• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

根结线虫趋化性研究进展

王帅 魏钰洋 张羲 谢佳 胡展 孙然锋

王帅, 魏钰洋, 张羲, 谢佳, 胡展, 孙然锋. 根结线虫趋化性研究进展[J]. 农药学学报, 2022, 24(5): 982-996. doi: 10.16801/j.issn.1008-7303.2022.0090
引用本文: 王帅, 魏钰洋, 张羲, 谢佳, 胡展, 孙然锋. 根结线虫趋化性研究进展[J]. 农药学学报, 2022, 24(5): 982-996. doi: 10.16801/j.issn.1008-7303.2022.0090
WANG Shuai, WEI Yuyang, ZHANG Xi, XIE Jia, HU Zhan, SUN Ranfeng. Advances in studies on the chemotaxis of root-knot nematodes[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 982-996. doi: 10.16801/j.issn.1008-7303.2022.0090
Citation: WANG Shuai, WEI Yuyang, ZHANG Xi, XIE Jia, HU Zhan, SUN Ranfeng. Advances in studies on the chemotaxis of root-knot nematodes[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 982-996. doi: 10.16801/j.issn.1008-7303.2022.0090

根结线虫趋化性研究进展

doi: 10.16801/j.issn.1008-7303.2022.0090
基金项目: 国家自然科学基金 (22067004);海南省自然科学基金资助 (321CXTD436, 321QN177, 321QN178);海南省烟草公司科技计划(2018003).
详细信息
    作者简介:

    王帅,996018@hainanu.edu.cn

    通讯作者:

    孙然锋,srf18@hainanu.edu.cn

  • 中图分类号: S482.51;TQ459

Advances in studies on the chemotaxis of root-knot nematodes

Funds: National Natural Science Foundation of China (22067004); Hainan Provincial Natural Science Foundation of China(321CXTD436, 321QN177, 321QN178); Annual Science and Technology Project of Hainan Provincial Tobacco Company of CNTC (2018003).
  • 摘要: 植物寄主根部及其根际微生物等释放的化学信号物质在根结线虫寻找寄主、配偶及逃避危险等行为中起着重要的作用。目前,明确根结线虫预侵染阶段的化学信号物质以及相关的分子靶标,以期开发得到植物源和微生物源引诱剂及驱避剂,是国际线虫学研究领域的前沿和热点。本文重点综述了根结线虫的趋化性及化学信号物质,概括了线虫诱饵效应与诱捕现象的研究进展,概述了平面琼脂及其改进模型、Pluronic凝胶模型以及沙土/土壤模型在根结线虫趋化性测试中的应用,讨论了根结线虫趋化性研究的意义和难度,并对未来根结线虫趋化性研究的主要方向及前景进行了总结和展望。
  • 图  1  测试线虫趋化性的两种琼脂模型

    a:培养皿做成的琼脂模型[23];b:含微孔装置的琼脂模型[25]

    Figure  1.  Two kind of agar models for testing nematode chemotaxis

    a: Agar model made by petri dish[23]; b: Agar model with microchannel device[25].

    图  2  测试线虫趋化性的普朗尼克凝胶模型

    a:单选择的普朗尼克凝胶模型[18];b:具有双选择的普朗尼克凝胶模型[15]

    Figure  2.  Pluronic F127 gel models for testing nematode chemotaxis

    a: Pluronic F127 gel models with single-choice[18]; b: Pluronic F127 gel models with dual-choice[15].

    图  3  测试线虫趋化性的沙土/土壤模型

    a:育苗盆与管制做的沙土/土壤模型[22];b:培养皿和试管制做的沙土/土壤模型[29]

    Figure  3.  Sandy/soil models for testing nematode chemotaxis

    a: Sandy/soil models made by pots and tubes[22]; b: Sandy/soil models made by petri dishes and tubes[29].

