• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嗪吡嘧磺隆在土壤中的吸附特性及其吸附过程模型的建立

方丽萍 苑学霞 梁京芸 官帅 杜红霞

方丽萍, 苑学霞, 梁京芸, 官帅, 杜红霞. 嗪吡嘧磺隆在土壤中的吸附特性及其吸附过程模型的建立[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0071
引用本文: 方丽萍, 苑学霞, 梁京芸, 官帅, 杜红霞. 嗪吡嘧磺隆在土壤中的吸附特性及其吸附过程模型的建立[J]. 农药学学报. doi: 10.16801/j.issn.1008-7303.2022.0071
FANG Liping, YUAN Xuexia, LIANG Jingyun, GUAN Shuai, DU Hongxia. Adsorption characteristics and simulation of metazosulfuron in soils[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0071
Citation: FANG Liping, YUAN Xuexia, LIANG Jingyun, GUAN Shuai, DU Hongxia. Adsorption characteristics and simulation of metazosulfuron in soils[J]. Chinese Journal of Pesticide Science. doi: 10.16801/j.issn.1008-7303.2022.0071

嗪吡嘧磺隆在土壤中的吸附特性及其吸附过程模型的建立

doi: 10.16801/j.issn.1008-7303.2022.0071
基金项目: 国家自然科学基金项目 (41907030);山东省自然科学基金 (ZR2016YL025)
详细信息
    作者简介:

    方丽萍,lpfang922@163.com

    通讯作者:

    苑学霞,yuanxuexia@sohu.com

  • 中图分类号: X825

Adsorption characteristics and simulation of metazosulfuron in soils

Funds: National Natural Science Foundation of China (41907030); Natural Science Foundation of Shandong Province (ZR2016YL025)
  • 摘要: 磺酰脲类除草剂是应用较为广泛的农药之一,其在土壤中迁移、降解、转化和滞留等多个过程受其吸附、解吸行为的影响。本文以嗪吡嘧磺隆为研究对象,采用批量平衡法研究了其在8种不同类型土壤中的吸附、解吸附行为。结果表明:嗪吡嘧磺隆与土壤溶液接触4 h内为快速吸附阶段。Freundlich模型可较好地拟合嗪吡嘧磺隆在土壤中的等温吸附解吸过程,相关系数 (r) 值在0.9584~0.9973之间。8种土壤对嗪吡嘧磺隆的吸附能力均为弱,吸附常数 (Kf-ads) 在0.281~3.515之间。其中,以黑龙江白浆土对嗪吡嘧磺隆的吸附能力最强,且远高于其他土壤。除广西赤红壤外,嗪吡嘧磺隆在其他7种类型土壤中的滞后系数 (H) 均小于1,解吸过程存在滞后现象,存在潜在环境风险。单因素试验结果表明,嗪吡嘧磺隆在土壤中的吸附行为受腐殖酸的影响极显著 (P<0.01),受pH值和Mn2 + 的影响显著 (P<0.05),受高岭土和稻壳生物炭的影响不显著 (P>0.05)。采用中心复合试验设计,建立了具有一定预测功能的嗪吡嘧磺隆在土壤中的吸附过程BP神经网络模型,并进行了验证,拟合结果较好。
  • 图  1  嗪吡嘧磺隆在8种土壤中的吸附动力学 (25 ℃)

    Figure  1.  Adsorption kinetics of metazosulfuron in the soil-water compartment at 25 ℃

    图  2  BP神经网络模型训练迭代过程误差收敛曲线

    Figure  2.  Error convergence curve during the iteration training of neural network model

    图  3  BP神经网络模型训练样本 (A) 和测试样本 (B) 预测值与实际值对比

    Figure  3.  Comparison between the output of BP neural network model (A) and the measured value (B) during training and verifying process

