• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农药对蜜蜂的影响及毒理学机制研究进展

张伟 齐素贞 薛晓锋 邱立红

张伟, 齐素贞, 薛晓锋, 邱立红. 农药对蜜蜂的影响及毒理学机制研究进展[J]. 农药学学报, 2022, 24(5): 1125-1138. doi: 10.16801/j.issn.1008-7303.2022.0099
引用本文: 张伟, 齐素贞, 薛晓锋, 邱立红. 农药对蜜蜂的影响及毒理学机制研究进展[J]. 农药学学报, 2022, 24(5): 1125-1138. doi: 10.16801/j.issn.1008-7303.2022.0099
ZHANG Wei, QI Suzhen, XUE Xiaofeng, QIU Lihong. Research progress of the effects and toxicology mechanisms of pesticides on bees[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1125-1138. doi: 10.16801/j.issn.1008-7303.2022.0099
Citation: ZHANG Wei, QI Suzhen, XUE Xiaofeng, QIU Lihong. Research progress of the effects and toxicology mechanisms of pesticides on bees[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1125-1138. doi: 10.16801/j.issn.1008-7303.2022.0099

农药对蜜蜂的影响及毒理学机制研究进展

doi: 10.16801/j.issn.1008-7303.2022.0099
基金项目: 国家重点研发计划 (2017YFD0200504).
详细信息
    作者简介:

    张伟,weizhang20200202@163.com

    通讯作者:

    邱立红,lihongqiuyang@126.com

  • 中图分类号: S481.1;S894;TQ450.26

Research progress of the effects and toxicology mechanisms of pesticides on bees

Funds: National Key R & D Program of China (2017YFD0200504).
  • 摘要: 农药在现代农业生产中发挥着积极作用,但是农药使用不当则会对重要授粉昆虫如蜜蜂等造成负面影响。本文主要围绕农药对蜜蜂的急性毒性、亚致死剂量农药对蜜蜂生长发育和行为的影响,农药对蜜蜂的联合作用,以及新烟碱类杀虫剂与蜜蜂烟碱型乙酰胆碱受体的相互作用、农药对蜜蜂毒性差异的机理、农药对蜜蜂解毒代谢相关酶活性及其他生理生化指标的影响、植物化学物质在调控蜜蜂对农药耐受性中的作用等方面的研究进展进行了综述,以期为农药的合理使用及提高其对蜜蜂的安全性提供参考。
  • 图  1  多种因素对蜜蜂的影响 (引自Vanbergen[18] 并略作改进)

    Figure  1.  Effect of multiple factors on bees (from Vanbergen[18] with minor modification)

    表  1  不同杀虫剂对蜜蜂的急性接触毒性

    Table  1.   Acute contact toxicity of different insecticides to honeybees

    蜜蜂种类
    Bee species
    杀虫剂
    Insecticide
    致死中量 (时间)
    LD50 (Time)/(μg/bee)
    95% 置信限
    95% confidence interval/(μg/bee)
    参考文献
    Reference
    意大利蜜蜂
    Apis mellifera
    吡虫啉
    imidacloprid
    0.0179 (24 h) 0.0092~0.0315[24]
    噻虫胺
    clothianidin
    0.0218 (24 h) 0.0102~0.0465[24]
    噻虫嗪
    thiamethoxam
    0.0299 (24 h) 0.0208~0.0429[24]
    烯啶虫胺
    nitenpyram
    0.138 (24 h) 0.0717~0.259[24]
    呋虫胺
    dinotefuran
    0.0750 (24 h) 0.0628~0.0896[24]
    啶虫脒
    acetamiprid
    7.07 (24 h) 4.57~11.2[24]
    噻虫啉
    thiacloprid
    14.6 (24 h) 9.53~25.4[24]
    氟吡呋喃酮
    flupyradifurone
    >100 (48 h) [25]
    氯虫苯甲酰胺
    chlorantraniliprole
    >100 (48 h) [26]
    中华蜜蜂
    Apis cerana
    吡虫啉
    imidacloprid
    0.00360 (48 h) 0.00180~0.00770[27]
    啶虫脒
    acetamiprid
    0.278 (48 h) 0.0600~1.04[27]
    噻虫胺
    clothianidin
    0.00340 (48 h) 0.0029~0.005[27]
    呋虫胺
    dinotefuran
    0.00240 (48 h) 0.00180~0.00310[27]
    氟虫腈
    fipronil
    0.00250 (48 h) 0.00170~0.00360[27]
    氯虫苯甲酰胺
    chlorantraniliprole
    0.0180 (48 h) 0.00700~0.0300[27]
    苜蓿切叶蜂
    Megachile rotundata
    吡虫啉
    imidacloprid
    0.0128 (72 h) 0.00100~0.00156[28]
    乐果
    dimethoate
    0.0621 (72 h) 0.00550~ −0.00691[28]
    氯菊酯
    permethrin
    0.0500 (72 h) 0.00418~0.00582[28]
    噻虫啉
    thiacloprid
    0.0150 (48 h) 0.0120~0.0230[29]
    氟吡呋喃酮
    flupyradifurone
    0.0920 (72 h) 0.0360~0.260[29]
    红梅森蜂
    Osmia bicornis
    啶虫脒
    acetamiprid
    1.72 (48 h) 0.851~2.59[26]
    吡虫啉
    imidacloprid
    0.0310 (48 h) 0.0260~0.0370[26]
    噻虫啉
    thiacloprid
    1.16 (48 h) 0.739~1.58[26]
    氯虫苯甲酰胺
    chlorantraniliprole
    5.92 (48 h) 4.26~7.57[26]
    氟吡呋喃酮
    flupyradifurone
    10.6 (48 h) 6.06~15.1
    [26]
    高效氟氯氰菊酯
    beta-cyfluthrin
    0.0350 (48 h) 0.0200~0.0510[26]
    熊蜂
    Bombus terrestris
    吡虫啉
    imidacloprid
    0.380 (48 h) 0.120~1.45[30]
    溴氰菊酯
    deltamethrin
    1.07 (48 h) 0.530~ 1.86[30]
    氟胺氰菊酯
    tau-fluvalinate
    18.7 (48 h) 13.6~25.5[30]
    毒死蜱
    chlorpyrifos
    0.640 (48 h) 0.500~0.780[30]
    下载: 导出CSV