    表  1  对根结线虫具有引诱作用的植物源化合物

    Table  1.   Plant-derived compounds with attractant properties toward root-knot nematodes

    化合物
    Compound
    来源植物
    Plant source
    模型种类 (活性浓度),
    用量
    Model type
    (active concentration), dosage
    报道时间/
    线虫种类
    Published time/
    Nematode
    species
    化学结构
    Chemical structure
    α-蒎烯
    α-Pinene
    辣椒
    Capsicum annum
    沙土/土壤
    Sand/soil model
    (20~80 ng/μL),2 mL[12]
    2017/
    M. incognita
    柠檬烯
    Limonene
    辣椒
    C. annum
    沙土/土壤
    Sand/soil model
    (20~80 ng/μL),2 mL[12]
    2017/
    M. incognita
    2-甲氧基-3-(1-甲基丙基)-吡嗪
    2-Methoxy-3-(1-methylpropyl)-pyrazine
    辣椒
    C. annum
    番茄
    Solanum lycopersicum
    菠菜
    Spinacea oleracea
    沙土/土壤
    Sand/soil model
    (>80 ng/μL),2 mL[12]
    沙土/土壤
    Sand/soil model
    (>160 ng/μL),50 μL[13]
    2017, 2018/
    M. incognita
    水杨酸甲酯
    Methyl salicylate
    辣椒
    C. annum
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (20~80 ng/μL),2 mL[12]
    沙土/土壤
    Sand/soil model
    (40~160 ng/μL),50 μL[13]
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2017, 2018, 2020/
    M. incognita
    十三烷
    Tridecane
    辣椒
    C. annum
    番茄
    S. lycopersicum
    菠菜
    S. oleracea
    沙土/土壤
    Sand/soil model
    (40~80 ng/μL),2 mL[12]
    沙土/土壤
    Sand/soil model
    (80~160 ng/μL),50 μL[13]
    1% 琼脂
    1% agar
    (10−3~102 mg/mL),10 μL[17]
    2017, 2018, 2021/
    M. incognita
    2-异丙基-3-甲氧基吡嗪
    2-Isopropyl-3 methoxy-pyrazine
    菠菜
    S. oleracea
    沙土/土壤
    Sand/soil model
    (40~160 ng/μL),50 μL[13]
    2018/
    M. incognita
    玉米素
    Zeatin (cytokinin)
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (16~4000 μg/g ) [14]
    2018/
    M. incognita
    木樨草素
    Luteolin
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (16 μg/g) [14]
    2018/
    M. incognita
    槲皮素
    Quercetin
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (16~249.2 μg/g) [14]
    2018/
    M. incognita
    番茄碱
    Tomatine
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (16~62.4 μg/g) [14]
    2018/
    M. incognita
    茄碱
    Solasodine
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (16 μg/g沙土) [14]
    2018/
    M. incognita
    L-抗坏血酸-2,6-二棕榈酸酯
    L-Ascorbyl 2,6-dipalmitate
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    邻苯二甲酸二丁酯
    Butyl phthalate
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    棕榈酸
    Palmitic acid
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    壬二酸
    Azelaic acid
    番茄
    S.lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    癸二酸
    Sebacic acid
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    对羟基苯甲酸
    4-Hydroxybenzoic acid
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~100 μg/mL),1 mL[15]
    2020/
    M. incognita
    肉桂酸
    Cinnamic acid
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    阿魏酸
    Ferulic acid
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (50~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    β-蒎烯
    β-Pinene
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (55, 110 ng/μL),50 μL[16]
    2020/
    M. javanica
    (+)-(2)-蒈烯
    (+)-(2)-Carene
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (682 ng/μL),50 μL[16]
    2020/
    M. javanica
    α-水芹烯
    α-Phellandrene
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (110~220 ng/μL),50 μL[16]
    2020/
    M. javanica
    β-水芹烯
    β-Phellandrene
    番茄
    S. lycopersicum
    沙土/土壤
    Sand/soil model
    (>220 ng/μL),50 μL[16]
    2020/
    M. javanica
    α-L-半乳糖-1,3-L-鼠李糖
    α-L-Galactosyl-1,3-L-rhamnose
    亚麻
    Linum usitatissimum
    普朗尼克凝胶
    Pluronic gel
    (>150 mmol/L),1 μL[5]
    2021/
    M. incognita
    1-二十二碳烯
    1-Docosene
    小白菜
    Brassica chinensis
    番茄
    S. lycopersicum
    萝卜等
    Raphanus sativus; et al
    1% 琼脂
    1% agar
    (10−3 mg/mL),10 μL[17]
    2021/
    M. incognita
    1-十八烯
    1-Octadecene
    小白菜
    B. chinensis
    番茄
    S. lycopersicum
    萝卜等
    R. sativus; et al
    1% 琼脂
    1% agar
    (10−6~102 mg/mL),10 μL[17]
    2021/
    M. incognita
    2-己基-1-癸醇
    2-Hexyl-1-decanol
    小白菜
    B. chinensis
    番茄
    S. lycopersicum
    黄瓜
    Cucumis
    sativus
    1% 琼脂
    1% agar
    (10−6~102 mg/mL),10 μL[17]
    2021/
    M. incognita
    苹果酸
    Malic acid
    小白菜
    B. chinensis
    番茄
    S. lycopersicum
    小米椒等
    Capsicum frutescens; et al
    1% 琼脂
    1% agar
    (10−2~102 mg/mL),10 μL[17]
    2021/
    M. incognita
    草酸
    Oxalic acid
    小米椒
    C. frutescens
    萝卜等
    R. sativus; et al
    1% 琼脂
    1% agar
    (10−2~10−1 mg/mL),10 μL[17]
    2021/
    M. incognita
    乳酸
    Lactic acid
    小白菜
    B. chinensis
    番茄
    S. lycopersicum
    萝卜等
    R. sativus; et al
    1% 琼脂
    1% agar
    (10−2~102 mg/mL),10 μL[17]
    2021/
    M. incognita
    下载: 导出CSV

