• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五种脱落酸功能类似物对提高小麦抗盐胁迫的效应和机理

刘贯园 李晓斌 肖玉梅 车传亮 汤显军 丁珊珊 徐彦军 覃兆海

刘贯园, 李晓斌, 肖玉梅, 车传亮, 汤显军, 丁珊珊, 徐彦军, 覃兆海. 五种脱落酸功能类似物对提高小麦抗盐胁迫的效应和机理[J]. 农药学学报, 2022, 24(5): 1196-1205. doi: 10.16801/j.issn.1008-7303.2022.0080
引用本文: 刘贯园, 李晓斌, 肖玉梅, 车传亮, 汤显军, 丁珊珊, 徐彦军, 覃兆海. 五种脱落酸功能类似物对提高小麦抗盐胁迫的效应和机理[J]. 农药学学报, 2022, 24(5): 1196-1205. doi: 10.16801/j.issn.1008-7303.2022.0080
LIU Guanyuan, LI Xiaobin, XIAO Yumei, CHE Chuanliang, TANG Xianjun, DING Shanshan, XU Yanjun, QIN Zhaohai. Effects of five functional analogues of abscisic acid on improving salt stress tolerance of wheat and their mechanism[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1196-1205. doi: 10.16801/j.issn.1008-7303.2022.0080
Citation: LIU Guanyuan, LI Xiaobin, XIAO Yumei, CHE Chuanliang, TANG Xianjun, DING Shanshan, XU Yanjun, QIN Zhaohai. Effects of five functional analogues of abscisic acid on improving salt stress tolerance of wheat and their mechanism[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1196-1205. doi: 10.16801/j.issn.1008-7303.2022.0080

五种脱落酸功能类似物对提高小麦抗盐胁迫的效应和机理

doi: 10.16801/j.issn.1008-7303.2022.0080
基金项目: 国家自然科学基金面上项目(22077136)
详细信息
    作者简介:

    刘贯园,liuguanyuan@cau.edu.cn

    通讯作者:

    肖玉梅,xiaoyumei@cau.edu.cn

    覃兆海,qinzhaohai@263.net

  • 中图分类号: S482.8;X53

Effects of five functional analogues of abscisic acid on improving salt stress tolerance of wheat and their mechanism

Funds: National Natural Science Foundation of China (22077136)
  • 摘要: 土壤盐渍化是降低作物产量的非生物胁迫因素之一,对小麦种子出苗和苗期生长造成严重影响。本研究以小麦品种“鲁原502”为材料,采用室内水培法探讨了5种脱落酸(ABA)功能类似物——萘酮戊酸(natenpac,NA),quinabctin (QB)及其3种结构类似物tetrafluoroquinabctin (TFQB)、indabactin (IQB)和tetrafluorothioquinabctin (TFTQB)对提高其幼苗抗盐性的影响。结果表明:苗期喷施上述5种化合物均能显著促进在300 mmol/L氯化钠胁迫下小麦幼苗的生长,其中喷施TFQB、TFTQB和NA的效果最好;NA和TFTQB能够通过增加根长、根表面积和根体积而显著促进盐胁迫下小麦幼苗的根系生长,从而增强小麦幼苗根系的吸水能力;5种ABA功能类似物对盐胁迫下小麦幼苗的光合效应、抗氧化酶活性、细胞膜受损状况、渗透调节物质积累等均有显著改善,其中NA处理可显著减轻PSⅡ最大光能转换效率 (Fv/Fm) 下降的幅度,维持胞间二氧化碳(CO2)浓度的功能优于其他4种化合物;除IQB外,其他4种化合物均能有效降低丙二醛(MDA)含量、显著降低内源生长素(IAA)含量并提高内源ABA含量,其中NA在启动ABA信号途径以提高抗盐胁迫方面比其他4种化合物更有效。本研究结果对揭示ABA功能类似物的作用机制、提高小麦耐盐性具有重要的理论意义和潜在的应用价值。
  • 1  脱落酸及其5种功能类似物的结构式

    1.  Structural formula of abscisic acid and its five functional analogues

    图  1  5种ABA功能类似物对盐胁迫下小麦幼苗生长的影响

    注:CK—Hoagland 营养液;SCK—含300 mmol/L NaCl的Hoagland 营养液;ABA、QB、TFQB、NA、IQB和TFTQB分别为喷施8 mL 10 μmol/L ABA、QB、TFQB、NA、IQB及TFTQB两次后,再用含300 mmol/L NaCl的Hoagland 营养液培养。ABA = 脱落酸;QB = Quinabctin;TFQB = tetrafluoroquinabctin;NA = 萘酮戊酸;IQB = indabactin;TFTQB=TFQB的硫代产物。下同。

    Figure  1.  Effects of five ABA functional analogues treatment on the growth of wheat seedlings under salt stress

    Note:CK—Hoagland nutrient solution;SCK—Hoagland nutrient solution containing 300 mmol/L NaCl; ABA, QB, TFQB, NA, IQB and TFTQB indicate that seedlings are sprayed with 8 mL 10 μmol/L ABA, QB, TFQB, natenpac, IQB, and TFTQB twice respectively, then treated with Hoagland nutrient solution containing 300 mmol/L NaCl. ABA = abscisic acid; QB = Quinabctin; TFQB = tetrafluoroquinabctin; NA = natenpac; IQB = indabactin; TFTQB = sulfide TFQB. The same as follow.