    表  2  蜜蜂CYP3分支的P450基因种类及数量 (引自Haas 等[74])

    Table  2.   P450s of CYP3 clan in bee species (from Hass et al [74])

    蜜蜂种类
    Bee species
    所属科
    Family
    CYP336CYP6CYP9类 CYP9Q 基因
    CYP9Q-like genes
    黄褐色矿蜂
    Andrena fulva
    地蜂科
    Andrenidae
    41010未检测到
    ND
    早期矿蜂
    Andrena haemorrhoa
    地蜂科
    Andrenidae
    3981
    矿蜂
    Andrena vaga
    地蜂科
    Andrenidae
    3751
    中华蜜蜂
    Apis cerana
    蜜蜂科
    Apidae
    11873
    大蜜蜂
    Apis dorsata
    蜜蜂科
    Apidae
    11763
    小蜜蜂
    Apis florea
    蜜蜂科
    Apidae
    11753
    意大利蜜蜂
    Apis mellifera
    蜜蜂科
    Apidae
    12273
    美洲东部熊蜂
    Bombus impatiens
    蜜蜂科
    Apidae
    22353
    欧洲熊蜂
    Bombus terrestris
    蜜蜂科
    Apidae
    42173
    春季采矿蜂
    Colletes cunicularius
    分舌蜂科
    Colletidae
    41471
    汗蜂
    Dufourea novaeangliae
    隧蜂科
    Halictidae
    41774
    长须蜂
    Eucera nigrescens
    蜜蜂科
    Apidae
    1631
    墨西哥兰花蜜蜂
    Eufriesea mexicana
    蜜蜂科
    Apidae
    21982
    东南蓝莓蜂
    Habropoda laboriosa
    蜜蜂科
    Apidae
    11451
    大黑淡脉隧蜂
    Lasioglossum xanthopus
    隧蜂科
    Halictidae
    11591
    油蜂
    Macropis fulvipes
    准蜂科
    Melittidae
    1651
    苜蓿切叶蜂
    Megachile rotundata
    切叶蜂科
    Egachilidae
    32070
    新热带无刺蜜蜂
    Melipona quadrifasciata
    蜜蜂科
    Apidae
    62492
    金尾蜜蜂
    Melitta haemorrhoidalis
    准蜂科
    Melittidae
    1851
    拉斯伯里游牧蜂
    Nomada lathburiana
    蜜蜂科
    Apidae
    11051
    彩带蜂
    Nomia melanderi
    隧蜂科
    Halictidae
    112121
    红梅森蜂
    Osmia bicornis
    切叶蜂科
    Egachilidae
    32192
    澳大利亚糖袋蜂
    Tetragonula carbonaria
    蜜蜂科
    Apidae
    11982
    紫罗兰木匠蜂
    Xylocopa violacea
    蜜蜂科
    Apidae
    21161
    下载: 导出CSV

    表  3  蜜蜂工蜂接触农药后上调表达的解毒酶基因

    Table  3.   Up-regulated detoxification genes in honeybee workers after exposure to pesticides