    表  2  对根结线虫具有引诱作用的微生物源化合物

    Table  2.   Microbial compounds with attractant properties toward root-knot nematodes

    化合物
    Compound
    来源微生物
    Microbial source
    模型种类 (活性浓度),用量
    Model type (active concentration), dosage
    报道时间/线虫种类
    Published time/Nematode species
    化学结构
    Chemical structure
    二苯并呋喃
    Dibenzofuran
    链霉菌
    Streptomyces plicatus
    沙土/土壤
    Sand/soil model
    (10~30 μg/g) [22]
    2019/
    M. incognita
    乙基苯
    Ethylbenzene
    独岛枝芽胞杆菌
    Virgibacillus dokdonensis
    2% 琼脂
    2% agar
    (1~10 mg/mL),30 μL[23]
    2020/
    M. incognita
    二甲基二硫醚
    Dimethyl disulfide
    独岛枝芽胞杆菌
    V. dokdonensis
    2% 琼脂
    2% agar
    (1~10 mg/mL),30 μL[23]
    2020/
    M. incognita
    乙醛
    Acetaldehyde
    独岛枝芽胞杆菌
    V. dokdonensis
    2% 琼脂
    2% agar
    (1~10 mg/mL),30 μL[23]
    2020/
    M. incognita
    糠醛丙酮
    Furfural acetone
    多粘类芽孢杆菌
    Paenibacillus polymyxa
    普朗尼克凝胶
    Pluronic gel
    (20~60 mg/mL),30 μL[24]
    2021/
    M. incognita
    下载: 导出CSV

    表  3  对根结线虫具有引诱作用的合成类化学物

    Table  3.   Synthetic chemicals with attractant properties toward root-knot nematodes

    化合物
    Compound
    模型种类 (活性浓度),用量
    Model type
    (active concentration),
    dosage
    报道时间/线虫种类
    Published time/
    Nematode specie
    化学结构
    Chemical structure
    1,3-二氨基丙烷
    1,3-Diaminopropane
    普朗尼克凝胶
    Pluronic gel
    (100 mmol/L),1 μL[28]
    2020/M. incognita
    腐胺
    Putrescine
    普朗尼克凝胶
    Pluronic gel
    (100 mmol/L),1 μL[28]
    2020/M. incognita
    尸胺
    Cadaverine
    普朗尼克凝胶
    Pluronic gel
    (100 mmol/L),1 μL[28]
    2020/M. incognita
    2-甲氧基肉桂醛
    2-Methoxycinnamaldehyde
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. incognita,
    M. javanica,
    M. marylandi,
    M. hapla
    2-羟基苯甲酸
    2-Hydroxybenzoic acid (salicylic acid)
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. incognita,
    M. javanica,
    M. marylandi
    2-羟基-3-甲氧基苯甲醛
    2-Hydroxy-3-methoxybenzaldehyde
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. marylandi,
    M. hapla
    3-甲氧基苯甲酸
    3-Methoxybenzoic acid
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. incognita,
    M. javanica,
    M. marylandi,
    M. hapla
    4-甲氧基苯甲酸
    4-Methoxybenzoic acid
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. incognita,
    M. javanica,
    M. marylandi,
    M. hapla
    反式肉桂酸
    Trans-cinnamic acid
    沙土/土壤
    Sand/soil model
    (10 mg/mL),10 μL[29]
    2021/M. incognita,
    M. javanica
    下载: 导出CSV

