• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农药兑水茎叶喷施对靶沉积剂量传递与调控研究进展

郑丽 程雪健 黄桂珍 赵鹏跃 曹冲 曹立冬 吴进龙 黄修柱 黄啟良

郑丽, 程雪健, 黄桂珍, 赵鹏跃, 曹冲, 曹立冬, 吴进龙, 黄修柱, 黄啟良. 农药兑水茎叶喷施对靶沉积剂量传递与调控研究进展[J]. 农药学学报, 2022, 24(5): 1034-1048. doi: 10.16801/j.issn.1008-7303.2022.0084
引用本文: 郑丽, 程雪健, 黄桂珍, 赵鹏跃, 曹冲, 曹立冬, 吴进龙, 黄修柱, 黄啟良. 农药兑水茎叶喷施对靶沉积剂量传递与调控研究进展[J]. 农药学学报, 2022, 24(5): 1034-1048. doi: 10.16801/j.issn.1008-7303.2022.0084
ZHENG Li, CHENG Xuejian, HUANG Guizhen, ZHAO Pengyue, CAO Chong, CAO Lidong, WU Jinlong, HUANG Xiuzhu, HUANG Qiliang. Research progress in target dose transfer and regulation of pesticides deposition by foliar spray diluted with water[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1034-1048. doi: 10.16801/j.issn.1008-7303.2022.0084
Citation: ZHENG Li, CHENG Xuejian, HUANG Guizhen, ZHAO Pengyue, CAO Chong, CAO Lidong, WU Jinlong, HUANG Xiuzhu, HUANG Qiliang. Research progress in target dose transfer and regulation of pesticides deposition by foliar spray diluted with water[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1034-1048. doi: 10.16801/j.issn.1008-7303.2022.0084

农药兑水茎叶喷施对靶沉积剂量传递与调控研究进展

doi: 10.16801/j.issn.1008-7303.2022.0084
基金项目: 国家自然科学基金项目(31872947).
详细信息
    作者简介:

    郑丽,zhengli7seven@163.com

    通讯作者:

    黄修柱,huangxiuzhu@agri.gov.cn

    黄啟良,qlhuang@ippcaas.cn

  • 中图分类号: TQ450.1

Research progress in target dose transfer and regulation of pesticides deposition by foliar spray diluted with water

Funds: the National Natural Science Foundation of China (31872947).
  • 摘要: 农药兑水茎叶喷施对靶沉积是一个复杂的剂量传递与分布过程,涉及制剂形成、药液配制、雾化分散、空间运行、叶面沉积和稳态持留等动态过程,受到药剂特性、环境因素、为害规律、植株形态和叶面结构等多因素影响,在水稻、小麦和玉米三大粮食作物上对靶沉积率为40.6%。其中,对不同区域、不同靶标作物种植体系中农药损失规律和高效利用机理研究与认识不足,是农药对靶沉积剂量传递效率低的主要原因之一。本文以农药向靶标作物及有害生物传递的过程行为为主线,将农药兑水茎叶喷施对靶沉积的剂量传递过程分解为雾滴空间运行、叶面动态沉积和稳态持留3个过程,从空间维度综述了各过程中的表观现象与行为、损失规律及其调控机制途径与技术等;从技术发展与进步角度,分析了农药对靶沉积剂量传递与调控研究和认知的发展思路,概述了典型代表性成果,提出了未来研究与发展建议。期望客观认知农药高效对靶沉积的损失规律与调控机制,探析主控过程与影响因子,提出农药减量施用调控方法、控制技术指标及功能助剂施用限量标准等,为农药减施增效关键技术与产品研发提供理论与技术支持。
  • 图  1  农药兑水茎叶喷施对靶剂量传递过程示意图

    Figure  1.  Processes involved in pesticide target dose transfer and deposition

    图  2  农药流失途径概念模型[20]

    Figure  2.  Conceptual model of pesticide emission[20]

    图  3  不同尺寸雾滴在2 m/s环境风速时的空间速度(a)及方向演化(b)趋势,α为液滴与空气的相对方向[32]

    Figure  3.  The velocity magnitude (a) and direction evolution (b) of droplets with different sizes under the crosswind velocity of 2 m/s, α is the relative direction of the droplet and the air [32]

    图  4  雾滴撞击在固体表面上的变形过程[47]

    Figure  4.  Deformation process of droplets impacting on solid surface [47]

    图  5  同时喷洒相反电荷聚电解质药液形成的雾滴界面沉积示意图[67]

    Figure  5.  Schematic diagram of droplet deposition at the interface sprayed with opposite polyelectrolyte solution [67]