    图  2  5种ABA功能类似物对盐胁迫下小麦幼苗生物量的影响

    Figure  2.  Effects of five ABA functional analogues treatment on the biomass of wheat seedlings under salt stress

    图  3  5种ABA功能类似物对盐胁迫下小麦幼苗根系的影响

    A. 根系表型; B. 根长; C. 根表面积; D. 根体积。

    Figure  3.  Effects of five ABA functional analogues treatment on the root system of wheat seedlings under salt stress

    A. Root phenotype; B. Root length; C. Surface area of root; D. Root volume.

    图  4  5种ABA功能类似物对盐胁迫下小麦幼苗叶片相对含水量的影响

    Figure  4.  Effects of five ABA functional analogues treatment on leaf relative water content of wheat seedlings under salt stress

    图  5  5种ABA功能类似物对盐胁迫下小麦光合参数的影响

    Figure  5.  Effects of five ABA functional analogues treatment on the photosynthetic parameters of wheat under salt stress

    图  6  5种ABA功能类似物对盐胁迫下小麦幼苗叶片叶绿素的影响

    Figure  6.  Effects of five ABA functional analogues treatment on the chlorophyll of wheat seedling leaves under salt stress

    图  7  5种ABA功能类似物对盐胁迫下小麦幼苗叶片抗氧化酶活性的影响

    Figure  7.  Effects of five ABA functional analogues treatment on antioxidant enzyme activities in leaves of wheat seedling under salt stress

    图  8  5种ABA功能类似物对盐胁迫下小麦幼苗叶片相对电导率和MDA含量的影响

    Figure  8.  Effects of five ABA functional analogues treatment on the relative conductivity and MDA content in the wheat leaves under salt stress

    图  9  5种ABA功能类似物对盐胁迫下小麦幼苗渗透调节物质含量的影响

    Figure  9.  Effects of five ABA functional analogues treatment on the content of osmotic adjustment substances in wheat seedlings under salt stress

    图  10  5种ABA功能类似物对盐胁迫下小麦幼苗内源生长素和脱落酸含量的影响

    Figure  10.  Effects of five ABA functional analogues treatment on the IAA and endogenous ABA content in wheat seedling under salt stress

  • [1] 王萌萌, 姜奇彦, 胡正, 等. 小麦品种资源耐盐性鉴定[J]. 植物遗传资源学报, 2012, 13(2): 189-194. doi: 10.3969/j.issn.1672-1810.2012.02.005

    WANG M M, JIANG Q Y, HU Z, et al. Evaluation for salt tolerance of wheat cultivars[J]. J Plant Genet Resour Resour, 2012, 13(2): 189-194. doi: 10.3969/j.issn.1672-1810.2012.02.005
    [2] EL-HENDAWY S E, HASSAN W M, AL-SUHAIBANI N A, et al. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions[J]. Front Plant Sci, 2017, 8: 435.
    [3] SHARMA I, CHING E, SAINI S, et al. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1[J]. Plant Physiol Biochem, 2013, 69: 17-26. doi: 10.1016/j.plaphy.2013.04.013
    [4] IQBAL M, ASHRAF M. Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis[J]. Environ Exp Bot, 2013, 86: 76-85. doi: 10.1016/j.envexpbot.2010.06.002
    [5] AMJAD M, AKHTAR J, ANWAR-UL-HAQ M, et al. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress[J]. Sci Hortic, 2014, 172: 109-116. doi: 10.1016/j.scienta.2014.03.024
    [6] TREUTTER D. Significance of flavonoids in plant resistance: a review[J]. Environ Chem Lett, 2006, 4(3): 147-157. doi: 10.1007/s10311-006-0068-8
    [7] CHEN H H, LI P H, BRENNER M L. Involvement of abscisic acid in potato cold acclimation[J]. Plant Physiol, 1983, 71(2): 362-365. doi: 10.1104/pp.71.2.362
    [8] TENG K Q, LI J Z, LIU L, et al. Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress[J]. Acta Physiol Plant, 2014, 36(8): 2219-2227. doi: 10.1007/s11738-014-1599-4
    [9] TANINO K K, CHEN T H H, FUCHIGAMI L H, et al. Abscisic acid-induced cellular alterations during the induction of freezing tolerance in bromegrass cells[J]. J Plant Physiol, 1991, 137(5): 619-624. doi: 10.1016/S0176-1617(11)80709-1
    [10] LU S Y, SU W, LI H H, et al. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities[J]. Plant Physiol Biochem, 2009, 47(2): 132-138. doi: 10.1016/j.plaphy.2008.10.006
    [11] OKAMOTO M, PETERSON F C, DEFRIES A, et al. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance[J]. PNAS, 2013, 110(29): 12132-12137. doi: 10.1073/pnas.1305919110
    [12] CAO M J, LIU X, ZHANG Y, et al. An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants[J]. Cell Res, 2013, 23(8): 1043-1054. doi: 10.1038/cr.2013.95
    [13] DUAN L S, YU C X, LIU S J, et al. Preparation of amino acid substituted naphthalene sulfamide compounds as plant growth regulators: WO 2018086507 A1[P]. 2018-05-17.
    [14] CAO M J, ZHANG Y L, LIU X, et al. Combining chemical and genetic approaches to increase drought resistance in plants[J]. Nat Commun, 2017, 8: 1183. doi: 10.1038/s41467-017-01239-3
    [15] MA D Y, XU Y, ZHANG Z Q, et al. Efficacy of ABA-mimicking ligands in controlling water loss and maintaining antioxidative capacity of Spinacia oleracea[J]. J Agric Food Chem, 2018, 66(51): 13397-13404. doi: 10.1021/acs.jafc.8b05859
    [16] HAN X Q, JIANG L, CHE C L, et al. Design and functional characterization of a novel abscisic acid analog[J]. Sci Rep, 2017, 7: 43863. doi: 10.1038/srep43863
    [17] 王涛, 丁珊珊, 韩小强, 等. 王涛, 丁珊珊, 韩小强, 等. 脱落酸功能类似物萘酮戊酸对葡萄着色与品质提升的影响[J]. 农药学学报, 2022, 24(3): 501-508. doi: 10.16801/j.issn.1008-7303.2022.0007

