Effects of Bordeaux mixture on the community structure and metabolic function of tobacco phyllosphere microorganisms
-
摘要: 测定了波尔多液对烟草赤星病菌的毒力,并采用高通量测序与Biolog代谢表型技术分别测定了其对烟叶健康与感病组织叶际微生物群落结构和代谢功能的影响。结果表明:波尔多液对烟草赤星病菌的抑制活性较弱,其抑制菌丝生长和孢子萌发的EC50值分别为450.19和757.17 mg/L。健康与感病烟叶组织叶际细菌均分布于变形菌门 (6.93%和39.07%) 和厚壁菌门 (16.45%和0.65%),优势细菌均有Kosakonia (3.46%和22.38%) 和假单胞菌属 (0.22%和5.95%);真菌均分布于子囊菌门 (63.82%和93.74%) 和担子菌门 (6.82%和2.53%),优势真菌有链格孢属 (36.48%和84.52%) 、Symmetrospora (5.56%和2.27%) 和枝孢霉属 (14.87%和6.66%)。波尔多液1 500 g/hm2处理对健康和感病烟叶叶际细菌和真菌群落结构与代谢功能均有影响,处理5 d时降低了叶际Kosakonia、鞘脂单胞菌属和乳杆菌属的相对丰度,增加了假单胞菌属、劳尔氏菌属等6种细菌菌属的相对丰度;降低了链格孢属、Symmetrospora等6种真菌属的相对丰度,增加了亚隔孢壳属、绿僵菌属等10种真菌属的相对丰度。处理10和15 d时对叶际真菌、细菌的影响逐渐降低。健康与感病烟叶叶际微生物均可高效代谢糖类、氨基酸类、羧酸类、双亲化合物、聚合物和胺/氨基化合物等29种碳源,但对α-丁酮酸的代谢较弱。波尔多液处理对烟叶叶际微生物的代谢抑制活性随时间延长逐渐减弱。研究结果揭示了波尔多液施用不同时期后对烟叶叶际微生物的影响规律,为了解药剂持效期的生态效益提供了参考依据。Abstract: In this paper, the virulence of Bordeaux mixture against Alternaria alternata was determined, and the effects of Bordeaux mixture on phyllosphere microbial community structure and metabolic function of healthy and diseased tobacco leaves were determined by high-throughput sequencing and Biolog metabolic phenotype technology. Results showed that Bordeaux mixture had a weak inhibitory activity against A. alternata with EC50 values for inhibiting mycelial growth and spore germination of 450.19 and 757.17 mg/L, respectively. The phyllosphere bacteria in both healthy and diseased tobacco were distributed in Proteobacteria (6.93% and 39.07%) and Firmicutes (16.45% and 0.65%), and the dominant bacterial genera were Kosakonia (3.46% and 22.38%) and Pseudomonas (0.22% and 5.95%). The phyllosphere fungi in both healthy and diseased tobacco were distributed in Ascomycota (63.82% and 93.74%) and Basidiomycota (6.82% and 2.53%), and the dominant fungal genera were Alternaria (36.48% and 84.52%), Symmetrospora (5.56% and 2.27%) and Cladosporium (14.87% and 6.66%). Bordeaux mixture at 1 500 g/hm2 affected the community structure and metabolic function of phyllosphere bacteria and fungi in healthy and diseased tobacco. In the bacterial and fungal communities, the relative abundances of Kosakonia, Sphinomonas, and Lactobacillus decreased, while the relative abundances of 6 bacterial genera including Pseudomonas, Ralstonia increased after 5 days of treatment. The relative abundance of 6 fungal genera including Alternaria, Symmetrospora decreased, while the relative abundance of 10 fungal genera including Didymella, Metarhizium increased after 5 days of treatment. The effects of Bordeaux mixture on phyllosphere fungi and bacteria gradually decreased after 10 and 15 days of treatment. Twenty-nine carbon sources including carbohydrates, amino acids, carboxylic acids, amphiphiles, polymers, and amine/amino compounds could be efficiently metabolized by phyllosphere microorganisms of healthy and diseased tobacco leaves, but the metabolism of α-butyric acid was weak. The metabolic inhibition activity of Bordeaux mixture on phyllosphere microorganisms decreased gradually with the increase of time. The results of the study revealed the regularity of the effect of Bordeaux mixture on the microbes of tobacco leaves after different periods of application and provided a reference for understanding the ecological benefits of the fungicide in the effective period.