    表  1  农药对靶沉积典型代表性成果

    Table  1.   Typical representative achievements

    主题
    Research topic
    主要创新点或结论
    Main innovation or conclusion
    参考文献
    References
    空间运行的过程行为
    Process behavior of spatial movement
    提出农药流失途径概念模型。
    Conceptual model of pesticide emission was proposed.
    [20]
    雾滴蒸发促使粒径变小,进而导致运行速度衰减,两因素叠加加剧了雾滴的飘移。
    The evaporation of the droplets makes the particle size smaller, which leads to the attenuation of the running speed. The superposition of the two factors aggravates the drift of the droplets.
    [22]
    空间运行的损失规律
    Loss law of spatial movement
    提出雾滴空间运行过程中横向飘移距离和纵向剂量传递的“二重维度”概念。
    The concept of "two dimensions" of lateral drift distance and longitudinal dose delivery during the spatial movement of droplets was proposed.
    [32]
    雾滴在叶面动态沉积的过程行为与界面
    现象
    Process behavior and interface phenomenon of dynamic deposition of droplets on the leaf surface
    从能量守恒角度解析了抑制雾滴弹跳行为的规律与机制。
    The law and mechanism of restraining the bouncing behavior of droplets were analyzed from the point of energy conservation.
    [49]
    雾滴在叶面动态沉积的规律与机制
    The law and mechanism of the dynamic deposition of droplets on the leaf surface
    雾滴弹跳高度由药液的极限弹性模量及其与靶标作物叶面之间的黏附力决定。
    The bouncing height of the droplet is determined by the ultimate elastic modulus of the solution and its adhesion to the leaf surface of the target crop.
    [56]
    雾滴在叶面的蒸发动力学与持留形貌
    Evaporation kinetics and retention morphology of droplets on the leaf surface
    通过添加表面活性剂提高药液对作物叶面的润湿铺展性能,可改变雾滴的蒸发时间。
    The wetting and spreading performance of the solution to the crop leaves can be improved by adding surfactant, and the evaporation time of the droplets can be changed.
    [68-69]
    农药在植物体内的传输与分布
    Translocation and distribution of pesticides
    in plants
    氨基酸类化合物与氯虫苯甲酰胺偶联能够提高农药在韧皮部的传输
    性能。
    Amino acid ester-chlorantraniliprole conjugates can improve the transport of pesticides in the phloem.
    [89]
    葡萄糖与氟虫腈结合形成共轭物具有适度的韧皮部流动性,且不会被
    降解。
    Glucose-fipronil conjugates could enter into the phloem and exhibit moderate phloem mobility without being degraded.
    [91]
    下载: 导出CSV

    表  2  雾滴通过静态空气后的最终速度[24]

    Table  2.   Terminal velocities of water droplets falling through still air [24]

    雾滴直径
    Droplet diameter/μm
    雾滴体积
    Droplet volume/μL
    最终速度/(m/s)
    [每小时英里数]
    Terminal velocity/[mph]
    消退时间*
    Extinction time*/s
    下降 18 英寸(0.46 m) 所需时间
    Time to fall 18”(0.46 m)/s
    105.24 × 10−70.003 [0.007]0.568152.4
    506.54 × 10-50.072 [0.161]14.2056.4
    1000.000520.253[0.566]56.8181.8
    5000.065452.051[4.588]1420.4550.2
    10000.523603.869[8.655]5681.8180.1
    注:*在环境温度为20 ℃、相对湿度为80%及温球湿度计和干球湿度计之间的温差为2.2 ℃的条件下估算的消退时间。Note: *Extinction time is estimated based on 20 ℃ ambient temperature, 80% relative humidity, and a temperature difference of 2.2 ℃ between wet and dry bulb thermometers.
    下载: 导出CSV

    表  3  几种容量喷雾法的雾滴粒径范围及性能特点[25-28]

    Table  3.   Droplet size range and performance characteristics of several volumetric spray methods [25-28]

    指标
    Indicator
    每公顷施药量
    Application
    amount per
    hectare/L
    雾滴数量中径
    Median
    droplet
    size/μm
    喷施药液浓度(质量分数)
    Concentration of
    pesticide/%
    药液覆盖度
    Liquid
    coverage
    载体种类
    Carrier
    type
    喷雾方式
    Spray
    mode
    高容量
    High-volume
    > 600 >250 0.05~0.1 大部分
    A major part
    水质
    Water
    针对性
    Targeted
    中容量
    Medium-volume
    150~600 150~250 0.1~0.3 一部分
    A part
    水质
    Water
    针对性
    Targeted
    低容量
    Low-volume
    15~150 100~150 0.3~3 小部分
    A small part
    水质
    Water
    针对性或飘移
    Targeted or drift
    超低容量
    Ultra-low-volume
    4.5~15 50~100 3~10 很小部分
    A very small part
    水质或油质
    Water or oil
    飘移
    Drift
    超超低容量
    Super-ultra-low-volume
    < 4.95 < 50 10~15 微量部分
    Trace portion
    油质
    Oil
    飘移
    Drift
    下载: 导出CSV
  • [1] 屠豫钦. 化学防治技术研究进展[M]. 乌鲁木齐: 新疆科技卫生出版社, 1992.