    图  4  BP神经网络模型可靠性验证

    Figure  4.  Verification of BP neural network model

    表  1  供试土壤的理化性质

    Table  1.   Physical and chemical properties of 8 selected soils

    理化性质   
    Physical and chemical property   
    海南
    Hainan
    辽宁
    Liaoning
    广西
    Guangxi
    甘肃
    Gansu
    重庆
    Chongqing
    黑龙江
    Heilongjiang
    陕西
    Shaanxi
    山东
    Shandong
    有机质 Organic matter /(g/kg) 22.49 19.53 13.55 15.44 15.93 52.53 30.51 9.94
    pH 7.16 7.79 6.61 8.44 8.15 5.10 8.04 7.98
    阳离子交换量 Cation exchange capacity /(cmol/kg) 4.29 12.08 13.24 9.94 16.14 26.85 11.28 8.76
    粗砂粒 Coarse sand/% 49.94 14.58 4.72 0.68 15.24 15.70 2.74 4.50
    细砂粒 Fine sand/% 32.76 56.12 37.98 58.02 49.46 49.00 47.96 62.20
    粉粒 Silt/% 8.00 14.00 32.00 27.00 22.00 23.00 27.00 25.00
    黏粒 Clay% 9.30 15.30 25.30 14.30 13.30 12.30 22.30 8.30
    铜 Cu/(mg/kg) 53.43 62.20 51.59 46.16 22.08 31.41 70.19 20.75
    锌 Zn/(mg/kg) 61.37 67.68 48.99 54.77 57.45 38.91 77.40 107.33
    铁 Fe/(mg/kg) 18495 24279 25147 22958 22685 18374 29544 27118
    锰 Mn/(mg/kg) 158.5 496.1 351.4 541.3 395.5 656.4 659.9 590.6
    镉 Cd/(mg/kg) 0.096 0.161 0.055 0.119 0.132 0.419 0.150 0.301
    下载: 导出CSV

    表  2  嗪吡嘧磺隆在土壤中吸附行为的单因素试验设计

    Table  2.   Design of single-factor experiment of metazosulfuron adsorption behavior in soils

    因素     
    Factor     
    水平
    Level
    高岭土 Kaolin/g 0.10 1.52 2.55 3.58 5.00
    生物炭 Biochar/g 0.10 1.52 2.55 3.58 5.00
    腐殖酸 Humic acid/(mg/kg) 0.10 1.52 2.55 3.58 5.00
    pH 2.00 4.32 6.00 7.68 10.00
    Mn2+/(mg/kg) 0.05 0.62 1.02 1.43 2.00
    下载: 导出CSV

    表  3  中心复合试验设计

    Table  3.   Design of central composite experiment

    因素 Factor    α−10+1+α
    高岭土 Kaolin/g 0.036 0.45 0.75 1.05 1.464
    生物炭 Biochar/g 0.036 0.45 0.75 1.05 1.464
    腐殖酸 Humic acid/(mg/kg) 100 500 1000 2000 4000
    pH 3.62 5 6 7 8.37
    Mn2+/(mg/kg) 16.2 30 40 50 63.8
    下载: 导出CSV

    表  4  嗪吡嘧磺隆在土壤中的吸附线性模型和Freundlich模型

    Table  4.   Linear and Freundlich models of metazosulfuron adsorption in soils

    土壤类型  
    Soil type  
    线性模型
    Linear model
    Freundlich模型
    Freundlich model
    KC0rK f-ads1/nadsr
    海南砖红壤 Humid-thermo ferralitic from Hainan 0.651 ± 0.219 1.047 ± 0.122 0.9738 1.959 ± 0.268 0.574 ± 0.0808 0.9839
    辽宁棕壤 Brown earth from Liaoning 0.666 ± 0.0435 0.430 ± 0.0857 0.9915 1.225 ± 0.0696 0.581± 0.0362 0.9973
    广西赤红壤 Lateritic red earth from Guangxi 0.443 ± 0.0540 0.29 ± 0.110 0.9716 0.799 ± 0.148 0.578 ± 0.124 0.9713
    甘肃灰棕漠土 Gray-brown desert soil from Gansu 0.356 ± 0.0661 0.197 ± 0.137 0.9375 0.435± 0.242 2.767 ± 1.833 0.9584
    重庆紫色土 Purplish soil from Chongqing 0.608 ± 0.0498 0.265 ± 0.098 0.9868 0.920 ± 0.140 0.652 ± 0.112 0.9851
    黑龙江白浆土 Albic soils from Heilongjiang 3.515 ± 0.356 −0.0132 ± 0.469 0.9801 2.572± 0.348 1.030 ± 0.103 0.9953
    陕西褐土 Cinnamon soil from Shaanxi 0.281± 0.0249 0.352 ± 0.0518 0.9847 0.709 ± 0.0432 0.444 ± 0.0338 0.9942
    山东潮土 Fluvo-aquic soil from Shandong 0.285 ± 0.039 0.302± 0.0802 0.9644 0.646 ± 0.102 0.475 ± 0.0920 0.9675
    下载: 导出CSV

