• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于荧光光谱和二维相关分析技术探究硝磺草酮对玉米的生理效应

高倩 陈盼盼 王毅

高倩, 陈盼盼, 王毅. 基于荧光光谱和二维相关分析技术探究硝磺草酮对玉米的生理效应[J]. 农药学学报, 2022, 24(5): 1248-1258. doi: 10.16801/j.issn.1008-7303.2022.0098
引用本文: 高倩, 陈盼盼, 王毅. 基于荧光光谱和二维相关分析技术探究硝磺草酮对玉米的生理效应[J]. 农药学学报, 2022, 24(5): 1248-1258. doi: 10.16801/j.issn.1008-7303.2022.0098
GAO Qian, CHEN Panpan, WANG Yi. Physiological effects of maize with mesotrione using fluorescence spectroscopy and two-dimensional correlation analysis technique[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1248-1258. doi: 10.16801/j.issn.1008-7303.2022.0098
Citation: GAO Qian, CHEN Panpan, WANG Yi. Physiological effects of maize with mesotrione using fluorescence spectroscopy and two-dimensional correlation analysis technique[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1248-1258. doi: 10.16801/j.issn.1008-7303.2022.0098

基于荧光光谱和二维相关分析技术探究硝磺草酮对玉米的生理效应

doi: 10.16801/j.issn.1008-7303.2022.0098
基金项目: 安徽省自然科学基金优青项目 (2208085Y07);国家自然科学基金 (32072464).
详细信息
    作者简介:

    高倩,gaoqian2009@ahau.edu.cn

    通讯作者:

    王毅,wangyi@ahau.edu.cn

  • 中图分类号: TQ450.26;O657.3

Physiological effects of maize with mesotrione using fluorescence spectroscopy and two-dimensional correlation analysis technique

Funds: Outstanding Youth Fund of Natural Science Foundation of Anhui Province (2208085Y07); National Natural Science Foundation of China (32072464).
  • 摘要: 为明确硝磺草酮胁迫对玉米的生理效应及其在玉米田使用的安全性,采用紫外可见吸收光谱、同步荧光光谱、三维荧光光谱和二维相关分析 (2D-COS) 技术,研究了不同浓度硝磺草酮对玉米叶片中叶绿素及类胡萝卜素含量,根、茎、叶鲜重和根系分泌物荧光物质的影响。结果表明:当硝磺草酮质量浓度为5和10 mg/L时,胁迫10及14 d后,玉米叶片中叶绿素和类胡萝卜素含量以及根、茎、叶鲜重均显著降低。同步荧光光谱、三维荧光光谱和2D-COS技术分析揭示,玉米根系分泌物中类蛋白和类腐殖质的荧光强度发生了显著变化,并且随着硝磺草酮浓度升高、胁迫时间延长,上述变化越明显;但其225~235 nm处的类蛋白荧光峰强度在胁迫7、10和14 d时反而增强,结合2D-COS分析发现,280~325 nm处的类蛋白荧光基团先与硝磺草酮进行结合。研究表明,硝磺草酮质量浓度高于5 mg/L,胁迫10 d后对玉米的正常生长会产生不利影响,研究结果可为评价硝磺草酮在玉米田使用的安全性提供理论依据。
  • 1  硝磺草酮结构式

    1.  The structural formula of mesotrione

    图  1  不同浓度硝磺草酮胁迫不同时间下玉米叶片叶绿素含量(n=3)

    Figure  1.  The chlorophyll content in leaves of maize under different concentrations of nitrosulfuron stress at different times (n=3)

    图  2  硝磺草酮胁迫不同时间玉米叶片叶绿素含量变化趋势 (n=3)

    Figure  2.  Variation trend of chlorophyll content in maize leaves under the stress of mesotrione at different times (n=3)

    图  3  不同浓度硝磺草酮胁迫不同时间下玉米叶片中类胡萝卜素含量 (n=3)

    Figure  3.  The carotenoid content in maize leaves under different concentrations of mesotrione stress at different times (n=3)

