Adsorption characteristics and simulation of metazosulfuron in soils
-
摘要: 磺酰脲类除草剂是应用较为广泛的农药之一,其在土壤中迁移、降解、转化和滞留等多个过程受其吸附、解吸行为的影响。本文以嗪吡嘧磺隆为研究对象,采用批量平衡法研究了其在8种不同类型土壤中的吸附、解吸附行为。结果表明:嗪吡嘧磺隆与土壤溶液接触4 h内为快速吸附阶段。Freundlich模型可较好地拟合嗪吡嘧磺隆在土壤中的等温吸附解吸过程,相关系数 (r) 值在0.9584~0.9973之间。8种土壤对嗪吡嘧磺隆的吸附能力均为弱,吸附常数 (Kf-ads) 在0.281~3.515之间。其中,以黑龙江白浆土对嗪吡嘧磺隆的吸附能力最强,且远高于其他土壤。除广西赤红壤外,嗪吡嘧磺隆在其他7种类型土壤中的滞后系数 (H) 均小于1,解吸过程存在滞后现象,存在潜在环境风险。单因素试验结果表明,嗪吡嘧磺隆在土壤中的吸附行为受腐殖酸的影响极显著 (P<0.01),受pH值和Mn2 + 的影响显著 (P<0.05),受高岭土和稻壳生物炭的影响不显著 (P>0.05)。采用中心复合试验设计,建立了具有一定预测功能的嗪吡嘧磺隆在土壤中的吸附过程BP神经网络模型,并进行了验证,拟合结果较好。Abstract: Sulfonylurea herbicide is one of the widely used pesticides. Its migration, degradation, transformation, and retention in the soil system are affected by its adsorption and desorption behaviors in soil. In this study, 8 types of soil from different provinces were selected to investigate the adsorption and successive desorption of metazosulfuron using equilibrium batch experiments. The results showed a very rapid adsorption process in the initial stage (0-4 h), then followed by a slow desorption (4-24 h) process. The Freundlich model fits the isothermal adsorption and desorption process of metazosulfuron in soil well, with r values ranged from 0.9584 to 0.9973. All the selected soils had a low adsorption capacity of metazosulfuron, with Kf-ads ranging from 0.281 to 3.515. Among them, the albic soil from Heilongjiang has the strongest adsorption capacity of metazosulfuron, which was much higher than others. Except for latosolic red soil from Guangxi, the desorption hysteresis values in the other 7 selected soils were below 1, indicating that hysteresis existed in the process of desorption, which means potential environmental risks. The single factor experiment result showed that the effect of humic acid on the adsorption capacity of soil to metazosulfuron was extremely significant (P < 0.01), and the effects of pH and Mn2+ were significant (P < 0.05), while the effects of kaolin and biochar were not significant (P > 0.05). Using the results of the central composite design experiment, a BP neural network model with certain prediction functions, was established and verified.
