• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海藻糖酶结构及其抑制剂的农用活性研究进展

师东梅 蒋志洋 邹雪君 黄家兴 段红霞

师东梅, 蒋志洋, 邹雪君, 黄家兴, 段红霞. 海藻糖酶结构及其抑制剂的农用活性研究进展[J]. 农药学学报, 2022, 24(5): 1017-1033. doi: 10.16801/j.issn.1008-7303.2022.0101
引用本文: 师东梅, 蒋志洋, 邹雪君, 黄家兴, 段红霞. 海藻糖酶结构及其抑制剂的农用活性研究进展[J]. 农药学学报, 2022, 24(5): 1017-1033. doi: 10.16801/j.issn.1008-7303.2022.0101
SHI Dongmei, JIANG Zhiyang, ZOU Xuejun, HUANG Jiaxing, DUAN Hongxia. Trehalase structures and agriculture bioactivities of its inhibitors: a review[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1017-1033. doi: 10.16801/j.issn.1008-7303.2022.0101
Citation: SHI Dongmei, JIANG Zhiyang, ZOU Xuejun, HUANG Jiaxing, DUAN Hongxia. Trehalase structures and agriculture bioactivities of its inhibitors: a review[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1017-1033. doi: 10.16801/j.issn.1008-7303.2022.0101

海藻糖酶结构及其抑制剂的农用活性研究进展

doi: 10.16801/j.issn.1008-7303.2022.0101
基金项目: 植物病虫害生物学国家重点实验室开放基金 (SKLOF202107);国家自然科学基金 (32172445,31972289).
详细信息
    作者简介:

    师东梅,15520036773@163.com

    通讯作者:

    段红霞,hxduan@cau.edu.cn

  • 中图分类号: TQ450.1

Trehalase structures and agriculture bioactivities of its inhibitors: a review

Funds: the State Key Laboratory for Biology of Plant Diseases and Insects Pests (SKLOF202107); the National Natural Science Foundation (32172445,31972289).
  • 摘要: 海藻糖是一种非还原性二糖,在昆虫、真菌等有害生物体内参与能量代谢、逆境恢复、几丁质合成等过程。海藻糖酶 (EC 3.2.1.28) 由于其对海藻糖代谢及其含量调控具有重要作用,且在农业有害生物和哺乳动物体内存在功能差异,已成为开发新型农用化学品的安全型候选靶标。本文对海藻糖酶的晶体结构、海藻糖酶与底物/抑制剂的互作机制研究进展进行了综述;同时对具有农用活性的海藻糖酶抑制剂,如井冈霉素、天然产物salbostatin和trehazolin及其合成类似物、脱氧野尻霉素及其合成类似物、天然生物碱及其合成类似物以及胡椒碱及其类似物的研究进展进行了概述,并重点论述了以胡椒碱为骨架的化合物在农业有害生物防治上的应用。本综述可为靶向海藻糖酶结构进行新型胡椒碱类结构的农用化学品设计与发现提供参考。
  • 图  1  昆虫和植物病原真菌体内海藻糖代谢通路及其功能

    Figure  1.  Trehalose metabolic pathway and its functions in insects and plant pathogenic fungi

    图  2  酿酒酵母S. cerevisiae海藻糖酶的晶体结构 (PDB ID: 5N6N)[32]

    Figure  2.  The crystal structures of trehalase from S. cerevisiae (PDB ID:5N6N)[32]

    图  3  不同类型的抑制剂或天然底物与不同物种海藻糖酶的结合模式[29, 32-33]

    (A) 不同抑制剂与大肠杆菌E. coli海藻糖酶的结合模式。其中白色配体为TTZ,橙色配体为VDM,绿色配体和紫色配体均为木麻黄素的葡萄糖衍生物;(B) 海藻糖与酿酒酵母S. cerevisiae海藻糖酶的结合模式;(C) VDM与阴沟肠杆菌E. cloacae海藻糖酶的结合模式。

    Figure  3.  The binding modes of different inhibitors or substrates to trehalases from different species[29, 32-33]

    (A) The binding modes of different inhibitors to trehalase from E. coli. The white ligand is TTZ, the orange ligand is VDM, and the green and the purple ligands are glucose derivatives of casuarine; (B) The binding mode of trehalose to trehalase from S. cerevisiae; (C) The binding mode of VDM to trehalase from E. cloacae.

