• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型吡唑-喹唑啉二酮类对羟基苯丙酮酸双加氧酶抑制剂的设计、合成及生物活性

严耀超 王亚楠 何波 曲仁渝 南甲戌 林红艳 杨光富

严耀超, 王亚楠, 何波, 曲仁渝, 南甲戌, 林红艳, 杨光富. 新型吡唑-喹唑啉二酮类对羟基苯丙酮酸双加氧酶抑制剂的设计、合成及生物活性[J]. 农药学学报, 2022, 24(5): 1139-1151. doi: 10.16801/j.issn.1008-7303.2022.0089
引用本文: 严耀超, 王亚楠, 何波, 曲仁渝, 南甲戌, 林红艳, 杨光富. 新型吡唑-喹唑啉二酮类对羟基苯丙酮酸双加氧酶抑制剂的设计、合成及生物活性[J]. 农药学学报, 2022, 24(5): 1139-1151. doi: 10.16801/j.issn.1008-7303.2022.0089
YAN Yaochao, WANG Ya'nan, HE Bo, QU Renyu, NAN Jiaxu, LIN Hongyan, YANG Guangfu. Design, synthesis and biological activity of novel pyrazole-quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1139-1151. doi: 10.16801/j.issn.1008-7303.2022.0089
Citation: YAN Yaochao, WANG Ya'nan, HE Bo, QU Renyu, NAN Jiaxu, LIN Hongyan, YANG Guangfu. Design, synthesis and biological activity of novel pyrazole-quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1139-1151. doi: 10.16801/j.issn.1008-7303.2022.0089

新型吡唑-喹唑啉二酮类对羟基苯丙酮酸双加氧酶抑制剂的设计、合成及生物活性

doi: 10.16801/j.issn.1008-7303.2022.0089
基金项目: 国家自然科学基金项目 (31901910,21837001);国家重点研发计划 (2021YFD1700102).
详细信息

Design, synthesis and biological activity of novel pyrazole-quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors

Funds: the National Natural Science Foundation of China (31901910, 21837001); the National Key R&D Program of China (2021YFD1700102).
  • 摘要: 对羟基苯丙酮酸双加氧酶 (HPPD) 抑制剂近年来因其高活性和低抗性风险成为了除草剂领域的研究热点。喹唑啉二酮被证明是一类具有潜力的骨架结构,为了继续发挥该骨架的优势,在前期工作的基础上,结合已有的构效关系研究结果,设计并合成了30个新型含喹唑啉二酮结构的吡唑类HPPD抑制剂,其结构均经过了高分辨质谱 (HRMS)、核磁共振氢谱 (1H NMR) 和碳谱 (13C NMR) 的表征。酶水平和活体活性测试结果表明,大部分目标化合物展现出了与对照药剂喹草酮相当甚至更优异的酶抑制活性。温室除草活性测试结果表明,目标化合物对6种供试杂草均有一定的生长抑制作用,特别是化合物 9-28 ,在有效成分150 g/hm2剂量下,对6种杂草的防治效果均在80%以上,其中对稗草和马唐的防治效果达100%。最后,培养了代表性化合物 9-28 与拟南芥HPPD的复合物晶体结构,从分子层面说明了该类抑制剂与靶标的结合模式,也为后续该类抑制剂的开发提供了一定的分子基础和设计思路。
  • 1  已上市的吡唑类HPPD抑制剂

    1.  Commercialized pyrazole-derived HPPD inhibitors

    2  目标化合物的设计思路

    2.  Design strategy of the target compounds

    3  目标化合物的合成路线

    3.  Synthetic route of the target compounds

    图  1  目标化合物9-28与AtHPPD的复合物晶体结构

    A. 化合物9-28AtHPPD的结合模式;B. 化合物9-28的电子云密度轮廓图;C. 化合物9-28与活性腔腔口处氨基酸残基的相互作用图;D. AtHPPD-9-28AtHPPD-喹草酮的叠合图。

    Figure  1.  Co-crystal structure of AtHPPD-9-28

    A. Binding mode of compound 9-28 with AtHPPD; B. 2Fo-Fc map (contoured at 1.0 σ) of compound 9-28; C. Interaction between compound 9-28 and the residues around the entrance of the active pocket; D. Superposition of the binding modes of compound 9-28 and benquitrione in AtHPPD.

    表  1  目标化合物9-1~9-30的温室除草活性 (150 g/hm2) 和对AtHPPD的IC50

    Table  1.   Greenhouse herbicidal activities of compounds 9-1-9-30 at 150 g/hm2 and IC50 values against AtHPPD

    化合物
    Compd.
    R抑制率b
    Inhibition rateb/%
    AtHPPD 抑制活性
    AtHPPD inhibitory activity
    稗草
    E. c.a
    狗尾草
    S. v.
    马唐
    D. s.
    苋菜
    A. r.