-
表 1 供试土壤的理化性质
Table 1. Physical and chemical properties of 8 selected soils
理化性质
Physical and chemical property海南
Hainan辽宁
Liaoning广西
Guangxi甘肃
Gansu重庆
Chongqing黑龙江
Heilongjiang陕西
Shaanxi山东
Shandong有机质 Organic matter/(g/kg) 22.49 19.53 13.55 15.44 15.93 52.53 30.51 9.94 pH 7.16 7.79 6.61 8.44 8.15 5.10 8.04 7.98 阳离子交换量 Cation exchange capacity/(cmol/kg) 4.29 12.08 13.24 9.94 16.14 26.85 11.28 8.76 粗砂粒 Coarse sand/% 49.94 14.58 4.72 0.68 15.24 15.70 2.74 4.50 细砂粒 Fine sand/% 32.76 56.12 37.98 58.02 49.46 49.00 47.96 62.20 粉粒 Silt/% 8.00 14.00 32.00 27.00 22.00 23.00 27.00 25.00 黏粒 Clay% 9.30 15.30 25.30 14.30 13.30 12.30 22.30 8.30 铜 Cu/(mg/kg) 53.43 62.20 51.59 46.16 22.08 31.41 70.19 20.75 锌 Zn/(mg/kg) 61.37 67.68 48.99 54.77 57.45 38.91 77.40 107.33 铁 Fe/(mg/kg) 18495 24279 25147 22958 22685 18374 29544 27118 锰 Mn/(mg/kg) 158.5 496.1 351.4 541.3 395.5 656.4 659.9 590.6 镉 Cd/(mg/kg) 0.096 0.161 0.055 0.119 0.132 0.419 0.150 0.301 表 2 嗪吡嘧磺隆在土壤中吸附行为的单因素试验设计
Table 2. Design of single-factor experiment of metazosulfuron adsorption behavior in soils
因素
Factor水平
Level高岭土 Kaolin/g 0.10 1.52 2.55 3.58 5.00 生物炭 Biochar/g 0.10 1.52 2.55 3.58 5.00 腐殖酸 Humic acid/(mg/kg) 0.10 1.52 2.55 3.58 5.00 pH 2.00 4.32 6.00 7.68 10.00 Mn2+/(mg/kg) 0.05 0.62 1.02 1.43 2.00 表 3 中心复合试验设计
Table 3. Design of central composite experiment
因素 Factor −α −1 0 +1 +α 高岭土 Kaolin/g 0.036 0.45 0.75 1.05 1.464 生物炭 Biochar/g 0.036 0.45 0.75 1.05 1.464 腐殖酸 Humic acid/(mg/kg) 100 500 1000 2000 4000 pH 3.62 5 6 7 8.37 Mn2+/(mg/kg) 16.2 30 40 50 63.8 表 4 嗪吡嘧磺隆在土壤中的吸附线性模型和Freundlich模型
Table 4. Linear and Freundlich models of metazosulfuron adsorption in soils
土壤类型
Soil type线性模型
Linear modelFreundlich 模型
Freundlich modelK C0 r K f-ads 1/nads r 海南砖红壤 Humid-thermo ferralitic from Hainan 0.651 ± 0.219 1.047 ± 0.122 0.9738 1.959 ± 0.268 0.574 ± 0.0808 0.9839 辽宁棕壤 Brown earth from Liaoning 0.666 ± 0.0435 0.430 ± 0.0857 0.9915 1.225 ± 0.0696 0.581± 0.0362 0.9973 广西赤红壤 Lateritic red earth from Guangxi 0.443 ± 0.0540 0.29 ± 0.110 0.9716 0.799 ± 0.148 0.578 ± 0.124 0.9713 甘肃灰棕漠土 Gray-brown desert soil from Gansu 0.356 ± 0.0661 0.197 ± 0.137 0.9375 0.435± 0.242 2.767 ± 1.833 0.9584 重庆紫色土 Purplish soil from Chongqing 0.608 ± 0.0498 0.265 ± 0.098 0.9868 0.920 ± 0.140 0.652 ± 0.112 0.9851 黑龙江白浆土 Albic soils from Heilongjiang 3.515 ± 0.356 −0.0132 ± 0.469 0.9801 2.572± 0.348 1.030 ± 0.103 0.9953 陕西褐土 Cinnamon soil from Shaanxi 0.281± 0.0249 0.352 ± 0.0518 0.9847 0.709 ± 0.0432 0.444 ± 0.0338 0.9942 山东潮土 Fluvo-aquic soil from Shandong 0.285 ± 0.039 0.302± 0.0802 0.9644 0.646 ± 0.102 0.475 ± 0.0920 0.9675 表 5 嗪吡嘧磺隆在土壤中的解吸模型及滞后系数
Table 5. Freundlich models of metazosulfuron desorption and hysteresis index in soils
土壤类型
Soil typeFreundlich 模型
Freundlich model滞后系数