    图  4  井冈霉素类化合物的化学结构式

    Figure  4.  The chemical structures of validamycin analogues

    图  5  已报道的海藻糖酶抑制剂结构

    Figure  5.  The chemical structures of inhibitors against trehalases

    图  6  胡椒碱的化学结构式

    Figure  6.  Chemical structure of piperine

    图  7  具有杀虫活性的天然胡椒碱类化合物结构式

    Figure  7.  Structural formula of natural piperine compounds with insecticidal activity

    图  8  具有杀虫活性的合成胡椒碱类似物的化学结构

    Figure  8.  Chemical structure of synthetic piperine analogues with insecticidal activity

    图  9  胡椒碱类化合物与杀虫活性构效关系

    Figure  9.  Structure-activity relationship between piperine compounds and the insecticidal activity

    图  10  具有杀菌活性的胡椒碱类化合物结构

    Figure  10.  Structures of piperine compounds with fungicidal or bactericidal activity

    图  11  胡椒碱类化合物与杀菌活性构效关系

    Figure  11.  Structure-activity relationship between piperine compounds and fungicidal activity

    表  1  目前已报道的不同物种海藻糖酶晶体结构信息

    Table  1.   The crystal structures of trehalase from different species

    PDB编号
    PDB ID
    物种
    Organism
    配体
    Ligand
    +1/−1位点配体信息
    Ligand of +1/−1 site in CD
    参考文献
    Reference
    2JG0 大肠杆菌
    Escherichia coli
    1-Thiatrehazolin (TTZ) α-d-Glucopyranosilamine/
    Tetrahydrocyclopentathiazole
    [29]
    2WYN 大肠杆菌
    E. coli
    LG9 (Casuarine analogue) and α-d-Glucose (Glu) α-d-Glu/LG9 [30]
    2JF4 大肠杆菌
    E. coli
    井冈羟胺A
    Validoxylamine A (Val A)
    C7-Cyclitol/C7-Cyclitol [29]
    2JJB 大肠杆菌
    E. coli
    Casuarine (Casu) and Glu α-d-Glu/Casu [31]
    5M4A 酿酒酵母
    Saccharomyces cerevisiae
    海藻糖
    Trehalose
    α-d-Glucopyranose/α-d-Glucopyranose [32]
    5N6N 酿酒酵母
    S. cerevisiae
    Sucrose (Suc) and Protein Bmh1 (Bmh1) β-d-Fructofuranose/α-d-Glucopyranose [32]
    5NIS 酿酒酵母
    S. cerevisiae
    Nonea None/Nonea [32]
    5JTA 酿酒酵母
    S. cerevisiae
    Nonea None/Nonea [32]
    5Z66 阴沟肠杆菌
    Enterobacter cloacae
    ValA C7-Cyclitol/C7-Cyclitol [33]
    5Z6H 阴沟肠杆菌
    E. cloacae
    Nonea None/Nonea [33]
    7EAW 拟南芥
    Arabidopsis thaliana
    Nonea None/Nonea Taguchi, Y et al., 2022b
    7E9X 拟南芥
    A. thaliana
    Nonea None/Nonea Taguchi, Y et al., 2022b
    7E9U 拟南芥
    A. thaliana
    Nonea None/Nonea Taguchi, Y et al., 2022b
    注:a蛋白质三维晶体结构中无小分子配体:b蛋白质三维晶体结构已经存入蛋白质数据库(http://wwwl.rcsb.org)中,但尚未见相关文献报道。Note: a Three-dimensional crystal structure of protein without small molecular ligands. b The three-dimensional crystal structures of those proteins have been imported into the Protein Data Bank Database (http://wwwl.rcsb.org), but no related study has been reported.
    下载: 导出CSV

    表  2  井冈霉素类化合物对不同物种的海藻糖酶抑制活性汇总表

    Table  2.   Summary of inhibitory activities of validamycin against trehalases from different species

    化合物
    Compound
    物种
    Species
    海藻糖酶抑制活性
    Inhibition activity of trehalases IC50/Ki
    死亡率
    Mortality rate/%
    参考文献
    Reference
    1 立枯丝核菌 R. solani 7.2 × 10−5 mol/La [37, 42-46]
    斜纹夜蛾 Spodoptera litura 3.7 × 10−7 mol/La
    家蝇 Musca domestica 30% (2.5 µg/虫)
    白蚁 Termites 3.17 × 103 mg/La
    赤拟谷盗 Tribolium castaneum 26.8% (3.0 µg/mL)
    褐飞虱 Nilaparvata lugens 38% (10 µg/µL)
    2 立枯丝核菌 R. solani 1.9 nmol/L b [37, 42, 44]
    斜纹夜蛾 S. litura 4.8 × 10-8 mol/La
    白蚁 Termites 14.73 mg/La
    3 白蚁 Termites 20.80 mg/La [44]
    4 白蚁 Termites 2.24 × 103 mg/La [44]
    注:“—”表示无相关生物活性报道;a表示IC50b表示Ki。Note: “—” No biological activities reported ; a IC50; b Ki.
    下载: 导出CSV

    表  3  化合物对不同物种海藻糖酶抑制活性信息表

    Table  3.   Information on inhibitory activities of inhibitors against trehalases from different species

