• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载咪鲜胺介孔二氧化硅粒子的制备及性能与安全性评价

侯超群 陈旺 吕泽 韦诺 孙利 孟霄汉 冯建国

侯超群, 陈旺, 吕泽, 韦诺, 孙利, 孟霄汉, 冯建国. 负载咪鲜胺介孔二氧化硅粒子的制备及性能与安全性评价[J]. 农药学学报, 2022, 24(5): 1224-1235. doi: 10.16801/j.issn.1008-7303.2022.0104
引用本文: 侯超群, 陈旺, 吕泽, 韦诺, 孙利, 孟霄汉, 冯建国. 负载咪鲜胺介孔二氧化硅粒子的制备及性能与安全性评价[J]. 农药学学报, 2022, 24(5): 1224-1235. doi: 10.16801/j.issn.1008-7303.2022.0104
HOU Chaoqun, CHEN Wang, LV Ze, WEI Nuo, SUN Li, MENG Xiaohan, FENG Jianguo. Preparation, properties and safety evaluation of mesoporous silica particles loaded with prochloraz[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1224-1235. doi: 10.16801/j.issn.1008-7303.2022.0104
Citation: HOU Chaoqun, CHEN Wang, LV Ze, WEI Nuo, SUN Li, MENG Xiaohan, FENG Jianguo. Preparation, properties and safety evaluation of mesoporous silica particles loaded with prochloraz[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1224-1235. doi: 10.16801/j.issn.1008-7303.2022.0104

负载咪鲜胺介孔二氧化硅粒子的制备及性能与安全性评价

doi: 10.16801/j.issn.1008-7303.2022.0104
详细信息
    作者简介:

    侯超群,491412590@qq.com

    通讯作者:

    冯建国,jgfeng@yzu.edu.cn

  • 中图分类号: TQ450.6;TQ450.2

Preparation, properties and safety evaluation of mesoporous silica particles loaded with prochloraz

  • 摘要: 介孔二氧化硅粒子 (MSNs) 可作为载体用于制备高载药量的农药缓控释剂,从而实现农药减量化使用和生态环境保护的目的。本研究采用“一锅法”制备了负载咪鲜胺的介孔二氧化硅载药粒子 (prochloraz@MSNs),并对其外观形貌、载药量、释放行为、抑菌作用以及对非靶标生物的安全性进行了系统研究。结果表明:所制备的prochloraz@MSNs呈规则球形,粒径均匀,平均粒径约240 nm,载药量为40.6%,释放速率与pH值和温度相关,酸性、碱性及高温条件均有利于其中咪鲜胺的释放。与常规制剂咪鲜胺乳油相比,prochloraz@MSNs对稻瘟病菌和小麦赤霉病菌的抑制效果更好,持效期更长;对斑马鱼、蚯蚓和人体肺部BEAS-2B细胞的毒性较低。因此,prochloraz@MSNs作为一种高效、低毒、安全的农药新剂型,在植物病害的可持续治理中将具有很好的发展潜力。
  • 1  咪鲜胺化学结构式

    1.  Chemical structure of prochloraz

    图  1  MSNs和prochloraz@MSNs的SEM照片 (a、b) 及TEM照片 (c、d)

    Figure  1.  SEM photos (a, b) and TEM photos (c, d) of MSNs and prochloraz@MSNs

    图  2  MSNs、咪鲜胺和prochloraz@MSNs的傅立叶红外光谱

    Figure  2.  The fourier transform infrared spectroscopy spectra of MSNs, prochloraz and prochloraz@MSNs

    图  3  MSNs和prochloraz@MSNs的热重分析

    Figure  3.  Thermogravimetric analysis of MSNs and prochloraz@MSNs

    图  4  MSNs和prochloraz@MSNs的N2吸附-脱附曲线(a)和孔径分布(b)

    Figure  4.  N2 adsorption-desorption curves (a) and pore size distribution (b) of MSNs and prochloraz@MSNs

    图  5  咪鲜胺、MSNs和prochloraz@MSNs的X射线衍射图

    Figure  5.  X-ray diffraction patterns of prochloraz, MSNs and prochloraz@MSNs

    图  6  prochloraz@MSNs在不同pH值 (a) 和不同温度 (b) 下的释放曲线

    Figure  6.  The release curve of prochloraz@MSNs at different pH (a) and different temperature (b)