Hysteresis index, HKf-des 1/ndes r 海南砖红壤 Humid-thermo ferralitic from Hainan 4.820 ± 1.536 −0.118 ± 0.104 0.9295 0.206 辽宁棕壤 Brown earth from Liaoning 1.888 ± 0.304 −0.274 ± 0.062 0.9718 0.472 广西赤红壤 Lateritic red earth from Guangxi 1.315 ± 0.241 0.841 ± 0.178 0.9888 1.454 甘肃灰棕漠土 Gray-brown desert soils from Gansu 1.133 ± 0.178 1.469 ± 0.713 0.9790 0.531 重庆紫色土Purplish soil from Chongqing 4.226 ± 0.675 −0.186 ± 0.034 0.9976 0.285 黑龙江白浆土 Albic soil from Heilongjiang 19.660 ± 1.057 −0.510 ± 0.021 0.9992 0.495 陕西褐土 Cinnamon soil from Shaanxi 5.897 ± 6.014 −0.141 ± 0.074 0.9507 0.317 山东潮土 Fluvo-aquic soil from Shandong 2.471 ± 1.206 −0.165 ± 0.090 0.9700 0.348 表 6 土壤的理化性质与吸附-解吸常数 (Kf) 的相关性
Table 6. Correlation between the physical and chemical properties of soils with Kf
理化性质
Physical and chemical propertiesKf-ads Kf-des 有机质 Organic matter 0.889** 0.946** pH −0.815* −0.796* 阳离子交换量 Cation exchange capacity 0.492 0.795* 粗砂粒 Coarse sand 0.829* 0.768* 细砂粒 Fine sand −0.418 −0.114 粉粒 Silt −0.533 −0.053 黏粒 Clay −0.358 −0.197 铜 Cu −0.084 −0.232 锌 Zn −0.327 −0.316 铁 Fe −0.787* −0.506 锰 Mn −0.868** −0.598 镉 Cd 0.719 0.942** 注:*表示在P<0.05水平显著;**表示在P<0.01水平显著。Note: *Means extreme significance at P<0.05; **means significance at P<0.05. 表 7 五种因素对嗪吡嘧磺隆在土壤中吸附行为的影响
Table 7. Effects of 5 factors on metazosulfuron adsorption behavior in soils
因素 Factor F P 高岭土 Kaolin 22.670 0.104 稻壳生物炭 Rice hull biochar 14.895 0.135 腐殖酸 Humic acid 80.369 0.005 pH 28.168 0.018 Mn2+ 42.051 0.032 注:P<0.01代表极显著;P<0.05代表显著。Note: P<0.01 means extreme significance; P<0.05 means significance. -
[1] 顾祁昕. 磺酰脲类除草剂甲基二磺隆和三氟啶磺隆的合成研究[D]. 扬州: 扬州大学, 2020.GU Q X. Study on the synthesis of sulfonylurea herbicides mesosulfuron-methyl and triflusulfuron[D]. Yangzhou: Yangzhou University, 2020. [2] 胡芳雨, 安婧, 王宝玉, 等. 农田土壤除草剂污染的修复技术研究进展[J/OL]. 环境科学. [2022-09-23]. https://doi.org/10.13227/j.hjkx.202205323HU F Y, AN J, WANG B Y, et al. Research progress on the remediation technology of herbicide contamination in agricultural soils[J/OL]. Environ Sci, [2022-09-23]. https://doi.org/10.13227/j.hjkx.202205323 [3] 任文杰, 滕应, 骆永明. 东北黑土地农田除草剂污染过程与消减技术研究进展与展望[J]. 土壤学报, 2022, 59(4): 888-898.REN W J, TENG Y, LUO Y M. Research progress and perspective on the pollution process and abatement technology of herbicides in black soil region in northeastern China[J]. Acta Pedologica Sinica, 2022, 59(4): 888-898. [4] 刘影, 施秀飞, 杜晓英, 等. 15% 嗪吡嘧磺隆 • 五氟磺草胺可分散油悬浮剂防除移栽水稻田杂草药效及安全性评价[J]. 湖北农业科学, 2021, 60(6): 67-69.LIU Y, SHI X F, DU X Y, et al. Efficacy and safety evaluation of 15% metazosulfuron·penoxsulam dispersible oil suspending agent against annual weeds in transplant rice field[J]. Hubei Agric Sci, 2021, 60(6): 67-69. [5] SAEKI M, YANO T, NAKAYA Y, et al. Development of a novel herbicide, metazosulfuron[J]. J Pestic Sci, 2016, 41(3): 102-106. doi: 10.1584/jpestics.J16-04 [6] 许静, 唐杰伟, 孔德洋, 等. 嗪吡嘧磺隆在土壤和沉积物中的降解[J]. 