    化合物
    Compound
    昆虫或病原菌 
    Insects or pathogens 
    海藻糖酶抑制活性,
    Inhibition activity of trehalases,
    IC50, Ki/(µmol/L)
    哺乳动物海藻糖酶
    Mammalian trehalase
    海藻糖酶抑制活性,
    Inhibition activity of trehalases,
    IC50, Ki/(µmol/L)
    参考文献
    References
    5 家蚕 B. mori 8.3a [49]
    猪肾 Porcine kidney 0.18b [50]
    6 家蚕 B. mori 10 nmol/Lb [52]
    立枯丝核菌 R. solani 66 nmol/La [52]
    蝗虫 L. migratoria 8~10 nmol/Lb [11]
    猪肾 Porcine kidney 16 nmol/La [51]
    7 猪肾 Porcine kidney 31.6a [53]
    8 猪肾 Porcine kidney 30.4 nmol/Lb [54]
    9 裂腹摇蚊 C. riparius 2.83a 猪肾 Porcine kidney 5.96a [58]
    10 猪肾 Porcine kidney 4.8a [55]
    11 裂腹摇蚊 C. riparius 25b [58]
    12 裂腹摇蚊 C. riparius 9.7a 猪肾 Porcine kidney 109a [60]
    13 裂腹摇蚊 C. riparius 6.1a 猪肾 Porcine kidney 24a [59]
    14 麻蝇 S. barbata 55a [61]
    15 小菜蛾 P. xylostella 10a [62]
    16 家蚕 B. mori 34a 猪肾 Porcine kidney 13a [63]
    斜纹夜蛾 S. litura 50a 大鼠 Rat small intestine 12a [63]
    17 家蚕 B. mori 25a 猪肾 Porcine kidney 10a [63]
    斜纹夜蛾 S. litura 30a 大鼠 Rat small intestine 9a [63]
    立枯丝核菌 R. solani 700a [63]
    18 家蚕 B. mori 19a 猪肾 Porcine kidney 4.8a [63]
    斜纹夜蛾 S. litura 40a 大鼠 Rat small intestine 9.8a [63]
    立枯丝核菌 R. solani 540a [63]
    19 裂腹摇蚊 C. riparius 0.12b 猪肾 Porcine kidney 12a [58]
    大肠杆菌 E. coli Tre 37A 17b [64]
    20 裂腹摇蚊 C. riparius 0.66 nmol/Lb [30]
    大肠杆菌 E. coli Tre 37A 12 nmol/Lb [30]
    猪肾 Porcine kidney 0.34a [64]
    21 裂腹摇蚊 C. riparius 22 nmol/Lb 猪肾 Porcine kidney 138 nmol/Lb [30]
    大肠杆菌 E. coli Tre 37A 86 nmol/Lb [30]
    22 裂腹摇蚊 C. riparius 157 nmol/Lb 猪肾 Porcine kidney >10b [30]
    大肠杆菌 E. coli Tre 37A 2.8b [30]
    23 裂腹摇蚊 C. riparius 177 nmol/La 猪肾 Porcine kidney >1 mmol/La [65]
    棉叶虫 S.littoralis 43 nmol/La - [65]
    24 裂腹摇蚊 C. riparius 175 nmol/La 猪肾 Porcine kidney >1 mmol/La [65]
    棉叶虫 S.littoralis 330 nmol/La [65]
    注:“—”表示无相关生物活性报道;a表示 IC50值;b表示 Ki值。Note: “—” No reported biological activity ; a IC50 value; b Ki value.
    下载: 导出CSV
  • [1] ELBEIN A D, PAN Y T, PASTUSZAK I, et al. New insights on trehalose: a multifunctional molecule[J]. Glycobiology, 2003, 13(4): 17R-27R. doi: 10.1093/glycob/cwg047
    [2] SHUKLA E, THORAT L J, NATH B B, et al. Insect trehalase: physiological significance and potential applications[J]. Glycobiology, 2015, 25(4): 357-367. doi: 10.1093/glycob/cwu125
    [3] IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses[J]. J Integr Plant Biol, 2008, 50(10): 1223-1229. doi: 10.1111/j.1744-7909.2008.00736.x
    [4] KANDROR O, DELEON A, GOLDBERG A L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures[J]. Proc Natl Acad Sci USA, 2002, 99(15): 9727-9732. doi: 10.1073/pnas.142314099
    [5] FOSTER A J, JENKINSON J M, TALBOT N J. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea[J]. EMBO J, 2003, 22(2): 225-235. doi: 10.1093/emboj/cdg018
    [6] MAIDAN M M, DE ROP L, RELLOSO M, et al. Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection[J]. Infect Immun, 2008, 76(4): 1686-1694. doi: 10.1128/IAI.01497-07
    [7] SUZUKI N, BAJAD S, SHUMAN J, et al. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana[J]. J Biol Chem, 2008, 283(14): 9269-9275. doi: 10.1074/jbc.M709187200
    [8] THOMPSON S N. Trehalose-the insect ‘blood’ sugar[M]// Advances in Insect Physiology. Amsterdam: Elsevier, 2003: 205-285.
    [9] MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases[J]. J Exp Biol, 2003, 206(Pt 24): 4393-4412.
    [10] CHEN J, TANG B, CHEN H, et al. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference[J]. PLoS One, 2010, 5(4): e10133. doi: 10.1371/journal.pone.0010133
    [11] WEGENER G, TSCHIEDEL V, SCHLÖDER P, et al. The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia[J]. J Exp Biol, 2003, 206(7): 1233-1240. doi: 10.1242/jeb.00217
    [12] PAUL M J, PRIMAVESI L F, JHURREEA D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59: 417-441. doi: 10.1146/annurev.arplant.59.032607.092945
    [13] SAKAGUCHI M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism[J]. Appl Microbiol Biotechnol, 2020, 104(5): 1837-1847. doi: 10.1007/s00253-019-10339-7
    [14] CHEN X Q, ZHANG Z W, CHEN Z Z, et al. Potential antifungal targets based on glucose metabolism pathways of Candida albicans[J]. Front Microbiol, 2020, 11: 296. doi: 10.3389/fmicb.2020.00296
    [15] MATASSINI C, PARMEGGIANI C, CARDONA F. New frontiers on human safe insecticides and fungicides: an opinion on trehalase inhibitors[J]. Molecules, 2020, 25(13): 3013. doi: 10.3390/molecules25133013
    [16] 王思彤, 陈艳, 罗雨嘉, 等. 三种新型化合物对草地贪夜蛾海藻糖与几丁质代谢及生长发育的影响[J]. 中国农业科学, 2022, 55(8): 1568-1578. doi: 10.3864/j.issn.0578-1752.2022.08.008

