Plagionotus detritus (Coleoptera: Cerambycidae), and attraction of conspecifics, competitors, and natural enemies to the pheromone blend[J]. Insects, 2021, 12(10): 899. doi: 10.3390/insects12100899 [101] VANÍČKOVÁ L, DO NASCIMENTO R R, HOSKOVEC M, et al. Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone[J]. J Agric Food Chem, 2012, 60(29): 7168-7176. doi: 10.1021/jf301474d [102] BINYAMEEN M, ANDERSON P, IGNELL R, et al. Identification of plant semiochemicals and characterization of new olfactory sensory neuron types in a polyphagous pest moth, Spodoptera littoralis[J]. Chem Senses, 2014, 39(8): 719-733. doi: 10.1093/chemse/bju046 [103] BŪDA V, BLAŽYTĖ-ČEREŠKIENĖ L, RADŽIUTĖ S, et al. Male-produced (−)-δ-heptalactone, pheromone of fruit fly Rhagoletis batava (Diptera: Tephritidae), a sea buckthorn berries pest[J]. Insects, 2020, 11(2): 138. doi: 10.3390/insects11020138 [104] MEKONNEN B, CHESETO X, PIRK C, et al. re-analysis of abdominal gland volatilome secretions of the African weaver ant, Oecophylla longinoda (Hymenoptera: Formicidae)[J]. Molecules, 2021, 26(4): 871. doi: 10.3390/molecules26040871 [105] MILONAS P G, ANASTASAKI E, PARTSINEVELOS G. Oviposition-induced volatiles affect electrophysiological and behavioral responses of egg parasitoids[J]. Insects, 2019, 10(12): 437. doi: 10.3390/insects10120437 [106] GUAN X S, ZHAO Z J, CAI S Y, et al. Analysis of volatile organic compounds using cryogen-free thermal modulation based comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry[J]. J Chromatogr A, 2019, 1587: 227-238. doi: 10.1016/j.chroma.2018.12.025 [107] van DEURSE M M, BEENS J, JANSSEN H G, et al. Evaluation of time-of-flight mass spectrometric detection for fast gas chromatography[J]. J Chromatogr A, 2000, 878(2): 205-213. doi: 10.1016/S0021-9673(00)00300-9 [108] De GODOY L A F, HANTAO L W, PEDROSO M P, et al. Quantitative analysis of essential oils in perfume using multivariate curve resolution combined with comprehensive two-dimensional gas chromatography[J]. Anal Chimica Acta, 2011, 699(1): 120-125. doi: 10.1016/j.aca.2011.05.003 [109] KALINOVÁ B, JIROS P, ZD'ÁREK J, et al. GCxGC/TOF MS technique-A new tool in identification of insect pheromones: analysis of the persimmon bark borer sex pheromone gland[J]. Talanta, 2006, 69(3): 542-547. doi: 10.1016/j.talanta.2005.10.045 [110] KINDL J, JIROŠ P, KALINOVÁ B, et al. Females of the bumblebee parasite, Aphomia sociella, excite males using a courtship pheromone[J]. J Chem Ecol, 2012, 38(4): 400-407. doi: 10.1007/s10886-012-0100-3 [111] LI H W, YOU Y W, ZHANG L. Single sensillum recordings for locust palp sensilla basiconica[J]. JoVE, 2018(136): e57863. [112] SU C Y, MARTELLI C, EMONET T, et al. Temporal coding of odor mixtures in an olfactory receptor neuron[J]. Proc Natl Acad Sci USA, 2011, 108(12): 5075-5080. doi: 10.1073/pnas.1100369108 [113] LIU F, CHEN L, APPEL A G, et al. Olfactory responses of the antennal trichoid sensilla to chemical repellents in the mosquito, Culex quinquefasciatus[J]. J Insect Physiol, 2013, 59(11): 1169-1177. doi: 10.1016/j.jinsphys.2013.08.016 [114] BARBOSA-CORNELIO R, CANTOR F, COY-BARRERA