    表  5  嗪吡嘧磺隆在土壤中的解吸模型及滞后系数

    Table  5.   Freundlich models of metazosulfuron desorption and hysteresis index in soils

    土壤类型   
    Soil type   
    Freundlich模型
    Freundlich model
    滞后系数H
    Hysteresis index
    Kf-des1/ndesr
    海南砖红壤 Humid-thermo ferralitic from Hainan 4.820 ± 1.536 −0.118 ± 0.104 0.9295 0.206
    辽宁棕壤 Brown earth from Liaoning 1.888 ± 0.304 −0.274 ± 0.062 0.9718 0.472
    广西赤红壤 Lateritic red earth from Guangxi 1.315 ± 0.241 0.841 ± 0.178 0.9888 1.454
    甘肃灰棕漠土 Gray-brown desert soils from Gansu 1.133 ± 0.178 1.469 ± 0.713 0.9790 0.531
    重庆紫色土Purplish soil from Chongqing 4.226 ± 0.675 −0.186 ± 0.034 0.9976 0.285
    黑龙江白浆土 Albic soil from Heilongjiang 19.660 ± 1.057 −0.510 ± 0.021 0.9992 0.495
    陕西褐土 Cinnamon soil from Shaanxi 5.897 ± 6.014 −0.141 ± 0.074 0.9507 0.317
    山东潮土 Fluvo-aquic soil from Shandong 2.471 ± 1.206 −0.165 ± 0.090 0.9700 0.348
    下载: 导出CSV

    表  6  土壤的理化性质与吸附-解吸常数 (Kf) 的相关性

    Table  6.   Correlation between the physical and chemical properties of soils with Kf

    理化性质
    Physical and chemical properties
    Kf-adsKf-des
    有机质 Organic matter 0.889** 0.946**
    pH −0.815* −0.796*
    阳离子交换量 Cation exchange capacity 0.492 0.795*
    粗砂粒 Coarse sand 0.829* 0.768*
    细砂粒 Fine sand −0.418 −0.114
    粉粒 Silt −0.533 −0.053
    黏粒 Clay −0.358 −0.197
    铜 Cu −0.084 −0.232
    锌 Zn −0.327 −0.316
    铁 Fe −0.787* −0.506
    锰 Mn −0.868** −0.598
    镉 Cd 0.719 0.942**
    注:*表示在P<0.05水平显著;**表示在P<0.01水平显著。Note: *Means extreme significance at P<0.05; **means significance at P<0.05.
    下载: 导出CSV

    表  7  五种因素对嗪吡嘧磺隆在土壤中吸附行为的影响

    Table  7.   Effects 5 factors on metazosulfuron adsorption behavior in soils

    因素 FactorFP
    高岭土 Kaolin 22.670 0.104
    稻壳生物炭 Rice hull biochar 14.895 0.135
    腐殖酸 Humic acid 80.369 0.005
    pH 28.168 0.018
    Mn2+ 42.051 0.032
    注:P<0.01代表极显著;P<0.05代表显著。Note: P<0.01 means extreme significance; P<0.05 means significance.
    下载: 导出CSV
  • [1] 顾祁昕. 磺酰脲类除草剂甲基二磺隆和三氟啶磺隆的合成研究[D]. 扬州: 扬州大学, 2020.

    GU Q X. Study on the synthesis of sulfonylurea herbicides mesosulfuron-methyl and triflusulfuron[D]. Yangzhou: Yangzhou University, 2020.
    [2] 胡芳雨, 安婧, 王宝玉, 等. 农田土壤除草剂污染的修复技术研究进展[J/OL]. 环境科学. [2022-09-23]. https://doi.org/10.13227/j.hjkx.202205323

    HU F Y, AN J, WANG B Y, et al. Research progress on the remediation technology of herbicide contamination in agricultural soils[J/OL]. Environ Sci, [2022-09-23]. https://doi.org/10.13227/j.hjkx.202205323
    [3] 任文杰, 滕应, 骆永明. 东北黑土地农田除草剂污染过程与消减技术研究进展与展望[J]. 土壤学报, 2022, 59(4): 888-898.