    WANG S T, CHEN Y, LUO Y J, et al. Effect of three novel compounds on trehalose and chitin metabolism and development of Spodoptera frugiperda[J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578. doi: 10.3864/j.issn.0578-1752.2022.08.008
    [17] MEGHWAL M, GOSWAMI T K. Piper nigrum and piperine: an update[J]. Phytother Res, 2013, 27(8): 1121-1130. doi: 10.1002/ptr.4972
    [18] SMILKOV K, ACKOVA D G, CVETKOVSKI A, et al. Piperine: old spice and new nutraceutical?[J]. Curr Pharm Design, 2019, 25(15): 1729-1739. doi: 10.2174/1381612825666190701150803
    [19] GBEWONYO W S K, CANDY D J, ANDERSON M. Structure-activity relationships of insecticidal amides from Piper guineense root[J]. Pestic Sci, 1993, 37(1): 57-66. doi: 10.1002/ps.2780370109
    [20] PARK I K, LEE S G, SHIN S C, et al. Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species[J]. J Agric Food Chem, 2002, 50(7): 1866-1870. doi: 10.1021/jf011457a
    [21] 王佳. 胡椒碱对淡色库蚊幼虫及草地贪夜蛾细胞毒力作用的研究[D]. 苏州: 苏州大学, 2006.