    TU Y Q. Research progress of chemical control technology[M]. Urumqi: Xinjiang Science and Technology Publishing House, 2006.
    [2] 屠豫钦, 李秉礼. 农药应用工艺学导论[M]. 北京: 化学工业出版社, 2006.

    TU Y Q, LI B L. Introduction to pesticide application technology[M]. Beijing: Chemical Industry Press, 2006.
    [3] COURSHEE R J. Some aspects of the application of insecticides[J]. Annu Rev Entomol, 1960, 5: 327-352. doi: 10.1146/annurev.en.05.010160.001551
    [4] 秦萌, 任宗杰, 张帅, 等. 从“农药零增长行动”看“农药减量化”发展[J]. 中国植保导刊, 2021, 41(11): 89-94. doi: 10.3969/j.issn.1672-6820.2021.11.025

    QIN M, REN Z J, ZHANG S, et al. The development of “pesticide reduction”: from the perspective of “Action to achieve zero growth of pesticide use”[J]. China Plant Prot, 2021, 41(11): 89-94. doi: 10.3969/j.issn.1672-6820.2021.11.025
    [5] YOUNG B. Studies on the retention and deposit characteristics of pesticide sprays on foliage [A]. Int Comm Agric Eng East Lansing MI, 1979
    [6] 屠豫钦. 农药剂型和制剂与农药的剂量转移[J]. 农药学学报, 1999, 1(1): 1-6.

    TU Y Q. Pesticide formulation and dose transfer[J]. Chin J Pestic Sci, 1999, 1(1): 1-6.
    [7] MATTHEWS G A. Pesticide application methods[M]. 3rd ed. London, UK, 2000 Blackwell Science Ltd.
    [8] 屠豫钦. 论农药的宏观毒理学[J]. 农药学学报, 2004, 6(1): 1-10. doi: 10.3321/j.issn:1008-7303.2004.01.001

    TU Y Q. On the macro-toxicology of pesticides[J]. Chin J Pestic Sci, 2004, 6(1): 1-10. doi: 10.3321/j.issn:1008-7303.2004.01.001
    [9] 刘秀娟, 周宏平, 郑加强. 农药雾滴飘移控制技术研究进展[J]. 农业工程学报, 2005, 21(1): 186-190.

    LIU X J, ZHOU H P, ZHENG J Q. Research advances of the technologies for spray drift control of pesticide application[J]. Trans Chin Soc Agric Eng, 2005, 21(1): 186-190.
    [10] 宋玉莹, 曹冲, 徐博, 等. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展[J]. 农药学学报, 2019, 21(Z1): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110

    SONG Y Y, CAO C, XU B, et al. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface[J]. Chin J Pestic Sci, 2019, 21(Z1): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110
    [11] 周召路, 曹冲, 曹立冬, 等. 不同类型界面液滴蒸发特性与农药利用效果研究进展[J]. 农药学学报, 2017, 19(1): 9-17. doi: 10.16801/j.issn.1008-7303.2017.0003

    ZHOU Z L, CAO C, CAO L D, et al. Research advances of droplet evaporation on different interfaces and the efficiency of pesticide utilization[J]. Chin J Pestic Sci, 2017, 19(1): 9-17. doi: 10.16801/j.issn.1008-7303.2017.0003
    [12] Van PUL W A J, BIDLEMAN T F, BRORSTRÖM-LUNDÉN E, et al. Atmospheric transport and deposition of pesticides: an assessment of current knowledge[J]. Water Air Soil Pollut, 1999, 115(1-4): 245-256.
    [13] SCHOLTZ M T, VOLDNER E, MCMILLAN A C, et al. A pesticide emission model (PEM) Part I: model development[J]. Atmos Environ, 2002, 36(32): 5005-5013. doi: 10.1016/S1352-2310(02)00570-8
    [14] WANG S L, SONG J L, HE X K, et al. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China[J]. Int J Agr Biol Eng, 2017, 10(4): 22-31.
    [15] GROVER R, MAYBANK J, YOSHIDA K. Droplet and vapor drift from butyl ester and dimethylamine salt of 2,4-D[J]. Weed Sci, 1972, 20(4): 320-324. doi: 10.1017/S004317450003575X
    [16] 朱光艳. 巴斯夫和拜耳可能面临麦草畏2.5亿美元惩罚性补偿[J]. 农药科学与管理, 2020, 41(4): 62. doi: 10.3969/j.issn.1002-5480.2020.04.015