E, et al. Tools in the investigation of volatile semiochemicals on insects: from sampling to statistical analysis[J]. Insects, 2019, 10(8): 241. doi: 10.3390/insects10080241 [115] PARK K C, LEE J A, SUCKLING D M. Antennal olfactory sensory neurones responsive to host and nonhost plant volatiles in gorse pod moth Cydia succedana[J]. Physiol Entomol, 2018, 43(2): 86-99. doi: 10.1111/phen.12234 [116] SUH E, BOHBOT J, ZWIEBEL L J. Peripheral olfactory signaling in insects[J]. Curr Opin Insect Sci, 2014, 6: 86-92. doi: 10.1016/j.cois.2014.10.006 [117] YE Z, LIU F, LIU N N. Olfactory responses of southern house mosquito, Culex quinquefasciatus, to human odorants[J]. Chem Senses, 2016, 41(5): 441-447. doi: 10.1093/chemse/bjv089 [118] ANDERSSON M N, LARSSON M C, SVENSSON G P, et al. Characterization of olfactory sensory neurons in the white clover seed weevil, Apion fulvipes (Coleoptera: Apionidae)[J]. J Insect Physiol, 2012, 58(10): 1325-1333. doi: 10.1016/j.jinsphys.2012.07.006 [119] AMMAGARAHALLI B, GEMENO C. Response profile of pheromone receptor neurons in male Grapholita molesta (Lepidoptera: Tortricidae)[J]. J Insect Physiol, 2014, 71: 128-136. doi: 10.1016/j.jinsphys.2014.10.011 [120] BINYAMEEN M, ANDERSON P, IGNELL R, et al. Spatial organization of antennal olfactory sensory neurons in the female Spodoptera littoralis moth: differences in sensitivity and temporal characteristics[J]. Chem Senses, 2012, 37(7): 613-629. doi: 10.1093/chemse/bjs043 [121] HARRACA V, IGNELL R, LÖFSTEDT C, et al. Characterization of the antennal olfactory system of the bed bug (Cimex lectularius)[J]. Chem Senses, 2010, 35(3): 195-204. doi: 10.1093/chemse/bjp096 [122] LIU F, HAYNES K F, APPEL A G, et al. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius[J]. J Chem Ecol, 2014, 40(6): 522-533. doi: 10.1007/s10886-014-0435-z [123] LIU F, LIU N. Using single sensillum recording to detect olfactory neuron responses of bed bugs to semiochemicals[J]. J Vis Exp, 2016(107): e53337. [124] DONG W Y, WANG B, WANG G R. Morphological and ultrastructural characterization of antennal sensilla and the detection of floral scent volatiles in Eupeodes corollae (Diptera: Syrphidae)[J]. Front Neuroanat, 2021, 15: 791900. doi: 10.3389/fnana.2021.791900 [125] FIELD L, PICKETT J, WADHAMS L. Molecular studies in insect olfaction[J]. Insect Mol Biol, 2000, 9(6): 545-551. doi: 10.1046/j.1365-2583.2000.00221.x [126] STENSMYR M C, DEKKER T, HANSSON B S. Evolution of the olfactory code in the Drosophila melanogaster subgroup[J]. Proc Biol Sci, 2003, 270(1531): 2333-2340. doi: 10.1098/rspb.2003.2512 [127] GHANINIA M, IGNELL R, HANSSON B S. Functional classification and central nervous projections of olfactory receptor neurons housed in antennal trichoid sensilla of female yellow fever mosquitoes, Aedes aegypti[J]. Eur J Neurosci, 2007, 26(6): 1611-1623. doi: 10.1111/j.1460-9568.2007.05786.x [128] BARATA N, MUSTAPARTA H, PICKETT J A, et al. Encoding of host and non-host plant odours by receptor neurones in the Eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae)[J]. J Comp Physiol A, 2002, 188(2): 121-133. doi: 10.1007/s00359-002-0282-1 -