    图  4  不同质量浓度硝磺草酮胁迫不同时间下玉米根、茎、叶的鲜重变化 (n=3)

    Figure  4.  Changes of fresh weight of maize roots, stems and leaves under different concentrations of mesotrione stress at different times (n=3)

    图  5  不同质量浓度硝磺草酮胁迫不同时间下玉米根系分泌物的同步荧光光谱

    Figure  5.  Synchronous fluorescence spectra of maize root extractions under the stress of different concentrations mesotrione at different times

    图  6  不同质量浓度硝磺草酮胁迫不同时间下玉米根系分泌物的三维荧光光谱

    Figure  6.  3D fluorescence spectra of maize root extractions under the stress of different concentrations of mesotrione at different times

    图  7  硝磺草酮胁迫不同时间下玉米根系分泌物的同步和异步2D-COS荧光光谱

    Figure  7.  Synchronous and asynchronous 2D-COS fluorescence spectra of maize root exudates under the stress of mesotrione at different times

    表  1  硝磺草酮胁迫不同时间下玉米叶片叶绿素含量差异分析

    Table  1.   Differential analysis results of chlorophyll content in maize leaves at different times under the stress of mesotrione

    叶绿素含量
    Chlorophyll content/
    (mg/g (FW))
    胁迫时间 Stress time
    2 h1 d3 d7 d10 d14 d
    叶绿素 a 含量 Ca 2.24 a 1.75 ab 1.42 b 1.92 ab 1.45 b 1.27 b
    叶绿素 b 含量 Cb 0.44 a 0.33 ab 0.36 ab 0.37 ab 0.27 b 0.23 b
    叶绿素总含量 Ca + b 2.68 a 2.08 ab 1.78 b 2.29 ab 1.71 b 1.51 b
    注:同行不同小写字母表示处理间差异显著 (P<0.05)。Note: Different lowercase in rhe same row indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  2  硝磺草酮胁迫不同时间下玉米根、茎、叶鲜重差异显著性分析

    Table  2.   Significance analysis of fresh weight difference of root, stem and leaf of maize under mesotrione stress at different times

    鲜重
    Fresh weight/g
    胁迫时间 Stress time
    2 h1 d3 d7 d10 d14 d
    根 Root 1.30 b 1.10 b 1.02 b 0.96 b 1.33 b 1.77 a
    茎 Stem 0.94 c 0.91 c 0.93 c 1.05 c 1.62 b 2.30 a
    叶 Leaf 0.63 c 0.70 bc 0.78 bc 1.12 bc 1.16 b 1.64 a
    注:同行不同小写字母表示处理间差异显著 (P<0.05)。 Note: Different lowercase in the same row indicate significant differences among treatments (P<0.05).
    下载: 导出CSV

    表  3  不同质量浓度磺草酮胁迫不同时间下玉米根系分泌物三维荧光强度

    Table  3.   Fluorescence intensity of fluorescence peaks in the three-dimensional fluorescence spectrum of maize root exudates under the stress of different concentrations of mesotrione at different times

    硝磺草酮质量浓度
    Conc. of mesotrione/
    (mg/L)
    荧光峰
    Peaks
    荧光强度
    Fluorescence intensity/(a.u.)
    2 h1 d3 d7 d10 d14 d
    0 Peak A 777 804 694 839 856 646
    Peak B 954 1000 1000 613 725 926
    0.5 Peak A 570 589 405 369 425 351
    Peak B 603 900 549 210 374 499
    1 Peak A 452 542 348 356 485
    Peak B 460 720 358 343 496 445
    5 Peak A 440 506 227 605 402 460
    Peak B 408 745 261 583 331 523
    10 Peak A 367 465 276 495
    Peak B 473 606 228 148 326
    下载: 导出CSV
  • [1] 夏文, 袁善奎, 聂东兴, 等. 玉米田除草剂登记情况及趋势分析[J]. 农药科学与管理, 2016, 37(8): 14-18. doi: 10.3969/j.issn.1002-5480.2016.08.004

    XIA W, YUAN S K, NIE D X, et al. Overview and analysis of herbicides registered on corn[J]. Pestic Sci Admin, 2016, 37(8): 14-18. doi: 10.3969/j.issn.1002-5480.2016.08.004
    [2] 张夕林, 张洪进, 季永进, 等. 玉米田杂草生态经济防除阈值及竞争临界期研究[J]. 植保技术与推广, 2000, 20(2): 26-28.