    表  4  对根结线虫具有驱避作用的植物源化合物

    Table  4.   Plant-derived compounds with repellent properties toward root-knot nematodes

    化合物
    Compound
    来源植物
    Plant source
    模型种类 (活性浓度),用量
    Model type
    (active concentration),
    dosage
    报道时间/线虫种类
    Published time/
    Nematode species
    化学结构
    Chemical structure
    月桂酸
    Lauric acid
    冠雏菊
    Chrysanthemum coronarium
    2% 琼脂
    2% agar
    (4 mmol/L),10 μL[33]
    2014/
    M. incognita
    百里香酚
    Thymol
    辣椒
    C. annum
    沙土/土壤
    Sand/soil model
    (40~80 ng/μL),2 mL[12]
    2017/
    M. incognita
    棕榈酸
    Palmitic acid
    蓖麻
    Ricinus communis
    2% 琼脂
    2% agar
    (0.5~4.0 mmol/L),50 μL[34]
    2018/
    M. incognita
    亚油酸
    Linoleic acid
    蓖麻
    R. communis
    2% 琼脂
    2% agar
    (0.5~4.0 mmol/L),50 μL[34]
    2018/
    M. incognita
    棕榈酸甲酯
    Methyl palmitate
    木薯
    Manihot esculenta
    1% 琼脂
    1% agar
    (1~16 mmol/kg),20 μL[35]
    2020/
    M. incognita
    硬脂酸甲酯
    Methyl stearate
    木薯
    M. esculenta
    1% 琼脂
    1% agar
    (1~16 mmol/kg),20 μL[35]
    2020/
    M. incognita
    二氢辣椒碱
    Dihydrocapsaicin
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (100~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    澳洲茄胺
    Solasodine
    番茄
    S. lycopersicum
    普朗尼克凝胶
    Pluronic gel
    (100~200 μg/mL),1 mL[15]
    2020/
    M. incognita
    1-二十二碳烯
    1-Docosene
    小白菜
    B. chinensis
    番茄
    S. lycopersicum
    萝卜等
    R. sativus; et al
    1% 琼脂
    1% agar
    (10−2~102 mg/mL),10 μL[17]
    2021/
    M. incognita
    下载: 导出CSV

    表  5  对根结线虫具有驱避作用的微生物源化合物

    Table  5.   Microbial compounds with repellent properties toward root-knot nematodes

    化合物
    Compound
    来源微生物
    Microbial source
    模型种类 (活性浓度),用量
    Model type
    (active concentration),
    dosage
    报道时间/线虫种类
    Published time/
    Nematode species
    化学结构
    Chemical structure
    二甲基二硫醚
    Dimethyl-disulfide
    恶臭假单胞菌
    Pseudomonas putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    1-十一烯
    1-Undecene
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    2-壬酮
    2-Nonanone
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    2-辛酮
    2-Octanone
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    (Z)-己烯-1-乙酸醇
    (Z)-Hexen-1-ol acetate
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    2-十一酮
    2-Undecanone
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    1-(乙烯氧基)-十八烷
    1-(Ethenyloxy)-octadecane
    恶臭假单胞菌
    P. putida
    2% 琼脂
    2% agar
    (1~10000 mg/L) [37]
    2018/
    M. incognita
    苯并噻唑
    Benzothiazole
    链霉菌
    S. plicatus
    沙土/土壤
    Sand/soil model
    (10~30 μg/g) [22]
    2019/
    M. incognita
    2-丁酮
    2-Butanone
    独岛枝芽胞杆菌
    V. dokdonensis
    2% 琼脂
    2% agar
    (1~10 mg/mL),30 μL[23]
    2020/
    M. incognita
    下载: 导出CSV
  • [1] GAMALERO E, GLICK B R. The use of plant growth-promoting bacteria to prevent nematode damage to plants[J]. Biology, 2020, 9(11): 381. doi: 10.3390/biology9110381
    [2] JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961. doi: 10.1111/mpp.12057
    [3] 郑雅楠, 杨忠岐, 王小艺, 等. 植物寄生线虫的化学趋性[J]. 生态学杂志, 2014, 33(3): 837-842. doi: 10.13292/j.1000-4890.2014.0079