    基因名称
    Gene name
    上调倍数
    Fold upregulated
    农药
    Pesticide
    参考文献
    Reference
    CYP6AS31.70吡虫啉 imidacloprid[94]
    CYP6AS41.9吡虫啉imidacloprid[94]
    CYP6AS142.0吡虫啉 imidacloprid[94]
    CYP6AS151.4吡虫啉 imidacloprid[94]
    CYP6AR11.5吡虫啉 imidacloprid[94]
    CYP9R11.6吡虫啉 imidacloprid[94]
    CYP9S11.4吡虫啉 imidacloprid[94]
    GSTD11.9噻虫啉 thiacloprid[96]
    CYP6BE11.9~2.2噻虫啉 thiacloprid[96]
    CYP6AS51.6~1.7噻虫啉 thiacloprid[96]
    CYP315A11.5噻虫啉 thiacloprid[96]
    CYP301A11.6噻虫啉 thiacloprid[96]
    CYP305D11.8~1.9噻虫啉 thiacloprid[96]
    CYP305D13.4蝇毒磷 coumaphos[97]
    下载: 导出CSV
  • [1] SHARMA A, SHUKLA A, ATTRI K, et al. Global trends in pesticides: a looming threat and viable alternatives[J]. Ecotoxicol Environ Saf, 2020, 201: 110812. doi: 10.1016/j.ecoenv.2020.110812
    [2] KLEIN A M, VAISSIÈRE B E, CANE J H, et al. Importance of pollinators in changing landscapes for world crops[J]. Proc Biol Sci, 2007, 274(1608): 303-313.
    [3] 谢鹤. 西北蜂业基础理论与研究[M]. 银川: 宁夏人民出版社, 2009: 8-10.

    XIE H. Basic theory and research of bee industry in northwest China[M]. Yinchuan: Ningxia People's Publishing House, 2009: 8-10.
    [4] 曾志将. 蜜蜂生物学[M]. 北京: 中国农业出版社, 2007: 12-14.

    ZENG Z J. Biology of bees[M]. Beijing: China Agriculture Press, 2007: 12-14.
    [5] TACKENBERG M C, GIANNONI-GUZMÁN M A, SANCHEZ-PEREZ E, et al. Neonicotinoids disrupt circadian rhythms and sleep in honey bees[J]. Sci Rep, 2020, 10: 17929. doi: 10.1038/s41598-020-72041-3
    [6] WEI N, KACZOROWSKI R L, ARCEO-GÓMEZ G, et al. Pollinators contribute to the maintenance of flowering plant diversity[J]. Nature, 2021, 597(7878): 688-692. doi: 10.1038/s41586-021-03890-9
    [7] SHRESTHA J B. Honeybees: The pollinator sustaining crop diversity[J]. J Agric & Environ, 2009, 9: 90-92.
    [8] ELLIS J D, EVANS J D, PETTIS J. Colony losses, managed colony population decline, and colony collapse disorder in the United States[J]. J Apic Res, 2010, 49(1): 134-136. doi: 10.3896/IBRA.1.49.1.30
    [9] POTTS S G, BIESMEIJER J C, KREMEN C, et al. Global pollinator declines: trends, impacts and drivers[J]. Trends Ecol Evol, 2010, 25(6): 345-353. doi: 10.1016/j.tree.2010.01.007
    [10] STEINHAUER N, AURELL D, BRUCKNER S, et al. United States honey bee colony losses 2020–2021: preliminary results[J]. Bee Informed Partnership, 2021: 23.
    [11] 张祖芸, 李震, 曾志将. 吡虫啉对蜜蜂行为与生理影响研究进展[J]. 应用昆虫学报, 2018, 55(5): 769-777. doi: 10.7679/j.issn.2095-1353.2018.093

    ZHANG Z Y, LI Z, ZENG Z J. Progress in research on the effects of imidacloprid on the behavior and physiology of honeybees[J]. Chin J Appl Entomol, 2018, 55(5): 769-777. doi: 10.7679/j.issn.2095-1353.2018.093
    [12] OLDROYD B P. What's killing American honey bees?[J]. PLoS Biol, 2007, 5(6): e168. doi: 10.1371/journal.pbio.0050168
    [13] TAN Z C, XUE B, LU S W, et al. Heat capacities and thermodynamic properties of fenpropathrin (C22H23O3N)[J]. J Therm Anal Calorim, 2001, 63(1): 297-308.
    [14] THOMPSON H M. Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.)[J]. Apidologie, 2001, 32(4): 305-321. doi: 10.1051/apido:2001131
    [15] VANENGELSDORP D, EVANS J D, SAEGERMAN C, et al. Colony collapse disorder: a descriptive study[J]. PLoS One, 2009, 4(8): e6481. doi: 10.1371/journal.pone.0006481
    [16] EUROPEANUNION. Regulation (EU) no 99/2013 of the European Parliament and of the council of 15 january 2013 on the European statistical programme 2013–17 [Z]. European Commission Brussels. 2013
    [17] MARTINELLO M, MANZINELLO C, BORIN A, et al. A survey from 2015 to 2019 to investigate the occurrence of pesticide residues in dead honeybees and other matrices related to honeybee mortality incidents in Italy[J]. Diversity, 2019, 12(1): 15. doi: 10.3390/d12010015
    [18] VANBERGEN A J. A cocktail of pesticides, parasites and hunger leaves bees down and out[J]. Nature, 2021, 596(7872): 351-352. doi: 10.1038/d41586-021-02079-4
    [19] 赵帅, 袁善奎, 才冰, 等. 300个农药制剂对蜜蜂的急性经口毒性[J]. 农药, 2011, 50(4): 278-280. doi: 10.3969/j.issn.1006-0413.2011.04.013