环境化学, 2015, 34(3): 461-467. doi: 10.7524/j.issn.0254-6108.2015.03.2014071602XU J, TANG J W, KONG D Y, et al. Degradation of metazosulfuron in soil and sediment[J]. Environ Chem, 2015, 34(3): 461-467. doi: 10.7524/j.issn.0254-6108.2015.03.2014071602 [7] LIU L, RAO L, HU J H, et al. Effects of different factors on the adsorption-desorption behavior of glyamifop and its migration characteristics in agricultural soils across China[J]. Microchem J, 2021, 170: 106646. doi: 10.1016/j.microc.2021.106646 [8] DU P Q, HE H R, WU X H, et al. Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil[J]. J Hazard Mater, 2021, 416: 125770. doi: 10.1016/j.jhazmat.2021.125770 [9] PEÑA A, DELGADO-MORENO L, RODRÍGUEZ-LIÉBANA J A. A review of the impact of wastewater on the fate of pesticides in soils: effect of some soil and solution properties[J]. Sci Total Environ, 2020, 718: 134468. doi: 10.1016/j.scitotenv.2019.134468 [10] 王新, 倪子钧, 李兆兴, 等. 磺酰脲类除草剂的微生物降解研究进展[J]. 环境化学, 2020, 39(5): 1356-1367. doi: 10.7524/j.issn.0254-6108.2019062705WANG X, NI Z J, LI Z X, et al. Research progress on microbial degradation of sulfonylurea herbicides[J]. Environ Chem, 2020, 39(5): 1356-1367. doi: 10.7524/j.issn.0254-6108.2019062705 [11] CARNEIRO G D O P, SOUZA M D F, LINS H A, et al. Herbicide mixtures affect adsorption processes in soils under sugarcane cultivation[J]. Geoderma, 2020, 379: 114626. doi: 10.1016/j.geoderma.2020.114626 [12] SILVA T S, DE FREITAS SOUZA M, MARIA DA SILVA TEÓFILO T, et al. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: a case study of diuron, hexazinone, and sulfometuron-methyl in Brazil[J]. Chemosphere, 2019, 236: 124333. doi: 10.1016/j.chemosphere.2019.07.064 [13] AZCARATE M P, MONTOYA J C, KOSKINEN W C. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils[J]. J Environ Sci Health B, 2015, 50(4): 229-237. doi: 10.1080/03601234.2015.999583 [14] WU C X, WANG J J, ZHANG S Z, et al. Adsorption and desorption of methiopyrsulfuron in soils[J]. Pedosphere, 2011, 21(3): 380-388. doi: 10.1016/S1002-0160(11)60139-2 [15] 郭敏, 单正军, 石利利, 等. 三种磺酰脲类除草剂在土壤中的降解及吸附特性[J]. 环境科学学报, 2012, 32(6): 1459-1464. doi: 10.13671/j.hjkxxb.2012.06.014GUO M, SHAN Z J, SHI L L, et al. Degradation and adsorption characteristics of three sulfonylurea herbicides in different soils[J]. Acta Sci Circumstantiae, 2012, 32(6): 1459-1464. doi: 10.13671/j.hjkxxb.2012.06.014 [16] CACERES-JENSEN L, RODRIGUEZ-BECERRA J, ESCUDEY M, et al. Nicosulfuron sorption kinetics and sorption/desorption on volcanic ash-derived soils: proposal of sorption and transport mechanisms[J]. J Hazard Mater, 2020, 385: 121576. doi: 10.1016/j.jhazmat.2019.121576 [17] 王平平. 改性生物炭对莠去津和烟嘧磺隆的吸附机理及环境行为影响研究[D]. 北京: 中国农业科学院, 2020.WANG P P. Studies on the sorption mechanism and environmental fate of atrazine and nicosulfuron by modified biochar materials[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. [18] USEPA. OPPTS 835. 