    ZHENG Y N, YANG Z Q, WANG X Y, et al. Chemotaxis of plant parasitic nematodes: a review[J]. Chin J Ecol, 2014, 33(3): 837-842. doi: 10.13292/j.1000-4890.2014.0079
    [4] REYNOLDS A M, DUTTA T K, CURTIS R H C, et al. Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes[J]. J R Soc Interface, 2011, 8(57): 568-577. doi: 10.1098/rsif.2010.0417
    [5] TSAI A Y L, IWAMOTO Y, TSUMURAYA Y, et al. Root-knot nematode chemotaxis is positively regulated by l-galactose sidechains of mucilage carbohydrate rhamnogalacturonan-I[J]. Sci Adv, 2021, 7(27): eabh4182. doi: 10.1126/sciadv.abh4182
    [6] BANERJEE N, HALLEM E A. The role of carbon dioxide in nematode behaviour and physiology[J]. Parasitology, 2020, 147(8): 841-854. doi: 10.1017/S0031182019001422
    [7] SHIVAKUMARA T N, DUTTA T K, CHAUDHARY S, et al. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita[J]. Mol Plant Microbe Interact, 2019, 32(7): 876-887. doi: 10.1094/MPMI-08-18-0226-R
    [8] ROLANDN P, MAURICE M. 植物线虫学[M]. 简恒, 译. 北京: 中国农业大学出版社, 2011.

    RONLANDN P, MAURICE M. Plant nematology[M]. JIAN H. Translated. Beijing: China Agricultural University Press, 2011.
    [9] 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0514