    ZHAO S, YUAN S K, CAI B, et al. The acute oral toxicity of 300 formulated pesticides to Apis mellifera[J]. Agrochemicals, 2011, 50(4): 278-280. doi: 10.3969/j.issn.1006-0413.2011.04.013
    [20] MOFFETT J O, MORTON H L, MACDONALD R H. Toxicity of some herbicidal sprays to honey bees[J]. J Econ Entomol, 1972, 65(1): 32-36. doi: 10.1093/jee/65.1.32
    [21] CORONA M, VELARDE R A, REMOLINA S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity[J]. Proc Natl Acad Sci USA, 2007, 104(17): 7128-7133. doi: 10.1073/pnas.0701909104
    [22] JOHNSON R M. Honey bee toxicology[J]. Annu Rev Entomol, 2015, 60: 415-434. doi: 10.1146/annurev-ento-011613-162005
    [23] 李岗, 徐吉洋, 郭海坤, 等. 75%戊唑 • 嘧菌酯可溶性粉剂对3种昆虫的急性毒性与初级风险评估[J]. 生态毒理学报, 2021, 16(4): 323-333.

    LI G, XU J Y, GUO H K, et al. Acute toxicity and primary risk assessment of 75% tebuconazole • azoxystrobin SP to three insect species[J]. Asian J Ecotoxicol, 2021, 16(4): 323-333.
    [24] IWASA T, MOTOYAMA N, AMBROSE J T, et al. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera[J]. Crop Prot, 2004, 23(5): 371-378. doi: 10.1016/j.cropro.2003.08.018
    [25] HAAS J, ZAWORRA M, GLAUBITZ J, et al. A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone[J]. Ecotoxicol Environ Saf, 2021, 217: 112247. doi: 10.1016/j.ecoenv.2021.112247
    [26] UHL P, AWANBOR O, SCHULZ R S, et al. Osmia bicornis is rarely an adequate regulatory surrogate species. Comparing its acute sensitivity towards multiple insecticides with regulatory Apis mellifera endpoints[J]. bioRxiv, 2018,DOI: 10.1101/366237.
    [27] YASUDA M, SAKAMOTO Y, GOKA K, et al. Insecticide susceptibility in Asian honey bees (Apis cerana (Hymenoptera: Apidae)) and implications for wild honey bees in Asia[J]. J Econ Entomol, 2017, 110(2): 447-452. doi: 10.1093/jee/tox032
    [28] ANSELL G R, FREWIN A J, GRADISH A E, et al. Contact toxicity of three insecticides for use in tier I pesticide risk assessments with Megachile rotundata (Hymenoptera: Megachilidae)[J]. PeerJ, 2021, 9: e10744. doi: 10.7717/peerj.10744
    [29] HAYWARD A, BEADLE K, SINGH K S, et al. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees[J]. Nat Ecol Evol, 2019, 3(11): 1521-1524. doi: 10.1038/s41559-019-1011-2
    [30] REID R J, TROCZKA B J, KOR L, et al. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax)[J]. Pestic Biochem Physiol, 2020, 166: 104562. doi: 10.1016/j.pestbp.2020.104562
    [31] HARDSTONE M C, SCOTT J G. Is Apis mellifera more sensitive to insecticides than other insects?[J]. Pest Manag Sci, 2010, 66(11): 1171-1180. doi: 10.1002/ps.2001
    [32] 廖春华, 张波, 史晶亮, 等. 氟胺氰菊酯对西方蜜蜂育王质量的影响[J]. 昆虫学报, 2018, 61(2): 218-223. doi: 10.16380/j.kcxb.2018.02.008

    LIAO C H, ZHANG B, SHI J L, et al. Effects of fluvalinate on the quality of reared queens of the western honey bee, Apis mellifera (Hymenoptera: Apidae)[J]. Acta Entomol Sin, 2018, 61(2): 218-223. doi: 10.16380/j.kcxb.2018.02.008
    [33] QI S Z, ZHU L Z, WANG D H, et al. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro[J]. Ecotoxicol Environ Saf, 2020, 190: 110101. doi: 10.1016/j.ecoenv.2019.110101
    [34] MOKKAPATI J S, BEDNARSKA A J, LASKOWSKI R. The development of the solitary bee Osmia bicornis is affected by some insecticide agrochemicals at environmentally relevant concentrations[J]. Sci Total Environ, 2021, 775: 145588. doi: 10.1016/j.scitotenv.2021.145588
    [35] 王康, 庞倩, 张文文, 等. 多菌灵亚致死剂量对意大利蜜蜂幼虫生长发育和解毒酶系活性的影响[J]. 昆虫学报, 2017, 60(6): 642-649. doi: 10.16380/j.kcxb.2017.06.004

    WANG K, PANG Q, ZHANG W W, et al. Effects of sublethal doses of carbendazim on the growth and detoxifying enzyme activities of honeybee(Apis mellifera ligustica) larvae[J]. Acta Entomol Sin, 2017, 60(6): 642-649. doi: 10.16380/j.kcxb.2017.06.004
    [36] LIU J L, LI Y Y, ZHANG Z H, et al. Low concentration of quercetin reduces the lethal and sublethal effects of imidacloprid on Apis cerana (Hymenoptera: Apidae)[J]. J Econ Entomol, 2021, 114(3): 1053-1064. doi: 10.1093/jee/toab043
    [37] TOSI S, NIEH J C. A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light[J]. Sci Rep, 2017, 7: 15132. doi: 10.1038/s41598-017-15308-6
    [38] 罗雨婷, 胡福良. 蜜蜂的奖励学习和记忆阶段[J]. 蜜蜂杂志, 2020, 40(4): 19-22.