1230. Fate, transport and transformation test guidelines: adsorption/desorption (batch equilibrium) [S]. Environmental Protection Agency, Washington DC. 2008. [19] 胡宇玉, 沈丹蕾, 罗帅, 等. 两种不同抗生素在沉积物中吸附的影响因素与模拟研究[J]. 环境化学, 2019, 38(7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603HU Y Y, SHEN D L, LUO S, et al. Influencing factors and simulation of adsorption of two different antibiotics in sediments[J]. Environ Chem, 2019, 38(7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603 [20] 张伟. 五种磺酰脲类除草剂在土壤中的环境行为[D]. 重庆: 西南大学, 2007.ZHANG W. Environmenal fates of five sulfonylurea herbicides in soils[D]. Chongqing: Southwest University, 2007. [21] DORETTO K M, PERUCHI L M, RATH S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils[J]. Sci Total Environ, 2014, 476-477: 406-414. doi: 10.1016/j.scitotenv.2014.01.024 [22] 李昉泽, 冯丹, 邓惠, 等. 阿特拉津在 5 种农业土壤中的吸附解吸特性分析[J]. 生态环境学报, 2015, 24(12): 2056-2061. doi: 10.16258/j.cnki.1674-5906.2015.12.021LI F Z, FENG D, DENG H, et al. Adsorption and desorption of atrazine in five agriculture soils[J]. Ecol Environ Sci, 2015, 24(12): 2056-2061. doi: 10.16258/j.cnki.1674-5906.2015.12.021 [23] TANG Z W, ZHANG W, CHEN Y M. Adsorption and desorption characteristics of monosulfuron in Chinese soils[J]. J Hazard Mater, 2009, 166(2-3): 1351-1356. doi: 10.1016/j.jhazmat.2008.12.052 [24] 孙航, 蒋煜峰, 石磊平, 等. 不同热解及来源生物炭对西北黄土吸附敌草隆的影响[J]. 环境科学, 2016, 37(12): 4857-4866. doi: 10.13227/j.hjkx.201606171SUN H, JIANG Y F, SHI L P, et al. Adsorption and influential factors of diuron on the loess soil by adding different biochar prepared at varying temperatures[J]. Environ Sci, 2016, 37(12): 4857-4866. doi: 10.13227/j.hjkx.201606171 [25] WANG P P, LIU X G, YU B C, et al. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution[J]. Sci Total Environ, 2020, 702: 134767. doi: 10.1016/j.scitotenv.2019.134767 [26] 原陇苗, 蒋煜峰, 刘兰兰, 等. 天然腐殖酸对黄土吸附敌草隆的影响[J]. 环境科学研究, 2019, 32(11): 1904-1912. doi: 10.13198/j.issn.1001-6929.2019.06.06YUAN L M, JIANG Y F, LIU L L, et al. Effect of natural humic acid on adsorption of diuron by loess[J]. Res Environ Sci, 2019, 32(11): 1904-1912. doi: 10.13198/j.issn.1001-6929.2019.06.06 [27] AFOLABI I C, POPOOLA S I, BELLO O S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network[J]. Chemom Intell Lab Syst, 2020, 203: 104053. doi: 10.1016/j.chemolab.2020.104053 [28] SINGHA B, BAR N, DAS S K. The use of artificial neural network (ANN) for modeling of Pb(II) adsorption in batch process[J]. J Mol Liq, 2015, 211: 228-232. doi: 10.1016/j.molliq.2015.07.002 [29] TANZIFI M, HOSSEINI S H, KIADEHI A D, et al. Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies[J]. J Mol Liq, 2017, 244: 189-200. doi: 10.1016/j.molliq.2017.08.122 -