-
图 4 波尔多液处理烟叶叶际微生物代谢功能的聚类热图
注:颜色值分别代表微生物代谢碳源的程度,0~100为代谢程度低,100~200为代谢程度一般,200以上为代谢程度高。
Figure 4. Cluster heat map of the effect of Bordeaux mixture on the metabolism of tobacco phyllosphere microorganism
Note: The color values represent the degree of the microbes metabolizing carbon sources. The value 0-100, 100-200, and >200 represent the leaf microbes metabolized in the Biolog ECO microplate poorly, moderately, and effectively, respectively.
表 1 样品采集信息
Table 1. Samples information
取样部位
Sampling location施药前 0 d
0 day before application施药后 5 d
5 days after application施药后 10 d
10 days after application施药后 15 d
15 days after application健康组织
Healthy tissue样品编号
Sample No.BEJ01 BEJ11 BEJ21 BEJ31 BEJ02 BEJ12 BEJ22 BEJ32 BEJ03 BEJ13 BEJ23 BEJ33 分组编号
Group No.BEJ0 BEJ1 BEJ2 BEJ3 感病组织
Diseased tissue样品编号
Sample No.BEB01 BEB11 BEB21 BEB31 BEB02 BEB12 BEB22 BEB32 BEB03 BEB13 BEB23 BEB33 分组编号
Group No.BEB0 BEB1 BEB2 BEB3 表 2 波尔多液对烟草赤星病菌的毒力
Table 2. Toxicity test of Bordeaux mixture to Alternaria alternata
质量浓度
Mass concentration/(mg/L)抑制率
Inhibition ratio/%EC50/(mg/L) EC95/(mg/L) 回归方程
Regression equation相关系数
r菌丝生长
Mycelial growth0 0 450.19 4987.45 y=4.26 + 1.61x 0.992 100 15.99 200 25.17 400 49.37 800 66.34 1600 79.56 孢子萌发
Conidia germination0 0 757.17 3108.01 y=7.67 + 2.67x 0.997 200 6.74 400 22.80 800 49.97 1600 82.41 表 3 波尔多液对烟叶叶际微生物多样性的影响 (OTU水平)
Table 3. Effect of Bordeaux mixture on the diversity of tobacco phyllosphere microorganism (OTU level)
分组
Group香农指数
Shannon indexChao1 指数
Chao1 indexACE 指数
ACE index覆盖度
Goods coverage细菌 Bacteria BEB0 1.24 ± 0.54 bc 20.00 ± 6.81 b 29.88 ± 10.97 b 0.98 ± 0.01 a BEJ0 1.26 ± 0.08 bc 46.44 ± 25.14 ab 41.69 ± 12.65 b 0.97 ± 0.01 a BEB1 2.35 ± 0.09 ab 46.33 ± 13.86 ab 48.09 ± 14.73 b 0.96 ± 0.01 a BEJ1 0.73 ± 0.19 c 71.75 ± 39.56 ab 74.87 ± 39.93 b 0.95 ± 0.02 ab BEB2 2.78 ± 1.11 a 97.54 ± 29.63 ab 120.30 ± 31.45 ab 0.90 ± 0.03 b BEJ2 1.53 ± 0.19 abc 130.98 ± 40.17 a 212.81 ± 45.16 a 0.90 ± 0.01 b BEB3 1.57 ± 0.14 abc 36.67 ± 13.32 b 48.14 ± 21.83 b 0.96 ± 0.02 a BEJ3 1.63 ± 0.50 abc 70.34 ± 43.99 ab 90.39 ± 55.60 b 0.95 ± 0.02 ab 真菌 Fungi BEB0 0.99 ± 0.42 c 64.89 ± 6.18 e 70.36 ± 5.40 e 0.999 ± 0.000 a BEJ0 3.17 ± 0.16 b 193.26 ± 58.62 de 208.14 ± 66.06 de 0.998 ± 0.001 ab BEB1 1.37 ± 0.22 c 218.21 ± 42.63 d 253.44 ± 63.40 cd 0.997 ± 0.001 bc BEJ1 4.22 ± 0.69 ab 384.51 ± 46.54 c 375.92 ± 57.74 c 0.997 ± 0.000 bc BEB2 3.48 ± 0.42 ab 572.71 ± 19.17 b 668.60 ± 24.86 a 0.992 ± 0.001 d BEJ2 4.59 ± 0.30 a 633.01 ± 33.59 ab 644.18 ± 56.44 ab 0.992 ± 0.001 d BEB3 4.37 ± 0.77 ab 728.86 ± 55.29 a 724.05 ± 42.94 a 0.992 ± 0.001 d BEJ3 4.69 ± 0.26 a 521.60 ± 52.80 b 523.98 ± 32.61 b 0.995 ± 0.001 c 注:表中同列数据后相同字母表示采用DPS中LSD法检验差异不显著 (P>0.05)。Note: Date followed by the same letter in the same column are not significantly different by the least significant difference test (LSD) in DPS (P>0.05). -