    LUO Y T, HU F L. The reward learning and memory stages of honeybees[J]. J Bee, 2020, 40(4): 19-22.
    [39] BITTERMAN M E, MENZEL R, FIETZ A, et al. Classical conditioning of proboscis extension in honeybees (Apis mellifera)[J]. J Comp Psychol, 1983, 97(2): 107-119. doi: 10.1037/0735-7036.97.2.107
    [40] 蔚添添. 亚致死剂量吡虫啉影响意大利蜜蜂学习行为的分子机制研究[D]. 福州: 福建农林大学, 2019.

    YU T T. Study on molecular mechanism of effects of a sublethal dose of imidacloprid on learning behavior in Apis mellifera L[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [41] TAN K, CHEN W W, DONG S H, et al. A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults[J]. Sci Rep, 2015, 5: 10989. doi: 10.1038/srep10989
    [42] 尹令虹, 刘永军, 刁青云. 亚致死浓度噻虫啉对西方蜜蜂工蜂学习记忆的影响[J]. 中国蜂业, 2021, 72(6): 67-72. doi: 10.3969/j.issn.0412-4367.2021.06.038

    YIN L H, LIU Y J, DIAO Q Y. The effect of sublethal dose of thiacloprid on the learning and memory performance of honeybees[J]. Apic China, 2021, 72(6): 67-72. doi: 10.3969/j.issn.0412-4367.2021.06.038
    [43] DECOURTYE A, DEVILLERS J, GENECQUE E, et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera[J]. Arch Environ Contam Toxicol, 2005, 48(2): 242-250. doi: 10.1007/s00244-003-0262-7
    [44] ARTZ D R, PITTS-SINGER T L. Effects of fungicide and adjuvant sprays on nesting behavior in two managed solitary bees, Osmia lignaria and Megachile rotundata[J]. PLoS One, 2015, 10(8): e0135688. doi: 10.1371/journal.pone.0135688
    [45] BÖHME F, BISCHOFF G, ZEBITZ C P, et al. Chronic exposure of honeybees, Apis mellifera (Hymenoptera: Apidae), to a pesticide mixture in realistic field exposure rates[J]. Apidologie, 2017, 48(3): 353-363. doi: 10.1007/s13592-016-0479-x
    [46] GOULSON D, NICHOLLS E, BOTÍAS C, et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers[J]. Science, 2015, 347(6229): 1255957. doi: 10.1126/science.1255957
    [47] PETTIS J S, LICHTENBERG E M, ANDREE M, et al. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae[J]. PLoS One, 2013, 8(7): e70182. doi: 10.1371/journal.pone.0070182
    [48] SIVITER H, FOLLY A J, BROWN M J F, et al. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee (Bombus terrestris) larval growth[J]. Proc Biol Sci, 2020, 287(1932): 20200935.
    [49] RETSCHNIG G, WILLIAMS G R, ODEMER R, et al. Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (Apis mellifera) lifespan and behaviour in a colony environment[J]. Environ Microbiol, 2015, 17(11): 4322-4331. doi: 10.1111/1462-2920.12825
    [50] DOUBLET V, LABARUSSIAS M, DE MIRANDA J R, et al. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle[J]. Environ Microbiol, 2015, 17(4): 969-983. doi: 10.1111/1462-2920.12426
    [51] FOLT C L, CHEN C Y, MOORE M V, et al. Synergism and antagonism among multiple stressors[J]. Limnol Oceanogr, 1999, 44(3 part 2): 864-877. doi: 10.4319/lo.1999.44.3_part_2.0864
    [52] DI PRISCO G, CAVALIERE V, ANNOSCIA D, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees[J]. Proc Natl Acad Sci USA, 2013, 110(46): 18466-18471. doi: 10.1073/pnas.1314923110
    [53] SIVITER H, BAILES E J, MARTIN C D, et al. Agrochemicals interact synergistically to increase bee mortality[J]. Nature, 2021, 596(7872): 389-392. doi: 10.1038/s41586-021-03787-7
    [54] 张艳峰, 王会利. 16种农药制剂对意大利蜜蜂的急性毒性及初级风险评估[J]. 生态毒理学报, 2020, 15(6): 271-278.