    ZHANG X L, ZHANG H J, JI Y J, et al. Study on the threshold of eco-economic weed control and the critical period of competition in corn field[J]. Plant Prot Technol Ext, 2000, 20(2): 26-28.
    [3] 彭乾. HPPD抑制剂类除草剂抗性菌株筛选及其HPPD基因克隆和抗性研究[D]. 南京: 南京农业大学, 2020.

    PENG Q. Isolation of HPPD-inhibitor herbicides resistant strain and cloning and resistance evaluation of the HPPD gene[D]. Nanjing: Nanjing Agricultural University, 2020.
    [4] 柏亚罗. HPPD抑制剂类除草剂的产品研发及市场概况[J]. 世界农药, 2021, 43(5): 1-13,56. doi: 10.16201/j.cnki.cn10-1660/tq.2021.05.01

    BAI Y L. R & D and market profile on HPPD inhibitor herbicides[J]. World Pestic, 2021, 43(5): 1-13,56. doi: 10.16201/j.cnki.cn10-1660/tq.2021.05.01
    [5] DAI S H, GEORGELIS N, BEDAIR M, et al. Ectopic expression of a rice triketone dioxygenase gene confers mesotrione tolerance in soybean[J]. Pest Manag Sci, 2022, 78(7): 2816-2827. doi: 10.1002/ps.6904
    [6] 李向楠, 吴振兴, 陈坚剑, 等. 耐性和敏感两种类型鲜食玉米苗期施用硝磺草酮后的转录组分析[J]. 农药学学报, 2021, 23(5): 893-904. doi: 10.16801/j.issn.1008-7303.2021.0133

    LI X N, WU Z X, CHEN J J, et al. RNA-Seq transcriptome analysis of fresh-eating maizes sensitive and tolerant to mesotrione in the seedling stage[J]. Chin J Pestic Sci, 2021, 23(5): 893-904. doi: 10.16801/j.issn.1008-7303.2021.0133
    [7] 张宏军, 刘学, 倪汉文, 等. 硝磺草酮对玉米药害的早期诊断和缓解方法[J]. 杂草科学, 2009, 4: 19-22.

    ZHANG H J, LIU X, NI H W, et al. Early diagnosis and mitigation methods of nitrosulfuron on maize[J]. Weed Sci, 2009, 4: 19-22.
    [8] LICHTENTHALER H K, WELLBURN A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J]. Biochem Soc Trans, 1983, 11(5): 591-592. doi: 10.1042/bst0110591
    [9] ZHAO F J, HAMON R E, MCLAUGHLIN M J. Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization[J]. New Phytol, 2001, 151(3): 613-620. doi: 10.1046/j.0028-646x.2001.00213.x
    [10] 余婧, 武培怡. 二维相关荧光光谱技术[J]. 化学进展, 2006, 18(12): 1691-1702. doi: 10.3321/j.issn:1005-281X.2006.12.015

    YU J, WU P Y. Two-dimensional fluorescence correlation spectroscopy[J]. Prog Chem, 2006, 18(12): 1691-1702. doi: 10.3321/j.issn:1005-281X.2006.12.015
    [11] 侯磊, 武培怡. 二维相关红外光谱分析技术在高分子表征中的应用[J]. 高分子学报, 2022, 53(5): 522-538.

    HOU L, WU P Y. Applications of two-dimensional correlation infrared spectroscopy in the characterization of polymers[J]. Acta Polym Sin, 2022, 53(5): 522-538.
    [12] 史国栋. 叶面喷施硝磺草酮对不同谷子品种安全性的影响[D]. 太谷: 山西农业大学, 2019.