    ZHU G Y. BASF and Bayer may face punitive damages of $250 million from dicamba[J]. Pestic Sci Adm, 2020, 41(4): 62. doi: 10.3969/j.issn.1002-5480.2020.04.015
    [17] Van Den BERG F, KUBIAK R, BENJEY W G, et al. Emission of pesticides into the air[J]. Water Air Soil Pollut, 1999, 115(1/4): 195-218. doi: 10.1023/A:1005234329622
    [18] 刘晓慧, 袁亮亮, 石鑫, 等. 植保施药机械喷雾雾滴飘移研究进展[J]. 农药学学报, 2022, 24(2): 232-247. doi: 10.16801/j.issn.1008-7303.2021.0166

    LIU X H, YUAN L L, SHI X, et al. Research progress on spray drift of droplets of plant protection machinery[J]. Chin J Pestic Sci, 2022, 24(2): 232-247. doi: 10.16801/j.issn.1008-7303.2021.0166
    [19] Equipment for Crop Protection-methods for the Field Measurement of Spray Drift: ISO 22866: 2005[S/OL]. [2022-07-04]. https://www.sis.se/api/document/preview/906252/
    [20] PIVATO A, BARAUSSE A, ZECCHINATO F, et al. An integrated model-based approach to the risk assessment of pesticide drift from vineyards[J]. Atmos Environ, 2015, 111: 136-150. doi: 10.1016/j.atmosenv.2015.04.005
    [21] 马学虎, 薛士东, 孙桐, 等. 农药雾滴空间运行中的变形特征分析[J]. 化工进展, 2020, 39(10): 3870-3878. doi: 10.16085/j.issn.1000-6613.2019-2020

    MA X H, XUE S D, SUN T, et al. Deformation characteristics of chemical pesticide spray droplet during spatial motion[J]. Chem Ind Eng Prog, 2020, 39(10): 3870-3878. doi: 10.16085/j.issn.1000-6613.2019-2020
    [22] XUE S D, HAN J K, XI X, et al. Rapid velocity reduction and drift potential assessment of off-nozzle pesticide droplets[J]. Chin J Chem Eng, 2022, 46: 243-254. doi: 10.1016/j.cjche.2021.06.011
    [23] AKESSON N B, YATES W E. Problems relating to application of agricultural chemicals and resulting drift residues[J]. Annu Rev Entomol, 1964, 9: 285-318. doi: 10.1146/annurev.en.09.010164.001441
    [24] EBERT T, DOWNER R. Insecticide application: the dose transfer process[M]//Encyclopedia of Entomology. Dordrecht: Kluwer Academic Publishers, 2006: 1166-1180.
    [25] 茹煜, 朱传银, 包瑞. 风洞条件下雾滴飘移模型与其影响因素分析[J]. 农业机械学报, 2014, 45(10): 66-72. doi: 10.6041/j.issn.1000-1298.2014.10.011

    RU Y, ZHU C Y, BAO R. Spray drift model of droplets and analysis of influencing factors based on wind tunnel[J]. Trans Chin Soc Agric Mach, 2014, 45(10): 66-72. doi: 10.6041/j.issn.1000-1298.2014.10.011
    [26] AL HEIDARY M, DOUZALS J P, SINFORT C, et al. Influence of spray characteristics on potential spray drift of field crop sprayers: a literature review[J]. Crop Prot, 2014, 63: 120-130. doi: 10.1016/j.cropro.2014.05.006
    [27] CHEN S D, LAN Y B, ZHOU Z Y, et al. Effect of droplet size parameters on droplet deposition and drift of aerial spraying by using plant protection UAV[J]. Agronomy, 2020, 10(2): 195. doi: 10.3390/agronomy10020195
    [28] 戴奋奋, 袁会珠. 植保机械与施药技术规范化[M]. 北京: 中国农业科学技术出版社, 2002.