[1] SLAVOV S, MAYAMA S, ATANASSOV A. Toxin production of Alternaria alternata tobacco pathotype[J]. Biotechnol Biotechnol Equip, 2004, 18(3): 90-95. doi: 10.1080/13102818.2004.10817126 [2] BASHAN Y, LEVANONY H, OR R. Wind dispersal of Alternaria alternata, a cause of leaf blight of cotton[J]. J Phytopathology, 1991, 133(3): 225-238. doi: 10.1111/j.1439-0434.1991.tb00157.x [3] PEEVER T L, CARPENTER-BOGGS L, TIMMER L W, et al. Citrus black rot is caused by phylogenetically distinct lineages of Alternaria alternata[J]. Phytopathology, 2005, 95(5): 512-518. doi: 10.1094/PHYTO-95-0512 [4] 朱永和, 王振荣, 李布青. 农药大典[M]. 北京: 中国三峡出版社, 2006: 582-583.ZHU Y H, WANG Z R, LI B Q. Encyclopedia agricultural chemincals[M]. Beijing: Chinese Sanxia Publishing House, 2006: 582-583. [5] 刘莉颍, 董尊, 孙彦平, 等. 波尔多液对葡萄霜霉病和白腐病药效动态变化[J]. 农学学报, 2020, 10(6): 27-31.LIU L Y, DONG Z, SUN Y P, et al. Bordeaux mixture: dynamic changes of efficacy on downy mildew and white rot of grape[J]. J Agric, 2020, 10(6): 27-31. [6] SOMERS E. Solubilization of copper and the mode of action of Bordeaux mixture[J]. Nature, 1965, 206(4980): 216-217. [7] BLAKEMAN J P. Microbial ecology of the phylloplane[M]. London: Academic Press, 1981. [8] 潘建刚, 呼庆, 齐鸿雁, 等. 叶际微生物研究进展[J]. 生态学报, 2011, 31(2): 583-592.PAN J G, HU Q, QI H Y, et al. Advance in the research of phyllospheric microorganism[J]. Acta Ecol Sin, 2011, 31(2): 583-592. [9] FERNANDO W G D, NAKKEERAN S, ZHANG Y, et al. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals[J]. Crop Prot, 2007, 26(2): 100-107. doi: 10.1016/j.cropro.2006.04.007 [10] 岳思君, 王文举. 冰核活性细菌研究进展及其在防霜技术中的应用[J]. 农业科学研究, 2005, 26(2): 66-70. doi: 10.3969/j.issn.1673-0747.2005.02.019YUE S J, WANG W J. A review on the studies of INA bacterial and its application in the technology of frost preventing[J]. J Agric Sci, 2005, 26(2): 66-70. doi: 10.3969/j.issn.1673-0747.2005.02.019 [11] 李娜, 胡亮, 王婷, 等. 乌头叶面微生物菌群变化特征及其与乌头霜霉病相关性[J]. 中国实验方剂学杂志, 2017, 23(5): 42-46. doi: 10.13422/j.cnki.syfjx.2017050042LI N, HU L, WANG T, et al. Variation characteristics of phylloplane microbies from Aconitum carmichaeli and correlation with downy mildew[J]. Chin J Exp Tradit Med Formulae, 2017, 23(5): 42-46. doi: 10.13422/j.cnki.syfjx.2017050042 [12] DROBY S, WISNIEWSKI M, EL GHAOUTH A, et al. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product aspire[J]. Postharvest Biol Technol, 2003, 27(2): 127-135. doi: 10.1016/S0925-5214(02)00046-7 [13] 李红霞, 刘照云, 王建新, 等. 辣椒炭疽病菌对嘧菌酯的敏感性测定[J]. 植物病理学报, 2005, 35(1): 73-77. doi: 10.3321/j.issn:0412-0914.2005.01.013LI H X, LIU Z Y, WANG J X, et al. Baseline sensitivity of Colletotrichum gloeosporioides and C. capsici from capsium to azoxystrobin[J]. Acta Phytopathol Sin, 2005, 35(1): 73-77. doi: 10.3321/j.issn:0412-0914.2005.01.013 [14] SAGHAI-MAROOF M A, SOLIMAN K M, JORGENSEN R A, et al. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics[J]. Proc Natl Acad Sci USA, 1984, 81(24): 8014-8018. doi: 10.1073/pnas.81.24.8014 [15] 刘畅, 汪汉成, 谢红炼, 等. 感染赤星病烟草叶际细菌的多样性分析[J]. 烟草科技, 2020, 53(2): 8-14.LIU C, WANG H C, XIE H L, et al. Biodiversity analysis of phyllosphere bacterial genus from tobacco leaves infected by brown spot disease[J]. Tob Sci & Technol, 2020, 53(2): 8-14. [16] CHEN Q L, CAI L, WANG H C, et al. Fungal composition and diversity of the tobacco leaf phyllosphere during curing of leaves[J]. Front Microbiol, 2020, 11: 554051. doi: 10.3389/fmicb.2020.554051 [17] GROVE J A, KAUTOLA H, JAVADPOUR S, et al. Assessment of changes in the microorganism community in a biofilter[J]. Biochem Eng J, 2004, 18(2): 111-114. doi: 10.1016/S1369-703X(03)00182-7 [18] DENG W K, WANG Y B, LIU Z X, et al. HemI: a toolkit for illustrating heatmaps[J]. PLoS One, 2014, 9(11): e111988. doi: 10.1371/journal.pone.0111988 [19] 张文艳. 基于BIOLOG-ECO技术研究红树植物叶片凋落物对微生物多样性的影响[D]. 深圳: 深圳大学, 2017.ZHANG W Y. BIOLOG-ECO technology was used to study the effects of mangrove leaf litter on microbial diversity[D]. Shenzhen: Shenzhen University, 2017. [20] 周运来, 张振华, 范如芹, 等. 小麦秸秆不同还田方式下土壤微生物碳代谢多样性特征[J]. 生态与农村环境学报, 2017, 33(10): 913-920. doi: 10.11934/j.issn.1673-4831.2017.10.007ZHOU Y L, ZHANG Z H, FAN R Q, et al. Carbon metabolism diversity characteristics of soil microbe affected by wheat straw incorporation pattern[J]. J Ecol Rural Environ, 2017, 33(10): 913-920. doi: 10.11934/j.issn.1673-4831.2017.10.007 [21] CHEN T, NOMURA K, WANG X L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere[J]. Nature, 2020, 580(7805): 653-657. doi: 10.1038/s41586-020-2185-0 [22] 韩永琴. 多粘类菌剂和化学药剂对辣椒疫病的防效及对根际微生物的影响[D]. 