    WANG J. Toxicity of piperine to Culex pipiens pallens larvae and lepidopteran (Spodoptera frugiperda) cell line (sf-21)[D]. Suzhou: Soochow University, 2006.
    [22] AKINBULUMA M D, EWETE F K, OLADOSU I A. Amide alkaloids from Piper guineense and its crude extract as protectants against Sitophilus Zeamais[J]. J Plant Dis Prot, 2021, 128(6): 1557-1564. doi: 10.1007/s41348-021-00518-y
    [23] LEE S E, PARK B S, KIM M K, et al. Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper, Piper longum L., against phytopathogenic fungi[J]. Crop Prot, 2001, 20(6): 523-528. doi: 10.1016/S0261-2194(00)00172-1
    [24] ZARAI Z, BOUJELBENE E, BEN SALEM N, et al. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum[J]. LWT-Food Sci Technol, 2013, 50(2): 634-641. doi: 10.1016/j.lwt.2012.07.036
    [25] LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al. The carbohydrate-active enzymes database (CAZy) in 2013[J]. Nucleic Acids Res, 2014, 42(Database issue): D490-D495.
    [26] DAVIES G, HENRISSAT B. Structures and mechanisms of glycosyl hydrolases[J]. Structure, 1995, 3(9): 853-859. doi: 10.1016/S0969-2126(01)00220-9
    [27] SILVA M C P, TERRA W R, FERREIRA C. The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda[J]. Insect Biochem Mol Biol, 2010, 40(10): 733-741. doi: 10.1016/j.ibmb.2010.07.006
    [28] SAKAGUCHI M, MATSUSHIMA Y, NAGAMINE Y, et al. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure[J]. Appl Microbiol Biotechnol, 2017, 101(6): 2415-2425. doi: 10.1007/s00253-016-8024-4
    [29] GIBSON R P, GLOSTER T M, ROBERTS S, et al. Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors[J]. Angew Chem Int Edit, 2007, 46(22): 4115-4119. doi: 10.1002/anie.200604825
    [30] CARDONA F, GOTI A, PARMEGGIANI C, et al. Casuarine-6-O-α-d-glucoside and its analogues are tight binding inhibitors of insect and bacterial trehalases[J]. Chem Commun, 2010, 46(15): 2629-2631. doi: 10.1039/b926600c
    [31] CARDONA F, PARMEGGIANI C, FAGGI E, et al. Total syntheses of casuarine and its 6-O-α-glucoside: complementary inhibition towards glycoside hydrolases of the GH31 and GH37 families[J]. Chem Eur J, 2009, 15(7): 1627-1636. doi: 10.1002/chem.200801578
    [32] ALBLOVA M, SMIDOVA A, DOCEKAL V, et al. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1[J]. Proc Natl Acad Sci USA, 2017, 114(46): E9811-E9820.
    [33] ADHAV A, HARNE S, BHIDE A, et al. Mechanistic insights into enzymatic catalysis by trehalase from the insect gut endosymbiont Enterobacter cloacae[J]. FEBS J, 2019, 286(9): 1700-1716. doi: 10.1111/febs.14760
    [34] 徐利剑, 赵维, 曹聪, 等. 井冈霉素的研究进展[J]. 中国农学通报, 2015, 31(22): 191-198. doi: 10.11924/j.issn.1000-6850.casb15020060