    DAI F F, YUAN H Z. Standardization of plant protection machinery and pesticide application technology[M]. Beijing: China Agricultural Science and Technology Press, 2002.
    [29] MILLER D R, STOUGHTON T E, STEINKE W E, et al. Atmospheric stability effects on pesticide drift from an irrigated orchard[J]. Trans ASAE, 2000, 43(5): 1057-1066. doi: 10.13031/2013.2998
    [30] HUANG Y B, FISHER D K. An open-sourced web application for aerial applicators to avoid spray drift caused by temperature inversion[J]. Appl Eng Agric, 2021, 37(1): 77-84. doi: 10.13031/aea.13841
    [31] WOLF R. Drift-reducing strategies and practices for ground applications[J]. J Pestic Saf Educ, 2013.
    [32] XUE S D, XI X, LAN Z, et al. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets[J]. Int J Heat Mass Transf, 2021, 177: 121516. doi: 10.1016/j.ijheatmasstransfer.2021.121516
    [33] BALSARI P, MARUCCO P, TAMAGNONE M. A test bench for the classification of boom sprayers according to drift risk[J]. Crop Prot, 2007, 26(10): 1482-1489. doi: 10.1016/j.cropro.2006.12.012
    [34] 鲁文霞, 兰玉彬, 王国宾, 等. 植保无人机喷施药剂安全飘移缓冲区的建立[J]. 中国公共安全(学术版), 2020(1): 150-152.

    LU W X, LAN Y B, WANG G B, et al. Establishment of safe drift buffer zone for plant protection drone spraying chemicals[J]. China Public Secur (Acad Ed), 2020(1): 150-152.
    [35] HILZ E, VERMEER A W P. Spray drift review: the extent to which a formulation can contribute to spray drift reduction[J]. Crop Prot, 2013, 44: 75-83. doi: 10.1016/j.cropro.2012.10.020
    [36] LONGLEY M, SOTHERTON N W. Measurements of pesticide spray drift deposition into field boundaries and hedgerows: 2. autumn applications[J]. Environ Toxicol Chem, 1997, 16(2): 173-178. doi: 10.1002/etc.5620160211
    [37] 何雄奎. 中国植保机械与施药技术研究进展[J]. 农药学学报, 2019, 21(Z1): 921-930. doi: 10.16801/j.issn.1008-7303.2019.0089

    HE X K. Research and development of crop protection machinery and chemical application technology in China[J]. Chin J Pestic Sci, 2019, 21(Z1): 921-930. doi: 10.16801/j.issn.1008-7303.2019.0089
    [38] HE X K, ZENG A J, LIU Y J, et al. Precision orchard sprayer based on automatically infrared target detecting and electrostatic spraying techniques[J]. Int J Agric Biol Eng, 2011(1): 35-40.
    [39] 姚欢. 农药喷洒用的漂移控制剂[J]. 农药译丛, 1986, 8(1): 20-26.

    YAO H. Drift control adjuvants for pesticide spraying[J]. World Pestic, 1986, 8(1): 20-26.
    [40] HOFFMANN W C, SALYANI M. Spray deposition on citrus canopies under different meteorological conditions[J]. Trans ASAE, 1996, 39(1): 17-22. doi: 10.13031/2013.27475
    [41] 王潇楠, 何雄奎, 宋坚利, 等. 助剂类型及浓度对不同喷头雾滴飘移的影响[J]. 农业工程学报, 2015, 31(22): 49-55.

    WANG X N, HE X K, SONG J L, et al. Effect of adjuvant types and concentration on spray drift potential of different nozzles[J]. Trans Chin Soc Agric Eng, 2015, 31(22): 49-55.
    [42] ZHANG X G, XIONG L X. Effect of adjuvants on the spray droplet size of pesticide dilute emulsion[J]. Colloids Surf A Physicochem Eng Aspects, 2021, 619: 126557. doi: 10.1016/j.colsurfa.2021.126557
    [43] ZHENG L, CAO C, CHEN Z, et al. Efficient pesticide formulation and regulation mechanism for improving the deposition of droplets on the leaves of rice (Oryza sativa L.)[J]. Pest Manag Sci, 2021, 77(7): 3198-3207. doi: 10.1002/ps.6358
    [44] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Ann Bot, 1997, 79(6): 667-677. doi: 10.1006/anbo.1997.0400
    [45] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Adv Mater, 2002, 14(24): 1857-1860. doi: 10.1002/adma.200290020
    [46] MERCER G N, SWEATMAN W L, FORSTER W A. A model for spray droplet adhesion, bounce or shatter at a crop leaf surface[M]//Progress in Industrial Mathematics at ECMI 2008. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 945-951.
    [47] RIOBOO R, TROPEA C, MARENGO M. Outcomes from a drop impact on solid surfaces[J]. Atomiz Spr, 2001, 11(2): 12. doi: 10.1615/AtomizSpr.v11.i2.40
    [48] BOUKHALFA H H, MASSINON M, BELHAMRA M, et al. Contribution of spray droplet pinning fragmentation to canopy retention[J]. Crop Prot, 2014, 56: 91-97. doi: 10.1016/j.cropro.2013.11.018
    [49] CAO C, SONG Y Y, ZHOU Z L, et al. Effect of adhesion force on the height pesticide droplets bounce on impaction with cabbage leaf surfaces[J]. Soft Matter, 2018, 14(39): 8030-8035. doi: 10.1039/C8SM01413B
    [50] GARCERÁ C, FONTE A, SALCEDO R, et al. Dose expression for pesticide application in citrus: influence of canopy size and sprayer[J]. Agronomy, 2020, 10(12): 1887. doi: 10.3390/agronomy10121887
    [51] DUGA A T, DEKEYSER D, RUYSEN K, et al. Numerical analysis of the effects of wind and sprayer type on spray distribution in different orchard training systems[J]. Boundary-Layer Meteorol, 2015, 157(3): 517-535. doi: 10.1007/s10546-015-0064-2
    [52] 薛士东. 常量喷雾农药雾滴的空间飘移行为与剂量损失调控[D]. 大连: 大连理工大学, 2022.