    REN W J, TENG Y, LUO Y M. Research progress and perspective on the pollution process and abatement technology of herbicides in black soil region in northeastern China[J]. Acta Pedologica Sinica, 2022, 59(4): 888-898.
    [4] 刘影, 施秀飞, 杜晓英, 等. 15%嗪吡嘧磺隆 • 五氟磺草胺可分散油悬浮剂防除移栽水稻田杂草药效及安全性评价[J]. 湖北农业科学, 2021, 60(6): 67-69.

    LIU Y, SHI X F, DU X Y, et al. Efficacy and safety evaluation of 15% metazosulfuron·penoxsulam dispersible oil suspending agent against annual weeds in transplant rice field[J]. Hubei Agric Sci, 2021, 60(6): 67-69.
    [5] SAEKI M, YANO T, NAKAYA Y, et al. Development of a novel herbicide, metazosulfuron[J]. J Pestic Sci, 2016, 41(3): 102-106. doi: 10.1584/jpestics.J16-04
    [6] 许静, 唐杰伟, 孔德洋, 等. 嗪吡嘧磺隆在土壤和沉积物中的降解[J]. 环境化学, 2015, 34(3): 461-467. doi: 10.7524/j.issn.0254-6108.2015.03.2014071602

    XU J, TANG J W, KONG D Y, et al. Degradation of metazosulfuron in soil and sediment[J]. Environ Chem, 2015, 34(3): 461-467. doi: 10.7524/j.issn.0254-6108.2015.03.2014071602
    [7] LIU L, RAO L, HU J H, et al. Effects of different factors on the adsorption-desorption behavior of glyamifop and its migration characteristics in agricultural soils across China[J]. Microchem J, 2021, 170: 106646. doi: 10.1016/j.microc.2021.106646
    [8] DU P Q, HE H R, WU X H, et al. Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil[J]. J Hazard Mater, 2021, 416: 125770. doi: 10.1016/j.jhazmat.2021.125770
    [9] PEÑA A, DELGADO-MORENO L, RODRÍGUEZ-LIÉBANA J A. A review of the impact of wastewater on the fate of pesticides in soils: effect of some soil and solution properties[J]. Sci Total Environ, 2020, 718: 134468. doi: 10.1016/j.scitotenv.2019.134468
    [10] 王新, 倪子钧, 李兆兴, 等. 磺酰脲类除草剂的微生物降解研究进展[J]. 环境化学, 2020, 39(5): 1356-1367. doi: 10.7524/j.issn.0254-6108.2019062705

    WANG X, NI Z J, LI Z X, et al. Research progress on microbial degradation of sulfonylurea herbicides[J]. Environ Chem, 2020, 39(5): 1356-1367. doi: 10.7524/j.issn.0254-6108.2019062705
    [11] CARNEIRO G D O P, SOUZA M D F, LINS H A, et al. Herbicide mixtures affect adsorption processes in soils under sugarcane cultivation[J]. Geoderma, 2020, 379: 114626. doi: 10.1016/j.geoderma.2020.114626
    [12] SILVA T S, DE FREITAS SOUZA M, MARIA DA SILVA TEÓFILO T, et al. Use of neural networks to estimate the sorption and desorption coefficients of herbicides: a case study of diuron, hexazinone, and sulfometuron-methyl in Brazil[J]. Chemosphere, 2019, 236: 124333. doi: 10.1016/j.chemosphere.2019.07.064
    [13] AZCARATE M P, MONTOYA J C, KOSKINEN W C. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils[J]. J Environ Sci Health B, 2015, 50(4): 229-237. doi: 10.1080/03601234.2015.999583
    [14] WU C X, WANG J J, ZHANG S Z, et al. Adsorption and desorption of methiopyrsulfuron in soils[J]. Pedosphere, 2011, 21(3): 380-388. doi: 10.1016/S1002-0160(11)60139-2
    [15] 郭敏, 单正军, 石利利, 等. 三种磺酰脲类除草剂在土壤中的降解及吸附特性[J]. 环境科学学报, 2012, 32(6): 1459-1464. doi: 10.13671/j.hjkxxb.2012.06.014

    GUO M, SHAN Z J, SHI L L, et al. Degradation and adsorption characteristics of three sulfonylurea herbicides in different soils[J]. Acta Sci Circumstantiae, 2012, 32(6): 1459-1464. doi: 10.13671/j.hjkxxb.2012.06.014
    [16] CACERES-JENSEN L, RODRIGUEZ-BECERRA J, ESCUDEY M, et al. Nicosulfuron sorption kinetics and sorption/desorption on volcanic ash-derived soils: proposal of sorption and transport mechanisms[J]. J Hazard Mater, 2020, 385: 121576. doi: 10.1016/j.jhazmat.2019.121576
    [17] 王平平. 改性生物炭对莠去津和烟嘧磺隆的吸附机理及环境行为影响研究[D]. 北京: 中国农业科学院, 2020.