    XU L J, ZHAO W, CAO C, et al. Research progress of jinggangmycin[J]. Chin Agric Sci Bull, 2015, 31(22): 191-198. doi: 10.11924/j.issn.1000-6850.casb15020060
    [35] NIOH T, MIZUSHIMA S. Effect of validamycin on the growth and morphology of Pellicularia sasakii[J]. J Gen Appl Microbiol, 1974, 20(6): 373-383. doi: 10.2323/jgam.20.373
    [36] TRINCI A P J. Effect of validamycin A and L-sorbose on the growth and morphology of Rhizoctonia cerealis and Rhizoctonia solani[J]. Exp Mycol, 1985, 9(1): 20-27. doi: 10.1016/0147-5975(85)90043-X
    [37] ASANO N, YAMAGUCHI T, KAMEDA Y, et al. Effect of validamycins on glycohydrolases of Rhizoctonia solani[J]. J Antibiot(Tokyo), 1987, 40(4): 526-532. doi: 10.7164/antibiotics.40.526
    [38] SHIGEMOTO R, OKUNO T, MATSUURA K. Effects of validamycin A on the growth of and trehalose content in mycelia of Rhizoctonia solani incubated in a medium containing several sugars as the sole carbon source[J]. Jpn J Phytopathol, 1992, 58(5): 685-690. doi: 10.3186/jjphytopath.58.685
    [39] ISHIKAWA R, FUJIMORI K, MATSUURA K. Antibacterial activity of validamycin A against Pseudomonas solanacearu and its efficacy against tomato bacterial wilt[J]. Jpn J Phytopathol, 1996, 62(5): 478-482. doi: 10.3186/jjphytopath.62.478
    [40] BIAN C H, DUAN Y B, XIU Q, et al. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum[J]. Mol Plant Pathol, 2021, 22(7): 769-785. doi: 10.1111/mpp.13060
    [41] LI J, DUAN Y B, BIAN C H, et al. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: Inhibition of DON biosynthesis and induction of host resistance[J]. Pestic Biochem Physiol, 2019, 153: 152-160. doi: 10.1016/j.pestbp.2018.11.012
    [42] KAMEDA Y, ASANO N, YAMAGUCHI T, et al. Validoxylamines as trehalase inhibitors[J]. J Antibiot (Tokyo), 1987, 40(4): 563-565. doi: 10.7164/antibiotics.40.563
    [43] TAKAHASHI M, KONO Y, KURAHASHI H, et al. Effect of a trehalase inhibitor, validoxylamine A, on three species of flies'[J]. Appl Entomol Zool, 1995, 30(1): 231-239. doi: 10.1303/aez.30.231
    [44] JIN L Q, ZHENG Y G. Inhibitory effects of validamycin compounds on the termites trehalase[J]. Pestic Biochem Physiol, 2009, 95(1): 28-32. doi: 10.1016/j.pestbp.2009.05.001
    [45] TATUN N, TUNGJITWITAYAKUL J, SAKURAI S. Developmental and lethal effects of trehalase inhibitor (validamycin) on the Tribolium castaneum (Coleoptera: Tenebrionidae)[J]. Ann Entomol Soc Am, 2015, 109(2): 224-231.
    [46] TANG B, YANG M M, SHEN Q D, et al. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens[J]. Pestic Biochem Physiol, 2017, 137: 81-90. doi: 10.1016/j.pestbp.2016.10.003
    [47] MARTEN A D, STOTHARD A I, KALERA K, et al. Validamycin A delays development and prevents flight in Aedes aegypti (Diptera: Culicidae)[J]. J Med Entomol, 2020, 57(4): 1096-1103. doi: 10.1093/jme/tjaa004
    [48] YU H Z, ZHANG Q, LU Z J, et al. Validamycin treatment significantly inhibits the glycometabolism and chitin synthesis in the common cutworm, Spodoptera litura[J]. Insect Sci, 2022, 29(3): 840-854. doi: 10.1111/1744-7917.12963
    [49] YAMAGISHI T, UCHIDA C, OGAWA S. Total synthesis of the trehalase inhibitor salbostatin[J/OL]. Chem Eur J, 1995, 1(9): 634-636. [2022-07-15]. https://doi.org/10.1002/chem.19950010911.
    [50] VÉRTESY L, FEHLHABER H W, SCHULZ A. The trehalase inhibitor salbostatin, a novel metabolite from Streptomyces albus, ATCC21838[J]. Angew Chem Int Edit, 1994, 33(18): 1844-1846. doi: 10.1002/anie.199418441
    [51] ANDO O, NAKAJIMA M, KIFUNE M, et al. Trehazolin, a slow, tight-binding inhibitor of silkworm trehalase[J]. Biochim Biophys Acta-Gen Subj, 1995, 1244(2-3): 295-302. doi: 10.1016/0304-4165(95)00029-B
    [52] ANDO O, KIFUNE M, NAKAJIMA M. Effects of trehazolin, a potent trehalase inhibitor, on Bombyx mori and plant pathogenic fungi[J]. Biosci Biotechnol Biochem, 1995, 59(4): 711-712. doi: 10.1271/bbb.59.711
    [53] QIAN X, LIU Z, LI Z, et al. Synthesis and quantitative structure-activity relationships of fluorine-containing 4,4-dihydroxylmethyl-2-aryliminooxazo(thiazo)lidines as trehalase inhibitors[J]. J Agric Food Chem, 2001, 49(11): 5279-5284. doi: 10.1021/jf010632k
    [54] CHIARA J L, STORCH DE GRACIA I, GARCÍA Á, et al. Synthesis, inhibition properties, and theoretical study of the new nanomolar trehalase inhibitor 1-thiatrehazolin: Towards a structural understanding of trehazolin inhibition[J]. ChemBioChem, 2005, 6(1): 186-191. doi: 10.1002/cbic.200400231
    [55] ASANO N, OSEKI K, KIZU H, et al. Nitrogen-in-the-ring pyranoses and furanoses: structural basis of inhibition of mammalian glycosidases[J]. J Med Chem, 1994, 37(22): 3701-3706. doi: 10.1021/jm00048a006
    [56] MURAO S, MIYATA S. Isolation and characterization of a new trehalase inhibitor, S-GI[J]. Agric Biol Chem, 1980, 44(1): 219-221.
    [57] KONNO K, ONO H, NAKAMURA M, et al. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars[J]. Proc Natl Acad Sci USA, 2006, 103(5): 1337-1341. doi: 10.1073/pnas.0506944103
    [58] FORCELLA M, CARDONA F, GOTI A, et al. A membrane-bound trehalase from Chironomus riparius larvae: purification and sensitivity to inhibition[J]. Glycobiology, 2010, 20(9): 1186-1195. doi: 10.1093/glycob/cwq087
    [59] CIPOLLA L, SGAMBATO A, FORCELLA M, et al. N-Bridged 1-deoxynojirimycin dimers as selective insect trehalase inhibitors[J]. Carbohydr Res, 2014, 389: 46-49. doi: 10.1016/j.carres.2013.12.025
    [60] BINI D, CARDONA F, FORCELLA M, et al. Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors[J]. Beilstein J Org Chem, 2012, 8(1): 514-521.
    [61] EVANS S V, FELLOWS L E, BELL E A. Glucosidase and trehalase inhibition by 1,5-dideoxy-1,5-imino-d-mannitol, a cyclic amino alditol from Lonchocarpus sericeus[J]. Phytochemistry, 1983, 22(3): 768-770. doi: 10.1016/S0031-9422(00)86981-2
    [62] WATANABE S, KATO H, NAGAYAMA K, et al. Isolation of 2R, 5R-dihydroxymethyl-3R, 4R-dihydroxypyrrolidine (DMDP) from the fermentation broth of Streptomyces sp. KSC-5791[J]. Biosci Biotechnol Biochem, 1995, 59(5): 936-937. doi: 10.1271/bbb.59.936
    [63] ASANO N, KATO A, KIZU H, et al. Calystegine B4, a novel trehalase inhibitor from Scopolia japonica[J]. Carbohydr Res, 1996, 293(2): 195-204. doi: 10.1016/0008-6215(96)00204-2
    [64] KATO A, KANO E, ADACHI I, et al. Australine and related alkaloids: easy structural confirmation by 13C NMR spectral data and biological activities[J]. Tetrahedron Asymmetry, 2003, 14(3): 325-331. doi: 10.1016/S0957-4166(02)00799-1
    [65] D'ADAMIO G, SGAMBATO A, FORCELLA M, et al. New synthesis and biological evaluation of uniflorine A derivatives: towards specific insect trehalase inhibitors[J]. Org Biomol Chem, 2015, 13(3): 886-892. doi: 10.1039/C4OB02016B
    [66] CHAVARRIA D, SILVA T, MAGALHÃES E SILVA D, et al. Lessons from black pepper: piperine and derivatives thereof[J]. Expert Opin Ther Patents, 2016, 26(2): 245-264. doi: 10.1517/13543776.2016.1118057
    [67] SU H C F. Insecticidal properties of black pepper to rice weevils and cowpea weevils[J]. J Econ Entomol, 1977, 70(1): 18-21. doi: 10.1093/jee/70.1.18
    [68] SCOTT W P, MCKIBBEN G H. Toxicity of black pepper extract to boll extract to boll weevils[J]. J Econ Entomol, 1978, 71(2): 343-344. doi: 10.1093/jee/71.2.343
    [69] SU H C F, HORVAT R. Isolation, identification, and insecticidal properties of piper nigrum amides[J]. J Agric Food Chem, 1981, 29(1): 115-118. doi: 10.1021/jf00103a029
    [70] JACOBS H, SEERAM N, NAIR M, et al. Amides of piper amalago var. nigrinodum[J]. J Indian Chem Soc, 1999, 76(11/12): 713-717.
    [71] YANG Y C, LEE S G, LEE H K, et al. A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae[J]. J Agric Food Chem, 2002, 50(13): 3765-3767. doi: 10.1021/jf011708f
    [72] 王玉芳. 胡椒碱对白纹伊蚊C6/36细胞株增殖分裂的影响及毒性作用与凋亡关系的研究[D]. 苏州: 苏州大学, 2007.