    XUE S D. Spatial drift behavior and drift loss regulation of pesticide droplets under conventional volume spray[D]. Dalian: Dalian University of Technology, 2022.
    [53] KOCH K, BHUSHAN B, BARTHLOTT W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943-1963. doi: 10.1039/b804854a
    [54] 顾中言, 许小龙, 韩丽娟. 一些药液难在水稻、小麦和甘蓝表面润湿展布的原因分析[J]. 农药学学报, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013

    GU Z Y, XU X L, HAN L J. The cause of the difficulty in wet spreading of some insecticides on rice, wheat and wild cabbage leaves[J]. Chin J Pestic Sci, 2002, 4(2): 75-80. doi: 10.3321/j.issn:1008-7303.2002.02.013
    [55] ANANTHAPADMANABHAN K P, GODDARD E D, CHANDAR P. A study of the solution, interfacial and wetting properties of silicone surfactants[J]. Colloids Surf, 1990, 44: 281-297. doi: 10.1016/0166-6622(90)80202-F
    [56] CAO C, SONG Y Y, ZHOU Z L, et al. The role of adhesion force in the bouncing height of pesticide nanoparticles on the rice (Oryza sativa) leaf surface[J]. J Mol Liq, 2018, 272: 92-96. doi: 10.1016/j.molliq.2018.09.086
    [57] BERGERON V, BONN D, MARTIN J Y, et al. Controlling droplet deposition with polymer additives[J]. Nature, 2000, 405(6788): 772-775. doi: 10.1038/35015525
    [58] SONG Y Y, CAO C, LIU K, et al. The use of folate/zinc supramolecular hydrogels to increase droplet deposition on Chenopodium album L. leaves[J]. ACS Sustainable Chem Eng, 2020, 8(34): 12911-12919. doi: 10.1021/acssuschemeng.0c03396
    [59] LI B X, LIU Y, ZHANG P, et al. Selection of organosilicone surfactants for tank-mixed pesticides considering the balance between synergistic effects on pests and environmental risks[J]. Chemosphere, 2019, 217: 591-598.
    [60] 袁会珠, 齐淑华, 杨代斌. 药液在作物叶片的流失点和最大稳定持留量研究[J]. 农药学学报, 2000, 2(4): 66-71. doi: 10.3321/j.issn:1008-7303.2000.04.012

    YUAN H Z, QI S H, YANG D B. Study on the point of run-off and the maximum retention of spray liquid on crop leaves[J]. Chin J Pestic Sci, 2000, 2(4): 66-71. doi: 10.3321/j.issn:1008-7303.2000.04.012
    [61] 顾中言, 徐德进, 徐广春. 田间药液用量影响农药单位剂量防治效果的原因分析[J]. 中国农业科学, 2018, 51(13): 2513-2523.