    ZHANG Y F, WANG H L. Acute toxicity and risk assessment of 16 pesticide formulations to Apis mellifera[J]. Asian J Ecotoxicol, 2020, 15(6): 271-278.
    [55] PAIK M K, IM J T, CHON K, et al. Synergistic and antagonistic interactions for pesticide mixtures to honeybee larvae toxicity[J]. Korean J Environ Agric, 2016, 35(4): 241-246. doi: 10.5338/KJEA.2016.35.4.32
    [56] WANG Y H, ZHU Y C, LI W H. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.)[J]. Environ Sci Pollut Res, 2020, 27(7): 6971-6980. doi: 10.1007/s11356-019-07214-3
    [57] ZHU Y C, YAO J X, ADAMCZYK J, et al. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)[J]. PLoS One, 2017, 12(5): e0176837. doi: 10.1371/journal.pone.0176837
    [58] BIDDINGER D J, ROBERTSON J L, MULLIN C, et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski)[J]. PLoS One, 2013, 8(9): e72587. doi: 10.1371/journal.pone.0072587
    [59] TSVETKOV N, SAMSON-ROBERT O, SOOD K, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops[J]. Science, 2017, 356(6345): 1395-1397. doi: 10.1126/science.aam7470
    [60] DUPUIS J, LOUIS T, GAUTHIER M, et al. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions[J]. Neurosci Biobehav Rev, 2012, 36(6): 1553-1564. doi: 10.1016/j.neubiorev.2012.04.003
    [61] YAMADA T, FUJII T, KANAI T, et al. Expression of acetylcholine (ACh) and ACh-synthesizing activity in Archaea[J]. Life Sci, 2005, 77(16): 1935-1944. doi: 10.1016/j.lfs.2005.01.026
    [62] COLLIN C, HAUSER F, DE VALDIVIA E G, et al. Erratum to: two types of muscarinic acetylcholine receptors in Drosophila and other arthropods[J]. Cell Mol Life Sci, 2013, 70(21): 4197. doi: 10.1007/s00018-013-1464-4
    [63] CASIDA J E. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects[J]. Annu Rev Entomol, 2018, 63: 125-144. doi: 10.1146/annurev-ento-020117-043042
    [64] MATSUDA K, IHARA M, SATTELLE D B. Neonicotinoid insecticides: molecular targets, resistance, and toxicity[J]. Annu Rev Pharmacol Toxicol, 2020, 60: 241-255. doi: 10.1146/annurev-pharmtox-010818-021747
    [65] JONES A K, RAYMOND-DELPECH V, THANY S H, et al. The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera[J]. Genome Res, 2006, 16(11): 1422-1430. doi: 10.1101/gr.4549206
    [66] IHARA M, FURUTANI S, SHIGETOU S, et al. Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions[J]. Proc Natl Acad Sci USA, 2020, 117(28): 16283-16291. doi: 10.1073/pnas.2003667117
    [67] IHARA M, MATSUDA K. Neonicotinoids: Molecular mechanisms of action, insights into resistance and impact on pollinators[J]. Curr Opin Insect Sci, 2018, 30: 86-92. doi: 10.1016/j.cois.2018.09.009
    [68] IHARA M, BUCKINGHAM S D, MATSUDA K, et al. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors[J]. Curr Med Chem, 2017, 24(27): 2925-2934.
    [69] CHEN Z L, YAO X M, DONG F S, et al. Ecological toxicity reduction of dinotefuran to honeybee: new perspective from an enantiomeric level[J]. Environ Int, 2019, 130: 104854. doi: 10.1016/j.envint.2019.05.048
    [70] XU X Y, YANG Z K, ZHU K, et al. Computational insight on the binding and selectivity of target-subunit-dependent for neonicotinoid insecticides[J]. J Mol Graph Model, 2020, 98: 107586. doi: 10.1016/j.jmgm.2020.107586
    [71] CLAUDIANOS C, RANSON H, JOHNSON R M, et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee[J]. Insect Mol Biol, 2006, 15(5): 615-636. doi: 10.1111/j.1365-2583.2006.00672.x
    [72] BERENBAUM M R, JOHNSON R M. Xenobiotic detoxification pathways in honey bees[J]. Curr Opin Insect Sci, 2015, 10: 51-58. doi: 10.1016/j.cois.2015.03.005
    [73] DARRAGH K, NELSON D R, RAMÍREZ S R. The birth-and-death evolution of cytochrome P450 genes in bees[J]. Genome Biol Evol, 2021, 13(12): evab261. doi: 10.1093/gbe/evab261