    WANG Y F. Influences of division growth and relationship between cytotoxicityn and apoptosis on Aedes albopictus cell line (C6/36) produced by piperine[D]. Suzhou: Soochow University, 2007.
    [73] TAVARES W, CRUZ I, PETACCI F, et al. Insecticide activity of piperine: Toxicity to eggs of Spodoptera frugiperda (Lepidoptera: Noctuidae) and Diatraea saccharalis (Lepidoptera: Pyralidae) and phytotoxicity on several vegetables[J]. J Med Plant Res, 2011, 5(21): 5301-5306.
    [74] 冯岗, 袁恩林, 张静, 等. 假蒟中胡椒碱的分离鉴定及杀虫活性研究[J]. 热带作物学报, 2013, 34(11): 2246-2250. doi: 10.3969/j.issn.1000-2561.2013.11.029

    FENG G, YUAN E L, ZHANG J, et al. Isolation and identification of piperine from Piper sarmentosum and its insecticidal activity[J]. Chin J Trop Crops, 2013, 34(11): 2246-2250. doi: 10.3969/j.issn.1000-2561.2013.11.029
    [75] KIM S I, AHN Y J. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti[J/OL]. Parasit Vectors, 2017, 10(1): 221. [2022-07-15]. https://doi.org/10.1186/s13071-017-2154-0.
    [76] 徐聪. 3-(3,4-亚甲二氧基-6-烷氧基)丙烯酰胺类化合物的合成及杀虫活性研究[D]. 杨凌: 西北农林科技大学, 2011.