    GU Z Y, XU D J, XU G C. The cause of influence of spray volume on control effect of pesticide unit dose in rice fields[J]. Sci Agric Sin, 2018, 51(13): 2513-2523.
    [62] MA Y, GAO Y X, ZHAO K F, et al. Simple, effective, and ecofriendly strategy to inhibit droplet bouncing on hydrophobic weed leaves[J]. ACS Appl Mater Interfaces, 2020, 12(44): 50126-50134. doi: 10.1021/acsami.0c13066
    [63] ZHENG L, CAO C, CAO L D, et al. Bounce behavior and regulation of pesticide solution droplets on rice leaf surfaces[J]. J Agric Food Chem, 2018, 66: 11560-11568. doi: 10.1021/acs.jafc.8b02619
    [64] ZHENG L, CHENG X J, CAO L D, et al. Enhancing pesticide droplet deposition through O/W pickering emulsion: synergistic stabilization by Flower-like ZnO particles and polymer emulsifier[J]. Chem Eng J, 2022, 434: 134761. doi: 10.1016/j.cej.2022.134761
    [65] 宋玉莹, 朱峰, 曹冲, 等. 负载噻呋酰胺的超分子水凝胶在水稻叶面的动态沉积行为[J]. 农药学学报, 2021, 23(5): 1004-1011. doi: 10.16801/j.issn.1008-7303.2021.0099

    SONG Y Y, ZHU F, CAO C, et al. Dynamic deposition behavior of supramolecular hydrogels loaded with thifluzamide on rice leaves[J]. Chin J Pestic Sci, 2021, 23(5): 1004-1011. doi: 10.16801/j.issn.1008-7303.2021.0099
    [66] SONG M R, JU J, LUO S Q, et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Sci Adv, 2017, 3(3): e1602188. doi: 10.1126/sciadv.1602188
    [67] DAMAK M, HYDER M N, VARANASI K K. Enhancing droplet deposition through in situ precipitation[J]. Nat Commun, 2016, 7: 12560. doi: 10.1038/ncomms12560
    [68] ZHOU Z L, CAO C, CAO L D, et al. Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves[J]. PLoS One, 2017, 12(5): e0176870. doi: 10.1371/journal.pone.0176870
    [69] ZHOU Z L, CAO C, CAO L D, et al. Effect of surfactant concentration on the evaporation of droplets on cotton (Gossypium hirsutum L.) leaves[J]. Colloids Surf B Biointerfaces, 2018, 167: 206-212. doi: 10.1016/j.colsurfb.2018.04.018
    [70] 张浩, 胡君. 光响应性阳离子表面活性剂PCDA-C6-NH3 + 的合成及其对液滴蒸发行为的调控[J]. 农药学学报, 2020, 22(2): 265-269.

    ZHANG H, HU J. Synthesis of a photoresponsive cationic surfactant PCDA-C6-NH3 + and its regulation of droplet evaporation[J]. Chin J Pestic Sci, 2020, 22(2): 265-269.
    [71] CRIVOI A, DUAN F. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets[J]. Phys Rev E, 2013, 87(4): 042303.
    [72] ANYFANTAKIS M, BAIGL D. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness[J]. Angew Chem Int Ed, 2014, 53(51): 14077-14081. doi: 10.1002/anie.201406903
    [73] 黄桂珍, 陈博聪, 杨利超, 等. 功能高分子助剂G-100A调控农药对靶传递性能研究[J]. 农药学学报, 2020, 22(2): 299-305. doi: 10.16801/j.issn.1008-7303.2020.0063

    HUANG G Z, CHEN B C, YANG L C, et al. Research on regulating pesticide-to-target delivery performance with polymer adjuvant G-100A[J]. Chin J Pestic Sci, 2020, 22(2): 299-305. doi: 10.16801/j.issn.1008-7303.2020.0063
    [74] 李建群, 杨强, 潘秋波, 等. 农药助剂与农药减量防治稻麦病虫效果探析[J]. 中国农技推广, 2017, 33(7): 54-56. doi: 10.3969/j.issn.1002-381X.2017.07.032

    LI J Q, YANG Q, PAN Q B, et al. Analysis on the effect of pesticide additives and pesticide reduction on controlling diseases and pests of rice and wheat[J]. China Agric Technol Ext, 2017, 33(7): 54-56. doi: 10.3969/j.issn.1002-381X.2017.07.032
    [75] 李亦松, 王俊刚, 王少山, 等. 甲酯化油助剂对氯虫苯甲酰胺在甘蓝叶片上沉积的影响[J]. 植物保护, 2015, 41(5): 105-109. doi: 10.3969/j.issn.0529-1542.2015.05.018

    LI Y S, WANG J G, WANG S S, et al. Impacts of methylated oil adjuvants on chlorantraniliprole spray droplet deposition rate on cabbage leaves[J]. Plant Prot, 2015, 41(5): 105-109. doi: 10.3969/j.issn.0529-1542.2015.05.018
    [76] YUAN W L, ZHAO P Y, CHEN H P, et al. Natural green-peel orange essential oil enhanced the deposition, absorption and permeation of prochloraz in cucumber[J]. RSC Adv, 2019, 9(35): 20395-20401. doi: 10.1039/C9RA02809A
    [77] 于倩倩, 夏明理, 胡文浩, 等. 几种农药助剂对赤霉素在小麦叶片上渗透的影响[J]. 江苏农业科学, 2019, 47(22): 125-128. doi: 10.15889/j.issn.1002-1302.2019.22.028