    LI C J, WANG C L. Recognition mechanism of plant-parasitic nematodes in response to semiochemicals[J]. Biotechnol Bull, 2021, 37(7): 35-44. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0514
    [10] BEEMAN A Q, NJUS Z L, PANDEY S, et al. Chip technologies for screening chemical and biological agents against plant-parasitic nematodes[J]. Phytopathology, 2016, 106(12): 1563-1571. doi: 10.1094/PHYTO-06-16-0224-R
    [11] VESTERGÅRD M. Trap crops for Meloidogyne hapla management and its integration with supplementary strategies[J]. Appl Soil Ecol, 2019, 134: 105-110. doi: 10.1016/j.apsoil.2018.10.012
    [12] KIHIKA R, MURUNGI L K, COYNE D, et al. Parasitic nematode Meloidogyne incognita interactions with different Capsicum annum cultivars reveal the chemical constituents modulating root herbivory[J]. Sci Rep, 2017, 7: 2903. doi: 10.1038/s41598-017-02379-8
    [13] MURUNGI L K, KIRWA H, COYNE D, et al. Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode Meloidogyne incognita[J]. J Agric Food Chem, 2018, 66(28): 7328-7336. doi: 10.1021/acs.jafc.8b03257
    [14] KIRWA H K, MURUNGI L K, BECK J J, et al. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids[J]. J Agric Food Chem, 2018, 66(43): 11291-11300. doi: 10.1021/acs.jafc.8b05101
    [15] KUANG M S, LIU T T, WU H B, et al. Constituents leached by tomato seeds regulate the behavior of root-knot nematodes and their antifungal effects against seed-borne fungi[J]. J Agric Food Chem, 2020, 68(34): 9061-9069. doi: 10.1021/acs.jafc.0c01797
    [16] KIHIKA R, TCHOUASSI D P, NG'ANG'A M M, et al. Compounds associated with infection by the root-knot nematode, Meloidogyne javanica, influence the ability of infective juveniles to recognize host plants[J]. J Agric Food Chem, 2020, 68(34): 9100-9109. doi: 10.1021/acs.jafc.0c03386
    [17] WANG J X, DING Z J, BIAN J, et al. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates[J]. Rhizosphere, 2021, 17: 100320. doi: 10.1016/j.rhisph.2021.100320
    [18] WANG C L, BRUENING G, WILLIAMSON V M. Determination of preferred pH for root-knot nematode aggregation using pluronic F-127 gel[J]. J Chem Ecol, 2009, 35(10): 1242-1251. doi: 10.1007/s10886-009-9703-8
    [19] FLEMING T R, MAULE A G, FLEMING C C. Chemosensory responses of plant parasitic nematodes to selected phytochemicals reveal long-term habituation traits[J]. J Nematol, 2017, 49(4): 462-471.
    [20] LI L, YANG M, LUO J, et al. Nematode-trapping fungi and fungus-associated bacteria interactions: the role of bacterial diketopiperazines and biofilms on Arthrobotrys oligospora surface in hyphal morphogenesis[J]. Environ Microbiol, 2016, 18(11): 3827-3839. doi: 10.1111/1462-2920.13340
    [21] YERGALIYEV T M, ALEXANDER-SHANI R, DIMERETS H, et al. Bacterial community structure dynamics in Meloidogyne incognita-infected roots and its role in worm-microbiome interactions[J]. mSphere, 2020, 5(4): e00306-e00320.
    [22] WANG P Y, SUN Y, YANG L L, et al. Chemotactic responses of the root-knot nematode Meloidogyne incognita to Streptomyces plicatus[J]. FEMS Microbiol Lett, 2019, 366(19): fnz234. doi: 10.1093/femsle/fnz234
    [23] HUANG D, YU C, SHAO Z Z, et al. Identification and characterization of nematicidal volatile organic compounds from deep-sea Virgibacillus dokdonensis MCCC 1A00493[J]. Molecules, 2020, 25(3): 744. doi: 10.3390/molecules25030744
    [24] CHENG W L, CHEN Z, ZENG L, et al. Control of Meloidogyne incognita in three-dimensional model systems and pot experiments by the attract-and-kill effect of furfural acetone[J]. Plant Dis, 2021, 105(8): 2169-2176. doi: 10.1094/PDIS-07-20-1501-RE
    [25] HIDA H, NISHIYAMA H, SAWA S, et al. Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device[J]. Sens Actuat B Chem, 2015, 221: 1483-1491. doi: 10.1016/j.snb.2015.07.081
    [26] SHIVAKUMARA T N, DUTTA T K, RAO U. A novel in vitro chemotaxis bioassay to assess the response of Meloidogyne incognita towards various test compounds[J]. J Nematol, 2018, 50(4): 487-494. doi: 10.21307/jofnem-2018-047
    [27] SOBKOWIAK R, BOJARSKA N, KRZYŻANIAK E, et al. Chemoreception of botanical nematicides by Meloidogyne incognita and Caenorhabditis elegans[J]. J Environ Sci Health B, 2018, 53(8): 493-502. doi: 10.1080/03601234.2018.1462936
    [28] OOTA M, TSAI A Y L, AOKI D, et al. Identification of naturally occurring polyamines as root-knot nematode attractants[J]. Mol Plant, 2020, 13(4): 658-665. doi: 10.1016/j.molp.2019.12.010
    [29] OKA Y. Aromatic compounds that attract Meloidogyne species second-stage juveniles in soil[J]. Pest Manag Sci, 2021, 77(10): 4288-4297. doi: 10.1002/ps.6506
    [30] TOYODA S, OOTA M, ISHIKAWA H, et al. Calcium sulfate and calcium carbonate as root-knot-nematode attractants and possible trap materials to protect crop plants[J]. Plant Biotechnol(Tokyo), 2021, 38(1): 157-159. doi: 10.5511/plantbiotechnology.20.0806a
    [31] 刘一婧, 杜丽娜, 金义光. 驱避剂及其剂型的研究进展[J]. 国际药学研究杂志, 2020, 47(12): 1104-1112. doi: 10.13220/j.cnki.jipr.2020.12.012