    WANG T, DING S S, HAN X Q, et al. Influence of abscisic acid functional analog natenpac on grape coloring and quality improvement[J]. Chin J Pestic Sci, 2022, 24(3): 501-508. doi: 10.16801/j.issn.1008-7303.2022.0007
    [18] 车传亮, 胡益敏, 丁珊珊, 等. 新型Pyrabactin类似物的设计、合成及种子萌发抑制活性[J]. 有机化学, 2019, 39(2): 419-426. doi: 10.6023/cjoc201807057

    CHE C L, HU Y M, DING S S, et al. Design, synthesis and inhibition activity of seed germination of novel pyrabactin analogs[J]. Chin J Org Chem, 2019, 39(2): 419-426. doi: 10.6023/cjoc201807057
    [19] 车传亮. 基于 pyrabactin、quinabactin 和 iso-PhABA 的脱落酸受体功能探针的设计、合成及生物学评价[D]. 北京: 中国农业大学, 2019.

    CHE C L. Probing the ABA receptor functions by novel pyrabactin, quinabactin and iso-PhABA analogues[D]. Beijing: China Agricultural University, 2019.
    [20] 李小方, 张志良. 植物生理学实验指导[M]. 5 版, 北京: 高等教育出版社, 2016.

    LI X F, ZHANG Z L. Experimental instruction of plant physiology[M]. 5th ed. Beijing: Higher Education Press, 2016.
    [21] 张宪政. 植物叶绿素含量测定: 丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3): 26-28.

    ZHANG X Z. Determination of chlorophyll content in plants-acetone-ethanol mixture method[J]. Liaoning Agric Sci, 1986(3): 26-28.
    [22] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.

    GAO J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006.
    [23] 何钟佩. 作物激素生理及化学控制[M]. 北京: 中国农业大学出版社, 1997.

    HE Z P. Hormonal physiology and chemical control of field crops[M]. Beijing: China Agricultural University Press, 1997.
    [24] YANG J C, ZHANG J H, WANG Z Q, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiol, 2001, 127(1): 315-323. doi: 10.1104/pp.127.1.315
    [25] LAISK A, LORETO F. Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence (ribulose-1,5-bisphosphate carboxylase/oxygenase specificity factor), dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance[J]. Plant Physiol, 1996, 110(3): 903-912. doi: 10.1104/pp.110.3.903
    [26] WANG Z S, LI X N, ZHU X C, et al. Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat[J]. Plant Soil Environ, 2017, 63(7): 307-314. doi: 10.17221/287/2017-PSE
    [27] ITURBE-ORMAETXE I, ESCUREDO P R, ARRESE-IGOR C, et al. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiol, 1998, 116(1): 173-181. doi: 10.1104/pp.116.1.173
    [28] JIANG M Y, ZHANG J H. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42(11): 1265-1273. doi: 10.1093/pcp/pce162
    [29] HAO L, WANG Y Q, ZHANG J, et al. Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean[J]. Plant Sci, 2013, 210: 1-9. doi: 10.1016/j.plantsci.2013.05.006
    [30] DARKO E, GIERCZIK K, HUDÁK O, et al. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments[J]. PLoS One, 2017, 12(3): e0174170. doi: 10.1371/journal.pone.0174170
    [31] DAN H Y, FU G Z, YING Y, et al. Effects of cold acclimation and exogenous pytohormone abscisic acid treatment on physiological indicators of winterness wheat[J]. J Plant Sci, 2010, 5(2): 125-136. doi: 10.3923/jps.2010.125.136
    [32] FARHANGI-ABRIZ S, TORABIAN S. Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings[J]. J Plant Growth Regul, 2018, 37(2): 591-601. doi: 10.1007/s00344-017-9756-9
  • 加载中
图(11)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  7
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回