    YU Q Q, XIA M L, HU W H, et al. Effects of several pesticide adjuvants on osmosis of gibberellin through wheat leaf cutin membrane[J]. Jiangsu Agric Sci, 2019, 47(22): 125-128. doi: 10.15889/j.issn.1002-1302.2019.22.028
    [78] 刘浩婧. 鼠李糖脂作为印染助剂以及农药助剂的应用研究[D]. 杭州: 浙江大学, 2014.

    LIU H J. The application of rhamnolipid as textile auxiliaries and pesticide adjuvants[D]. Hangzhou: Zhejiang University, 2014.
    [79] 李北兴. 农药微囊负载体系的构建及其药效调控[D]. 泰安: 山东农业大学, 2019.

    LI B X. Establishment of pesticide-loaded microcapsule system and its activity regulation[D]. Taian: Shandong Agricultural University, 2019.
    [80] 李晶, 郭亮, 崔海信, 等. 纳米农药在植物中的吸收转运研究进展[J]. 植物学报, 2020, 55(4): 513-528. doi: 10.11983/CBB20008

    LI J, GUO L, CUI H X, et al. Research progress on uptake and transport of nanopesticides in plants[J]. Chin Bull Bot, 2020, 55(4): 513-528. doi: 10.11983/CBB20008
    [81] JIANG Q H, XIE Y H, PENG M, et al. A nanocarrier pesticide delivery system with promising benefits in the case of dinotefuran: strikingly enhanced bioactivity and reduced pesticide residue[J]. Environ Sci:Nano, 2022, 9(3): 988-999. doi: 10.1039/D1EN00752A
    [82] ZHAO P Y, YUAN W L, XU C L, et al. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers[J]. J Agric Food Chem, 2018, 66: 11592-11600. doi: 10.1021/acs.jafc.8b04415
    [83] ZHAO P Y, CAO L D, MA D K, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale, 2018, 10: 1798. doi: 10.1039/C7NR08107C
    [84] WANG G D, XIAO Y Y, XU H H, et al. Development of multifunctional avermectin poly(succinimide) nanoparticles to improve bioactivity and transportation in rice[J]. J Agric Food Chem, 2018, 66(43): 11244-11253. doi: 10.1021/acs.jafc.8b03295
    [85] JIA X, SHENG W B, LI W, et al. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention[J]. ACS Appl Mater Interfaces, 2014, 6(22): 19552-19558. doi: 10.1021/am506458t
    [86] NASHOLM T, HUSS-DANELL K, HOGBERG P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology, 2000, 81(4): 1155. doi: 10.2307/177188
    [87] ROLLAND F, WINDERICKX J, THEVELEIN J M. Glucose-sensing mechanisms in eukaryotic cells[J]. Trends Biochem Sci, 2001, 26(5): 310-317. doi: 10.1016/S0968-0004(01)01805-9
    [88] 徐汉虹, 张志祥, 程东美, 等. 导向农药[J]. 世界农药, 2004(5): 3-9. doi: 10.3969/j.issn.1009-6485.2004.05.002

    XU H H, ZHANG Z X, CHENG D M, et al. Directed pesticide[J]. World Pestic, 2004(5): 3-9. doi: 10.3969/j.issn.1009-6485.2004.05.002
    [89] YAO G K, WEN Y J, ZHAO C, et al. Novel amino acid ester-chlorantraniliprole conjugates: design, synthesis, phloem accumulation and bioactivity[J]. Pest Manag Sci, 2017, 73(10): 2131-2137. doi: 10.1002/ps.4592
    [90] 于艾鑫. 氟环唑-硫酸铜配合物的晶体结构、抑菌活性及在水稻上的吸收特性[D]. 广州: 华南农业大学, 2018.

    YU A X. Crystal structure, antifungal activity and uptake properties in rice seedlings of epoxiconazole-copper (Ⅱ) sulfate complex[D]. Guangzhou: South China Agricultural University, 2018.
    [91] LEI Z W, WANG J, MAO G L, et al. Glucose positions affect the phloem mobility of glucose-fipronil conjugates[J]. J Agric Food Chem, 2014, 62(26): 6065-6071. doi: 10.1021/jf5010429
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  22
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2022-08-16
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回