长沙: 湖南农业大学, 2019.HAN Y Q. Efficiency of Paenibacillus polymyxa preparations and chemical agents on rhizosphere microorganisms in pepper[D]. Changsha: Hunan Agricultural University, 2019. [23] 霍沁建, 张深, 王若焱. 烟草青枯病研究进展[J]. 中国农学通报, 2007, 23(8): 364-368. doi: 10.3969/j.issn.1000-6850.2007.08.079HUO Q J, ZHANG S, WANG R Y. Advance and control of tobacco bacterial wilt disease[J]. Chin Agric Sci Bull, 2007, 23(8): 364-368. doi: 10.3969/j.issn.1000-6850.2007.08.079 [24] LIU F, ZHAN R, HE Z Q. First report of bacterial dry rot of mango caused by Sphingomonas sanguinis in China[J]. Plant Dis, 2018, 102(12): 2632-2632. [25] 刘畅, 汪汉成, 谢红炼, 等. 感赤星病烟叶的真菌群落结构分析[J]. 贵州农业科学, 2019, 47(7): 54-59. doi: 10.3969/j.issn.1001-3601.2019.07.013LIU C, WANG H C, XIE H L, et al. Fungal community structure analysis of tobacco leaf infected with brown spot disease[J]. Guizhou Agric Sci, 2019, 47(7): 54-59. doi: 10.3969/j.issn.1001-3601.2019.07.013 [26] 向立刚, 汪汉成, 郑苹, 等. 赤星病烤后烟叶内生及叶际真菌分析[J]. 中国烟草学报, 2020, 26(4): 93-100. doi: 10.16472/j.chinatobacco.2020.104XIANG L G, WANG H C, ZHENG P, et al. Analysis of endophytic fungi and phyllosphere fungi of flue cured tobacco leaves with brown spot disease[J]. Acta Tabacaria Sin, 2020, 26(4): 93-100. doi: 10.16472/j.chinatobacco.2020.104 [27] GUO Z, XIE H, WANG H C, et al. Leaf spot caused by Didymella segeticola on tobacco in China[J]. Plant Dis, 2020, 104(5): 1559. [28] QIU R, LI J, ZHENG W, et al. First report of root rot of tobacco caused by Fusarium brachygibbosum in China[J]. Plant Dis, 2021. [29] CHEN X, WICAKSONO W A, BERG G, et al. Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide[J]. Sci Total Environ, 2021, 751: 141799. doi: 10.1016/j.scitotenv.2020.141799 [30] YOU C, ZHANG C S, KONG F Y, et al. Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl-mancozeb on bacterial communities in tobacco rhizospheric soil[J]. Ecol Eng, 2016, 91: 119-125. doi: 10.1016/j.ecoleng.2016.02.011 [31] WANG X, LU Z, MILLER H, et al. Fungicide azoxystrobin induced changes on the soil microbiome[J]. Appl Soil Ecol, 2020, 145: 103343. doi: 10.1016/j.apsoil.2019.08.005 [32] ASAF S, NUMAN M, KHAN A L, et al. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth[J]. Crit Rev Biotechnol, 2020, 40(2): 138-152. doi: 10.1080/07388551.2019.1709793 [33] 孙帅欣, 程杰杰, 陈云鹏. 玉米联合固氮菌Kosakonia radicincitans GXGL-4A转座突变体系的构建[J]. 微生物学通报, 2018, 45(8): 1711-1718.SUN S X, CHENG J J, CHEN Y P. Generation of Tn5 insertion mutations in nitrogen-fixing bacterium Kosakonia radicincitans GXGL-4A associated with maize[J]. Microbiol China, 2018, 45(8): 1711-1718. -