    C. s.
    苘麻
    A. t.
    IC50/(μmol/L)
    9-1 -CH3 B C C D B B 0.295 ± 0.002
    9-2 -CH2CH3 C A C A B C 0.227 ± 0.022
    9-3 -CH2CH2CH3 B B B C C B 0.208 ± 0.010
    9-4 -CH2CH2CH2CH3 D E D D E E 0.311 ± 0.009
    9-5 -CH(CH3)2 C C C B B A 0.183 ± 0.009
    9-6 -CH(CH3)CH2CH3 D B E B B B 0.172 ± 0.014
    9-7 -CH2CH2F C A B D D E 0.254 ± 0.018
    9-8 -CH2CHF2 B B B D D D 0.274 ± 0.018
    9-9 -CH2CF3 C B B D D E 0.336 ± 0.033
    9-10 -CH2CH2CH2F B A B C D B 0.228 ± 0.007
    9-11 -CH2CH2CF3 B B B D E E 0.294 ± 0.014
    9-12 -CH2CH2OCH3 C D D D D A 0.253 ± 0.017
    9-13 -CH2CH=CH2 B B E B A B 0.176 ± 0.001
    9-14 -CH2C≡CH A B C B B A 0.190 ± 0.002
    9-15 -CH2CH=C(CH3)2 D E F E A F 0.182 ± 0.016
    9-16 E B D C E E 0.463 ± 0.015
    9-17 B B E C D D 0.238 ± 0.005
    9-18 B B B A D B 0.157 ± 0.008
    9-19 A B B B A C 0.169 ± 0.002
    9-20 D C E C E E 0.172 ± 0.011
    9-21 C D E D D D 0.208 ± 0.010
    9-22 E E C D D D 0.332 ± 0.010
    9-23 D D E D A E 0.211 ± 0.002
    9-24 E F E D E E 0.136 ± 0.003
    9-25 F F F F F F 0.155 ± 0.008
    9-26 E D E D D D 0.160 ± 0.012
    9-27 D E D F D D 0.183 ± 0.017
    9-28 A B A B B B 0.370 ± 0.026
    9-29 B B D A A C 0.199 ± 0.010
    9-30 B B B A A C 0.247 ± 0.013
    喹草酮 B B B B A B 0.375 ± 0.012
    注(Note):a Echinochloa crus-galli (E. c.), Setaria viridis (S. v.), Digitaria sanguinalis (D. s.), Amaranthus retroflexus (A. r.), Chenopodium serotinum (C. s.), and Abutilon theophrasti (A. t.). b A = 100%; B ≥ 80%; C ≥ 60%; D ≥ 40%; E ≥ 20%; F < 20%.
    下载: 导出CSV
  • [1] MORAN G R. 4-Hydroxyphenylpyruvate dioxygenase[J]. Arch Biochem Biophys, 2005, 433(1): 117-128. doi: 10.1016/j.abb.2004.08.015
    [2] GUNSIOR M, RAVEL J, CHALLIS G L, et al. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation[J]. Biochemistry, 2004, 43(3): 663-674. doi: 10.1021/bi035762w
    [3] PURPERO V M, MORAN G R. Catalytic, noncatalytic, and inhibitory phenomena: kinetic analysis of (4-hydroxyphenyl)pyruvate dioxygenase from Arabidopsis thaliana[J]. Biochemistry, 2006, 45(19): 6044-6055. doi: 10.1021/bi052409c
    [4] NDIKURYAYO F, MOOSAVI B, YANG W C, et al. 4-Hydroxyphenylpyruvate dioxygenase inhibitors: from chemical biology to agrochemicals[J]. J Agric Food Chem, 2017, 65(39): 8523-8537. doi: 10.1021/acs.jafc.7b03851
    [5] LIN H Y, CHEN X, DONG J, et al. Rational redesign of enzyme via the combination of quantum mechanics/molecular mechanics, molecular dynamics, and structural biology study[J]. J Am Chem Soc, 2021, 143(38): 15674-15687. doi: 10.1021/jacs.1c06227
    [6] WANG X N, LIN H Y, LIU J J, et al. The structure of 4-hydroxylphenylpyruvate dioxygenase complexed with 4-hydroxylphenylpyruvic acid reveals an unexpected inhibition mechanism[J]. Chin Chem Lett, 2021, 32(6): 1920-1924. doi: 10.1016/j.cclet.2021.02.041
    [7] 柏亚罗. HPPD抑制剂类除草剂的产品研发及市场概况[J]. 世界农药, 2021, 43(5): 1-13. doi: 10.16201/j.cnki.cn10-1660/tq.2021.05.01

    BAI Y L. R & D and market profile on HPPD inhibitor herbicides[J]. World Pestic, 2021, 43(5): 1-13. doi: 10.16201/j.cnki.cn10-1660/tq.2021.05.01
    [8] 何波, 王大伟, 杨文超, 等. 对羟基苯丙酮酸双加氧酶(HPPD)的结构及其吡唑类除草剂的最新研究进展[J]. 2017, 37(11): 2895-2904.