    SHI G D. Foliar application of mesotrione to different millet varieties safety study[D]. Taigu: Shanxi Agricultural University, 2019.
    [13] 苏少泉. 三酮类除草剂磺草酮与硝磺酮的作用特性与使用[J]. 现代农药, 2002, 1(3): 1-3. doi: 10.3969/j.issn.1671-5284.2002.03.001

    SU S Q. The characterization and application of triketones herbicide sulcotrione and mesotrione[J]. Mod Agrochem, 2002, 1(3): 1-3. doi: 10.3969/j.issn.1671-5284.2002.03.001
    [14] 王健, 钟雪梅, 吕香玲, 等. 不同品种玉米对烟嘧磺隆的耐药性研究进展[J]. 农药学学报, 2016, 18(3): 282-290. doi: 10.16801/j.issn.1008-7303.2016.0038

    WANG J, ZHONG X M, LÜ X L, et al. Advances in research on tolerance of differential corn cultivars to the nicosulfuron[J]. Chin J Pestic Sci, 2016, 18(3): 282-290. doi: 10.16801/j.issn.1008-7303.2016.0038
    [15] ZHANG T, LU J F, MA J, et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere, 2008, 71(5): 911-921. doi: 10.1016/j.chemosphere.2007.11.030
    [16] HUR J, LEE B M. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83(11): 1603-1611. doi: 10.1016/j.chemosphere.2011.01.004
    [17] CHEN W, HABIBUL N, LIU X Y, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environ Sci Technol, 2015, 49(4): 2052-2058. doi: 10.1021/es5049495
    [18] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environ Sci Technol, 2003, 37(24): 5701-5710. doi: 10.1021/es034354c
    [19] ZHOU Y Q, JEPPESEN E, ZHANG Y L, et al. Chromophoric dissolved organic matter of black waters in a highly eutrophic Chinese lake: freshly produced from algal scums?[J]. J Hazard Mater, 2015, 299: 222-230. doi: 10.1016/j.jhazmat.2015.06.024
    [20] 付庆龙. 洛克沙胂的土壤环境过程和植物效应研究[D]. 北京: 中国科学院大学, 2017.

    FU Q L. Study on soil environmental process and plant effect of arsenic in loksa[D]. Beijing: University of Chinese Academy of Sciences, 2017.
    [21] 高鸣, 胡喜连, 杨永志, 等. 模拟除草剂残留对下茬谷子的影响[J]. 现代农业科技, 2016(24): 120-121. doi: 10.3969/j.issn.1007-5739.2016.24.069

    GAO M, HU X L, YANG Y Z, et al. Study on effects of herbicide residues for foxtail millet[J]. Mod Agric Sci Technol, 2016(24): 120-121. doi: 10.3969/j.issn.1007-5739.2016.24.069
    [22] 马兵兵. 阿特拉津对抗性植物狼尾草典型生理特征的影响[D]. 哈尔滨: 东北农业大学, 2016.

    MA B B. Effect of atrazine on the typical physiological characteristics of resistant plant: Pennisetum americanum L. (cv. K. schum)[D]. Harbin: Northeast Agricultural University, 2016.
    [23] 武婷婷. 大豆除草剂药害及其有效缓解剂的筛选[D]. 长春: 吉林农业大学, 2014.

    WU T T. Study on herbicide phytotoxicity in soybean and the selection of effective preventive agents[D]. Changchun: Jilin Agricultural University, 2014.
    [24] MONTIEL-ROZAS M M, MADEJÓN E, MADEJÓN P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: an assessment in sand and soil conditions under different levels of contamination[J]. Environ Pollut, 2016, 216: 273-281. doi: 10.1016/j.envpol.2016.05.080
    [25] GUO M X, GONG Z Q, MIAO R H, et al. The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure[J]. Ecol Eng, 2017, 99: 22-30. doi: 10.1016/j.ecoleng.2016.11.018
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 录用日期:  2022-08-31
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回