    [74] HAAS J, HAYWARD A, BUER B, et al. Phylogenomic and functional characterization of an evolutionary conserved cytochrome P450-based insecticide detoxification mechanism in bees[J]. Proc Natl Acad Sci USA, 2022, 119(26): e2205850119. doi: 10.1073/pnas.2205850119
    [75] FEYEREISEN R. Evolution of insect P450[J]. Biochem Soc Trans, 2006, 34(6): 1252-1255. doi: 10.1042/BST0341252
    [76] TROCZKA B J, HOMEM R A, REID R, et al. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris[J]. Insect Biochem Mol Biol, 2019, 111: 103171. doi: 10.1016/j.ibmb.2019.05.006
    [77] MANJON C, TROCZKA B J, ZAWORRA M, et al. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides[J]. Curr Biol, 2018, 28(7): 1137-1143.e5. doi: 10.1016/j.cub.2018.02.045
    [78] MAO W F, SCHULER M A, BERENBAUM M R. CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera)[J]. Proc Natl Acad Sci USA, 2011, 108(31): 12657-12662. doi: 10.1073/pnas.1109535108
    [79] BEADLE K, SINGH K S, TROCZKA B J, et al. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis[J]. PLoS Genet, 2019, 15(2): e1007903. doi: 10.1371/journal.pgen.1007903
    [80] ZHANG Y, CHEN D, DU M Y, et al. Insights into the degradation and toxicity difference mechanism of neonicotinoid pesticides in honeybees by mass spectrometry imaging[J]. Sci Total Environ, 2021, 774: 145170. doi: 10.1016/j.scitotenv.2021.145170
    [81] GUO L, FAN X Y, QIAO X M, et al. An octopamine receptor confers selective toxicity of amitraz on honeybees and Varroa mites[J]. eLife, 2021, 10: e68268. doi: 10.7554/eLife.68268
    [82] WU S Y, NOMURA Y, DU Y Z, et al. Molecular basis of selective resistance of the bumblebee BiNaV1 sodium channel to tau-fluvalinate[J]. Proc Natl Acad Sci USA, 2017, 114(49): 12922-12927. doi: 10.1073/pnas.1711699114
    [83] CARNEIRO L S, MARTINEZ L C, DE OLIVEIRA A H, et al. Acute oral exposure to imidacloprid induces apoptosis and autophagy in the midgut of honey bee Apis mellifera workers[J]. Sci Total Environ, 2022, 815: 152847. doi: 10.1016/j.scitotenv.2021.152847
    [84] CARNEIRO L S, MARTÍNEZ L C, GONÇALVES W G, et al. The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers[J]. Ecotoxicol Environ Saf, 2020, 189: 109991. doi: 10.1016/j.ecoenv.2019.109991
    [85] HARWOOD G P, IHLE K E, SALMELA (NEE HAVUKAINEN) H, et al. Regulation of honeybee worker (Apis mellifera) life histories by vitellogenin[M]//Hormones, Brain and Behavior. Amsterdam: Elsevier, 2017: 403-420.
    [86] CHRISTEN V, MITTNER F, FENT K. Molecular effects of neonicotinoids in honey bees (Apis mellifera)[J]. Environ Sci Technol, 2016, 50(7): 4071-4081. doi: 10.1021/acs.est.6b00678
    [87] STRACHECKA A, KRAUZE M, OLSZEWSKI K, et al. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera)[J]. Biochem Biokhimiia, 2014, 79(11): 1192-1201. doi: 10.1134/S0006297914110066
    [88] BADIOU-BÉNÉTEAU A, CARVALHO S M, BRUNET J L, et al. Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam[J]. Ecotoxicol Environ Saf, 2012, 82: 22-31. doi: 10.1016/j.ecoenv.2012.05.005
    [89] BALIEIRA K V B, MAZZO M, BIZERRA P F V, et al. Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine[J]. Apidologie, 2018, 49(5): 562-572. doi: 10.1007/s13592-018-0583-1
    [90] TAVARES D A, DUSSAUBAT C, KRETZSCHMAR A, et al. Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages[J]. Environ Pollut, 2017, 229: 386-393. doi: 10.1016/j.envpol.2017.05.092
    [91] YAO J X, ZHU Y C, ADAMCZYK J, et al. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2018, 209: 9-17. doi: 10.1016/j.cbpc.2018.03.005
    [92] 施腾飞, 王安然, 王恒达, 等. 噻虫嗪对意大利蜜蜂6种CYP6AS基因表达的影响[J]. 环境昆虫学报, 2019, 41(5): 1083-1088.