    LIU Y J, DU L N, JIN Y G. Progress in repellents and their formulations[J]. J Int Pharm Res, 2020, 47(12): 1104-1112. doi: 10.13220/j.cnki.jipr.2020.12.012
    [32] CHITWOOD D J. Phytochemical based strategies for nematode control[J]. Annu Rev Phytopathol, 2002, 40: 221-249. doi: 10.1146/annurev.phyto.40.032602.130045
    [33] DONG L L, LI X L, HUANG L, et al. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection[J]. J Exp Bot, 2014, 65(1): 131-141. doi: 10.1093/jxb/ert356
    [34] DONG L L, LI X L, HUANG C D, et al. Reduced Meloidogyne incognita infection of tomato in the presence of castor and the involvement of fatty acids[J]. Sci Hortic, 2018, 237: 169-175. doi: 10.1016/j.scienta.2018.03.066
    [35] LU Q F, LIU T T, WANG N Q, et al. Nematicidal effect of methyl palmitate and methyl stearate against Meloidogyne incognita in bananas[J]. J Agric Food Chem, 2020, 68(24): 6502-6510. doi: 10.1021/acs.jafc.0c00218
    [36] 胡海静. 植物内生芽孢杆菌对南方根结线虫的防治研究[D]. 南京: 南京师范大学, 2017. DOI: 10.27245/d.cnki.gnjsu.2017.000215.

    HU H J. Study on the control of endophytic Bacillus against Meloidogyne incognita[D]. Nanjing: Nanjing Normal University, 2017. DOI: 10.27245/d.cnki.gnjsu.2017.000215.
    [37] ZHAI Y L, SHAO Z Z, CAI M M, et al. Multiple modes of nematode control by volatiles of Pseudomonas putida 1A00316 from Antarctic soil against Meloidogyne incognita[J]. Front Microbiol, 2018, 9: 253. doi: 10.3389/fmicb.2018.00253
    [38] 赵晓曼. 贝莱斯芽孢杆菌Bv-25对南方根结线虫的生防作用分析[D]. 新乡: 河南科技学院, 2021. DOI: 10.27704/d.cnki.ghnkj.2021.000074.

    ZHAO X M. Analysis of the biocontrol efficacy of Bacillus velezensis strain Bv-25 against Meloidogyne incognita[D]. Xinxiang: Henan Institute of Science and Technology, 2021.
    [39] NIU Q H, HUANG X W, ZHANG L, et al. A Trojan horse mechanism of bacterial pathogenesis against nematodes[J]. Proc Natl Acad Sci USA, 2010, 107(38): 16631-16636. doi: 10.1073/pnas.1007276107
    [40] BIAN J, ZHANG H L, MENG S, et al. Chemotaxis of Caenorhabditis elegans toward volatile organic compounds from Stropharia rugosoannulata induced by amino acids[J]. J Nematol, 2018, 50(1): 3-8. doi: 10.21307/jofnem-2018-003
    [41] WAISEN P, SIPES B S, WANG K H. Potential of biofumigant cover crops as open-end trap crops against root-knot and reniform nematodes[J]. Nematropica, 2019, 49(2): 254-264.
    [42] SACCHI S, TORRINI G, MARIANELLI L, et al. Control of Meloidogyne graminicola a root-knot nematode using rice plants as trap crops: preliminary results[J]. Agriculture, 2021, 11(1): 37. doi: 10.3390/agriculture11010037
    [43] AJITOMI A, TABA S, AJITOMI Y, et al. Efficacy of a simple formulation composed of nematode-trapping fungi and Bidens pilosa var. radiata scherff aqueous extracts (BPE) for controlling the southern root-knot nematode[J]. Microbes Environ, 2018, 33(1): 4-9. doi: 10.1264/jsme2.ME17110
    [44] CHENG W L, YANG J Y, NIE Q Y, et al. Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies[J]. Sci Rep, 2017, 7: 16213. doi: 10.1038/s41598-017-16631-8
    [45] HASTUTI L D S, FAULL J. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode Meloidogyne incognita on deli tobacco (Nicotiana tabaccum L.) cv. deli 4[J]. IOP Conf Ser: Earth Environ Sci 2018, 130: 012009.
    [46] JIANG X Z, XIANG M C, LIU X Z. Nematode-trapping fungi[J]. Microbiol Spectr, 2017, 5(1): FUNK-0022-2016.
    [47] CASTRO C E, BELSER N O, MCKINNEY H E, et al. Quantitative bioassay for chemotaxis with plant parasitic nematodes: attractant and repellent fractions for Meloidogyne incognita from cucumber roots[J]. J Chem Ecol, 1989, 15(4): 1297-1309. doi: 10.1007/BF01014831
    [48] CASTRO C E, BELSER N O, MCKINNEY H E, et al. Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions[J]. J Chem Ecol, 1990, 16(4): 1199-1205. doi: 10.1007/BF01021019
    [49] Le SAUX R, QUÉNÉHERVE P. Differential chemotactic responses of two plant-parasitic nematodes, Meloidogyne incognita and Rotylenchulus reniformis, to some inorganic ions[J]. Nematology, 2002, 4(1): 99-105. doi: 10.1163/156854102760082258
    [50] 孟丽, 漆永红, 刘玉霞, 等. 南方根结线虫二龄幼虫对不同类型盐离子的趋化反应[J]. 植物保护, 2014, 40(2): 85-89. doi: 10.3969/j.issn.0529-1542.2014.02.016