    XU C. Study on synthesis and insecticidal activity of 3-(3,4-methylenedioxy-6-alkoxy) acrylamide compounds[D]. Yangling: Northwest A&F University, 2011.
    [77] QU H, YU X, ZHI X Y, et al. Natural-product-based insecticidal agents 14. Semisynthesis and insecticidal activity of new piperine-based hydrazone derivatives against Mythimna separata Walker in vivo[J]. Bioorg Med Chem Lett, 2013, 23(20): 5552-5557. doi: 10.1016/j.bmcl.2013.08.053
    [78] QU H, LV M, YU X, et al. Discovery of some piperine-based phenylsulfonylhydrazone derivatives as potent botanically narcotic agents[J/OL]. Sci Rep, 2015, 5: 13077. [2022-07-15]. https://doi.org/10.1038/srep13077.
    [79] YANG R G, LV M, XU H. Synthesis of piperine analogs containing isoxazoline/pyrazoline scaffold and their pesticidal bioactivities[J]. J Agric Food Chem, 2018, 66(43): 11254-11264. doi: 10.1021/acs.jafc.8b03690
    [80] TANTAWY A H, FARAG S M, HEGAZY L, et al. The larvicidal activity of natural inspired piperine-based dienehydrazides against Culex pipiens[J]. Bioorg Chem, 2020, 94: 103464. doi: 10.1016/j.bioorg.2019.103464
    [81] HAN Q, WU N, LI H L, et al. A piperine-based scaffold as a novel starting point to develop inhibitors against the potent molecular target Of ChtI[J]. J Agric Food Chem, 2021, 69(27): 7534-7544. doi: 10.1021/acs.jafc.0c08119
    [82] HAN Q, WU N, LIU Y Y, et al. Piperonyl-tethered rhodanine derivatives potently inhibit chitinolytic enzymes of Ostrinia furnacalis[J]. J Agric Food Chem, 2022, 70(24): 7387-7399. doi: 10.1021/acs.jafc.2c02091
    [83] MARQUES J V, DE OLIVEIRA A, RAGGI L, et al. Antifungal activity of natural and synthetic amides from Piper species[J]. J Braz Chem Soc, 2010, 21(10): 1807-1813. doi: 10.1590/S0103-50532010001000003
    [84] 王涛, 邹鹏, 彭浩, 等. O-烷基α-(取代苯氧乙酰氧基)烃基膦酸盐的合成与生物活性[J]. 有机化学, 2014, 34(1): 215-219. doi: 10.6023/cjoc201308014

    WANG T, ZOU P, PENG H, et al. Synthesis and biological activity of O-alkyl α- (substituted phenoxyacetoxy) alkylphosphonate[J]. Chin J Org Chem, 2014, 34(1): 215-219. doi: 10.6023/cjoc201308014
    [85] 宁国慧, 赵温涛, 边强, 等. 3, 5-二取代的异噁唑啉类衍生物的合成及杀菌活性研究[J]. 有机化学, 2014, 34(9): 1800-1805. doi: 10.6023/cjoc201403026

    NING G H, ZHAO W T, BIAN Q, et al. Synthesis and fungicidal activity of some 3, 5-disubstituted isoxazoline derivatives[J]. Chin J Org Chem, 2014, 34(9): 1800-1805. doi: 10.6023/cjoc201403026
    [86] 刘长令, 关爱莹, 兰杰, 等. 胡椒乙胺类化合物及其用途: CN104797575B[P]. 2015-07-22.

    LIU C L, GUAN A Y, LAN J, et al. Homopiperony lamine compound and use thereof: CN104797575B[P]. 2015-07-22.
    [87] 王净净. 天然胡椒碱衍生物的合成及抑菌活性研究[D]. 武汉: 华中农业大学, 2020.

    WANG J J. Synthesis and antifungal activity of piperine-based derivatives[D]. Wuhan: Huazhong Agricultural University, 2020.
    [88] 宋迪. 基于胡椒基药效团的分子设计、合成及活性研究[D]. 武汉, 华中农业大学, 2020.

    SONG D. Molecular design, synthesis and activities study based on piperonyl pharmacophore[D]. Wuhan: Huazhong Agricultural University, 2020.
    [89] 宋萍萍, 王雨, 韦敏, 等. 胡椒碱作为农业杀菌剂的用途: CN113180050B [P]. 2022-04-26.

    SONG P P, WANG Y, WEI M, et al. Application of piperine as agricultural bactericide: CN113180050B[P]. 2022-04-26
    [90] 王勇, 孙扬, 韩立荣, 等. 一种胡椒碱与丁香酚植物源复配增效杀菌剂及其应用: CN107646844A [P]. 2018-02-02.

    WANG Y, SUN Y, HAN L R, et al. Piperine and eugenol botanical complex synergistic bactericidal agent and application thereof: CN107646844A[P]. 2018-02-02.
    [91] 王勇, 韩立荣, 王智辉, 等. 一种胡椒碱与啶酰菌胺增效复配杀菌剂及其应用: CN107711845A [P]. 2018-02-23.

    WANG Y, HAN L R, WANG Z H, et al. A synergistic compound fungicide of piperine and boscalid and its application: CN107711845A [P]. 2018-02-23.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  28
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-08-31
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回