    HE B, WANG D W, YANG W C, et al. Advances in research on 4-hydroxyphenylpyruvate dioxygenase (HPPD) structure and pyrazole-containing herbicides[J]. Chinese J Org Chem, 2017, 37(11): 2895-2904.
    [9] WANG H Z, LIU W T, JIN T, et al. Bipyrazone: a new HPPD-inhibiting herbicide in wheat[J]. Sci Rep, 2020, 10(1): 5521. doi: 10.1038/s41598-020-62116-6
    [10] WANG H Z, SUN P L, ZHANG X L, et al. Method validation and dissipation kinetics of the new HPPD inhibitor QYR301 in rice, paddy water and paddy soil using a QuEChERS-based method and LC-MS/MS[J]. Ecotoxicol Environ Saf, 2019, 184: 109563. doi: 10.1016/j.ecoenv.2019.109563
    [11] HAO G F, JIANG W, YE Y N, et al. ACFIS: a web server for fragment-based drug discovery[J]. Nucleic Acids Res, 2016, 44(W1): W550-W556. doi: 10.1093/nar/gkw393
    [12] 王大伟. 新型三酮类HPPD抑制剂的设计、合成及生物活性研究[D]. 武汉: 华中师范大学, 2015.

    WANG D W. Design, synthesis and biological activity of novel triketone HPPD inhibitors[D]. Wuhan: Central China Normal University, 2015.
    [13] WANG D W, LIN H Y, CAO R J, et al. Synthesis and herbicidal evaluation of triketone-containing quinazoline-2, 4-diones[J]. J Agric Food Chem, 2014, 62(49): 11786-11796. doi: 10.1021/jf5048089
    [14] YANG G F, WANG D W, CHEN Q. Triketone compound as well as preparation method and application thereof: WO2015058519A1[P]. 2015-04-30[2014-05-21]
    [15] HE B, WU F X, YU L K, et al. Discovery of novel pyrazole-quinazoline-2, 4-dione hybrids as 4-hydroxyphenylpyruvate dioxygenase inhibitors[J]. J Agric Food Chem, 2020, 68(18): 5059-5067. doi: 10.1021/acs.jafc.0c00051
    [16] QU R Y, NAN J X, YAN Y C, et al. Structure-guided discovery of silicon-containing subnanomolar inhibitor of hydroxyphenylpyruvate dioxygenase as a potential herbicide[J]. J Agric Food Chem, 2021, 69(1): 459-473. doi: 10.1021/acs.jafc.0c03844
    [17] CHANG S, JIN Y, ZHANG X R, et al. Carbonylative hiyama coupling of aryl halides with arylsilanes under balloon pressure of CO[J]. Tetrahedron Lett, 2016, 57(19): 2017-2020. doi: 10.1016/j.tetlet.2016.02.058
    [18] MEAZZA G, SCHEFFLER B E, TELLEZ M R, et al. The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase[J]. Phytochemistry, 2002, 60(3): 281-288. doi: 10.1016/S0031-9422(02)00121-8
    [19] LIN H Y, YANG J F, WANG D W, et al. Molecular insights into the mechanism of 4-hydroxyphenylpyruvate dioxygenase inhibition: enzyme kinetics, X-ray crystallography and computational simulations[J]. FEBS J, 2019, 286(5): 975-990. doi: 10.1111/febs.14747
    [20] LIN H Y, CHEN X, CHEN J N, et al. Crystal structure of 4-hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery[J]. Research, 2019, 2019: 2602414.
    [21] 农药室内生物测定试验准则 除草剂 第4部分: 活性测定试验 茎叶喷雾法: NY/T 1155.4—2006[S]. 北京: 中国农业出版社, 2006.

    Pesticides guidelines for laboratory bioactivity tests. Part 4: foliar spray application test for herbicide activity: NY/T 1155.4—2006[S]. Beijing: China Agriculture Press, 2006.
    [22] NAN J X, YANG J F, LIN H Y, et al. Synthesis and herbicidal activity of triketone-aminopyridines as potent p-hydroxyphenylpyruvate dioxygenase inhibitors[J]. J Agric Food Chem, 2021, 69(20): 5734-5745. doi: 10.1021/acs.jafc.0c07782
    [23] WANG D W, LIN H Y, CAO R J, et al. Design, synthesis and herbicidal activity of novel quinazoline-2, 4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors[J]. Pest Manag Sci, 2015, 71(8): 1122-1132. doi: 10.1002/ps.3894
    [24] OTWINOWSKI Z, MINOR W. Processing of X-ray diffraction data collected in oscillation mode[J]. Methods Enzymol, 1997, 276: 307-326.
    [25] MCCOY A J, GROSSE-KUNSTLEVE R W, ADAMS P D, et al. Phaser crystallographic software[J]. J Appl Crystallogr, 2007, 40(Pt 4): 658-674.
    [26] ADAMS P D, GROSSE-KUNSTLEVE R W, HUNG L W, et al. PHENIX: building new software for automated crystallographic structure determination[J]. Acta Crystallogr Sect D: Biol Crystallogr, 2002, 58(Pt 11): 1948-1954.
    [27] EMSLEY P, COWTAN K. Coot: model-building tools for molecular graphics[J]. Acta Crystallogr Sect D Biol Crystallogr, 2004, 60(Pt 12 Pt 1): 2126-2132.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  74
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 录用日期:  2022-08-20
  • 网络出版日期:  2022-08-24
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回