    MENG L, QI Y H, LIU Y X, et al. Chemotaxis of the second stage juveniles of Meloidogyne incognita in response to different salt ions[J]. Plant Prot, 2014, 40(2): 85-89. doi: 10.3969/j.issn.0529-1542.2014.02.016
    [51] SPIEGEL Y, BURROWS P M, BAR-EYAL M. A chemo attractant in onion root exudates recognized by Ditylenchus dipsaci in laboratory bioassay[J]. Phytopathology, 2003, 93(1): 127-132. doi: 10.1094/PHYTO.2003.93.1.127
    [52] OKA Y. Screening of chemical attractants for second-stage juveniles of Meloidogyne species on agar plates[J]. Plant Pathol, 2021, 70(4): 912-921. doi: 10.1111/ppa.13336
    [53] WANG Z W, LEE I, JEON T J, et al. Micro-/nanofluidic device for tunable generation of a concentration gradient: application to Caenorhabditis elegans chemotaxis[J]. Anal Bioanal Chem, 2014, 406(11): 2679-2686. doi: 10.1007/s00216-014-7663-5
    [54] O'HALLORAN D M. NemaCount: quantification of nematode chemotaxis behavior in a browser[J]. Invertebr Neurosci, 2016, 16(2): 5. doi: 10.1007/s10158-016-0188-1
    [55] 王从丽, 李春杰, 胡岩峰. 利用Pluronic三维胶系统研究植物寄生线虫的趋化性[J]. 土壤与作物, 2016, 5(1): 1-13. doi: 10.11689/j.issn.2095-2961.2016.01.001

    WANG C L, LI C J, HU Y F. Pluronic gel system: an approach to investigate chemotaxis of plant parasitic nematodes[J]. Soils Crops, 2016, 5(1): 1-13. doi: 10.11689/j.issn.2095-2961.2016.01.001
    [56] WANG C L, LOWER S, WILLIAMSON V. Application of Pluronic gel to the study of root-knot nematode behaviour[J]. Nematology, 2009, 11(3): 453-464. doi: 10.1163/156854109X447024
    [57] HUA C, LI C J, JIANG Y, et al. Response of soybean cyst nematode (Heterodera glycines) and root-knot nematodes (Meloidogyne spp. ) to gradients of pH and inorganic salts[J]. Plant Soil, 2020, 455(1): 305-318.
    [58] 丁正蛟. 七种植物根系分泌物对南方根结线虫趋化性的作用[D]. 昆明: 云南大学, 2018.

    DING Z J. Chemotaxis of Meloidogyne incognita to root exudates from seven plants[D]. Kunming: Yunnan University, 2018.
    [59] ČEPULYTĖ R, DANQUAH W B, BRUENING G, et al. Potent attractant for root-knot nematodes in exudates from seedling root tips of two host species[J]. Sci Rep, 2018, 8: 10847. doi: 10.1038/s41598-018-29165-4
    [60] 漆永红, 孟丽, 吕和平, 等. 盐类对南方根结线虫迁移能力和侵入能力的影响[J]. 植物保护学报, 2015, 42(4): 639-644. doi: 10.13802/j.cnki.zwbhxb.2015.04.024

    QI Y H, MENG L, LÜ H P, et al. Effect of salts on motility and infectivity of Meloidogyne incognita[J]. J Plant Prot, 2015, 42(4): 639-644. doi: 10.13802/j.cnki.zwbhxb.2015.04.024
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  18
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 录用日期:  2022-08-23
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回