    WANG P P. Studies on the sorption mechanism and environmental fate of atrazine and nicosulfuron by modified biochar materials[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [18] USEPA. OPPTS 835. 1230. Fate, transport and transformation test guidelines: adsorption/desorption (batch equilibrium) [S]. Environmental Protection Agency, Washington DC. 2008.
    [19] 胡宇玉, 沈丹蕾, 罗帅, 等. 两种不同抗生素在沉积物中吸附的影响因素与模拟研究[J]. 环境化学, 2019, 38(7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603

    HU Y Y, SHEN D L, LUO S, et al. Influencing factors and simulation of adsorption of two different antibiotics in sediments[J]. Environ Chem, 2019, 38(7): 1570-1581. doi: 10.7524/j.issn.0254-6108.2018091603
    [20] 张伟. 五种磺酰脲类除草剂在土壤中的环境行为[D]. 重庆: 西南大学, 2007.

    ZHANG W. Environmenal fates of five sulfonylurea herbicides in soils[D]. Chongqing: Southwest University, 2007.
    [21] DORETTO K M, PERUCHI L M, RATH S. Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils[J]. Sci Total Environ, 2014, 476-477: 406-414. doi: 10.1016/j.scitotenv.2014.01.024
    [22] 李昉泽, 冯丹, 邓惠, 等. 阿特拉津在5种农业土壤中的吸附解吸特性分析[J]. 生态环境学报, 2015, 24(12): 2056-2061. doi: 10.16258/j.cnki.1674-5906.2015.12.021

    LI F Z, FENG D, DENG H, et al. Adsorption and desorption of atrazine in five agriculture soils[J]. Ecol Environ Sci, 2015, 24(12): 2056-2061. doi: 10.16258/j.cnki.1674-5906.2015.12.021
    [23] TANG Z W, ZHANG W, CHEN Y M. Adsorption and desorption characteristics of monosulfuron in Chinese soils[J]. J Hazard Mater, 2009, 166(2-3): 1351-1356. doi: 10.1016/j.jhazmat.2008.12.052
    [24] 孙航, 蒋煜峰, 石磊平, 等. 不同热解及来源生物炭对西北黄土吸附敌草隆的影响[J]. 环境科学, 2016, 37(12): 4857-4866. doi: 10.13227/j.hjkx.201606171

    SUN H, JIANG Y F, SHI L P, et al. Adsorption and influential factors of diuron on the loess soil by adding different biochar prepared at varying temperatures[J]. Environ Sci, 2016, 37(12): 4857-4866. doi: 10.13227/j.hjkx.201606171
    [25] WANG P P, LIU X G, YU B C, et al. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution[J]. Sci Total Environ, 2020, 702: 134767. doi: 10.1016/j.scitotenv.2019.134767
    [26] 原陇苗, 蒋煜峰, 刘兰兰, 等. 天然腐殖酸对黄土吸附敌草隆的影响[J]. 环境科学研究, 2019, 32(11): 1904-1912. doi: 10.13198/j.issn.1001-6929.2019.06.06

    YUAN L M, JIANG Y F, LIU L L, et al. Effect of natural humic acid on adsorption of diuron by loess[J]. Res Environ Sci, 2019, 32(11): 1904-1912. doi: 10.13198/j.issn.1001-6929.2019.06.06
    [27] AFOLABI I C, POPOOLA S I, BELLO O S. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network[J]. Chemom Intell Lab Syst, 2020, 203: 104053. doi: 10.1016/j.chemolab.2020.104053
    [28] SINGHA B, BAR N, DAS S K. The use of artificial neural network (ANN) for modeling of Pb(II) adsorption in batch process[J]. J Mol Liq, 2015, 211: 228-232. doi: 10.1016/j.molliq.2015.07.002
    [29] TANZIFI M, HOSSEINI S H, KIADEHI A D, et al. Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies[J]. J Mol Liq, 2017, 244: 189-200. doi: 10.1016/j.molliq.2017.08.122
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-06-27
  • 网络出版日期:  2022-08-01

目录

    /

    返回文章
    返回