    SHI T F, WANG A R, WANG H D, et al. Effects of thiamethoxam on expression of cytochrome P6AS genes, in honeybees (Apis mellifera ligustica)[J]. J Environ Entomol, 2019, 41(5): 1083-1088.
    [93] ZHU M, ZHANG W X, LIU F, et al. Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses[J]. Gene, 2016, 584(2): 120-128. doi: 10.1016/j.gene.2016.02.016
    [94] DERECKA K, BLYTHE M J, MALLA S, et al. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae[J]. PLoS One, 2013, 8(7): e68191. doi: 10.1371/journal.pone.0068191
    [95] ZHANG W X, YAO Y F, WANG H F, et al. The roles of four novel P450 genes in pesticides resistance in Apis cerana cerana Fabricius: expression levels and detoxification efficiency[J]. Front Genet, 2019, 10: 1000. doi: 10.3389/fgene.2019.01000
    [96] ALPTEKIN S, BASS C, NICHOLLS C, et al. Induced thiacloprid insensitivity in honeybees (Apis mellifera L.) is associated with up-regulation of detoxification genes[J]. Insect Mol Biol, 2016, 25(2): 171-180. doi: 10.1111/imb.12211
    [97] SCHMEHL D R, TEAL P E A, FRAZIER J L, et al. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera)[J]. J Insect Physiol, 2014, 71: 177-190. doi: 10.1016/j.jinsphys.2014.10.002
    [98] HERNÁNDEZ A F, GIL F, LACASAÑA M. Toxicological interactions of pesticide mixtures: an update[J]. Arch Toxicol, 2017, 91(10): 3211-3223. doi: 10.1007/s00204-017-2043-5
    [99] ARATHI H S, BERNKLAU E. Context-dependent effect of dietary phytochemicals on honey bees exposed to a pesticide, thiamethoxam[J]. J Insect Sci, 2021, 21(4): 11. doi: 10.1093/jisesa/ieab053
    [100] PALMER-YOUNG E C, TOZKAR C Ö, SCHWARZ R S, et al. Nectar and pollen phytochemicals stimulate honey bee (Hymenoptera: Apidae) immunity to viral infection[J]. J Econ Entomol, 2017, 110(5): 1959-1972. doi: 10.1093/jee/tox193
    [101] WRIGHT G A, BAKER D D, PALMER M J, et al. Caffeine in floral nectar enhances a pollinator's memory of reward[J]. Science, 2013, 339(6124): 1202-1204. doi: 10.1126/science.1228806
    [102] SI A, ZHANG S W, MALESZKA R. Effects of caffeine on olfactory and visual learning in the honey bee (Apis mellifera)[J]. Pharmacol Biochem Behav, 2005, 82(4): 664-672. doi: 10.1016/j.pbb.2005.11.009
    [103] HSIEH E M, BERENBAUM M R, DOLEZAL A G. Ameliorative effects of phytochemical ingestion on viral infection in honey bees[J]. Insects, 2020, 11(10): 698. doi: 10.3390/insects11100698
    [104] WONG M J, LIAO L H, BERENBAUM M R. Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera)[J]. PLoS One, 2018, 13(11): e0206625. doi: 10.1371/journal.pone.0206625
    [105] MITTON G A, SZAWARSKI N, MITTON F M, et al. Impacts of dietary supplementation with p-coumaric acid and indole-3-acetic acid on survival and biochemical response of honey bees treated with tau-fluvalinate[J]. Ecotoxicol Environ Saf, 2020, 189: 109917. doi: 10.1016/j.ecoenv.2019.109917
    [106] LIAO L H, PEARLSTEIN D J, WU W Y, et al. Increase in longevity and amelioration of pesticide toxicity by natural levels of dietary phytochemicals in the honey bee, Apis mellifera[J]. PLoS One, 2020, 15(12): e0243364. doi: 10.1371/journal.pone.0243364
    [107] ARDALANI H, VIDKJÆR N H, LAURSEN B B, et al. Dietary quercetin impacts the concentration of pesticides in honey bees[J]. Chemosphere, 2021, 262: 127848. doi: 10.1016/j.chemosphere.2020.127848
    [108] ARDALANI H, VIDKJÆR N H, KRYGER P, et al. Metabolomics unveils the influence of dietary phytochemicals on residual pesticide concentrations in honey bees[J]. Environ Int, 2021, 152: 106503. doi: 10.1016/j.envint.2021.106503
    [109] DERMAUW W, PYM A, BASS C, et al. Does host plant adaptation lead to pesticide resistance in generalist herbivores?[J]. Curr Opin Insect Sci, 2018, 26: 25-33. doi: 10.1016/j.cois.2018.01.001
    [110] ALYOKHIN A, CHEN Y H. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance[J]. Curr Opin Insect Sci, 2017, 21: 33-38. doi: 10.1016/j.cois.2017.04.006
    [111] JOHNSON R M, MAO W F, POLLOCK H S, et al. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera[J]. PLoS One, 2012, 7(2): e31051. doi: 10.1371/journal.pone.0031051
    [112] MAO W F, SCHULER M A, BERENBAUM M R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera[J]. Proc Natl Acad Sci USA, 2013, 110(22): 8842-8846. doi: 10.1073/pnas.1303884110
    [113] ONOZAKI Y, HORIKOSHI R, OHNO I, et al. Flupyrimin: a novel insecticide acting at the nicotinic acetylcholine receptors[J]. J Agric Food Chem, 2017, 65(36): 7865-7873. doi: 10.1021/acs.jafc.7b02924
    [114] ZHOU Y L, LI X L, ZHANG Y M, et al. A novel bee-friendly peptidomimetic insecticide: synthesis, aphicidal activity and 3D-QSAR study of insect kinin analogs at Phe2 modification[J]. Pest Manag Sci, 2022, 78(7): 2952-2963. doi: 10.1002/ps.6920
    [115] YANG Z K, WU X, ZHANG J L, et al. Screening and optimization of novel low bee-toxicity phenylace-tohydrazone compounds based on insect nAChR selectivity[J]. Chin J Org Chem, 2021, 41(7): 2774. doi: 10.6023/cjoc202101028
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  27
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 录用日期:  2022-09-19
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回