    图  7  不同pH值 (a~d) 和不同温度 (e~h) 下释放曲线的动力学模型拟合结果

    Figure  7.  Fitting results of the kinetic model of the release curve at different pH (a-d) and temperature (e-h)

    图  8  prochloraz@MSNs (MSNs*) 与咪鲜胺乳油 (EC) 对稻瘟病菌的抑制活性 (A)、菌丝生长抑制率 (B) 和抑制中浓度 (C)

    注:柱上不同小写字母表示差异显著 (P<0.05,n=3)。

    Figure  8.  Antifungal activity (A), inhibition rate (B) and inhibitory concentration (C) of prochloraz@MSNs (MSNs*) and prochloraz EC against M. oryzae

    Note: Different lowercase on the column indicated significant differences (P<0.05, n=3).

    图  9  prochloraz@MSNs (MSNs*) 与咪鲜胺乳油 (EC) 对小麦赤霉病菌的抑制活性 (A)、菌丝抑制率 (B) 和抑制中浓度 (C)

    注:柱上不同小写字母表示差异显著 (P<0.05,n=3)。

    Figure  9.  Antifungal activity (A), inhibition rate (B) and inhibitory concentration (C) of prochloraz@MSNs (MSNs*) and prochloraz EC against F. graminearum

    Note: Different lowercase on the column indicated significant differences (P<0.05, n=3).

    图  10  prochloraz@MSNs和对照药剂咪鲜胺乳油对人体肺部BEAS-2B细胞的影响

    Figure  10.  Effects of prochloraz@MSNs and prochloraz EC on human lung BEAS-2B cells

    表  1  MSNs和prochloraz@MSNs的N2吸附分析

    Table  1.   N2 adsorption analysis of MSNs and prochloraz@MSNs

    样品
    Sample
    比表面积
    Specific surface area
    BET/(m2/g)
    孔道体积
    Pore volume
    BJH/(cm3/g)
    孔径
    Pore size
    BJH/nm
    MSNs1329.971.133.39
    prochloraz@MSNs17.010.06
    下载: 导出CSV

    表  2  不同pH值和温度下咪鲜胺的释放动力学模型拟合结果

    Table  2.   Fitting results of models for the release kinetics of prochloraz at different pH and temperature

    释放模型
    Release model
    pHK1K2R2
    温度
    Temperature/℃
    K1K2R2
    零级
    Zero-order
    y = K1t + K2
    50.26432.4520.612250.21715.9850.881
    70.21316.6680.880350.35531.5630.672
    90.25225.8080.773450.28945.4290.509
    一级
    First-order
    y = K1 × [1−exp(−K2t)]
    576.8930.0510.9922557.3010.0230.954
    757.3470.0230.9563587.4080.0410.993
    966.8570.0390.9524590.3460.1100.993
    Higuchi
    y = K1t1/2 + K2
    54.98616.1850.810253.8275.2110.979
    73.8165.3420.978356.30712.3170.863
    94.55911.5150.927455.39728.5420.721
    Ritager-Peppas
    y = K1 × (t^K2)
    516.8750.3040.879257.3250.3930.989
    77.2970.3930.9893515.9640.3430.910
    912.4280.3370.9634528.0430.2430.836
    下载: 导出CSV

    表  3  prochloraz@MSNs和咪鲜胺乳油对斑马鱼的致死中浓度

    Table  3.   LC50 of prochloraz@MSNs and prochloraz EC for zebrafishs

    暴露时间
    Exposure time/h
    LC50 (95% 置信区间)
    (95% confidence interval)/(mg/L)
    prochloraz@MSNs咪鲜胺乳油
    prochloraz EC
    2418.23 (16.59~20.02)0.96 (0.71~1.29)
    4816.68 (15.42~18.04)0.96 (0.71~1.29)
    7216.57 (15.44~17.75)0.92 (0.65~1.30)
    9615.98 (15.01~17.01)0.56 (0.33~0.95)
    下载: 导出CSV

    表  4  prochloraz@MSNs和咪鲜胺乳油对蚯蚓的致死中浓度

    Table  4.   LC50 of prochloraz@MSNs and prochloraz EC for earthworms

    暴露时间
    Exposure time/d
    LC50 (95% 置信区间)
    (95% confidence interval), a.i./(mg/kg (soil))
    prochloraz@MSNs咪鲜胺乳油
    prochloraz EC
    7150.12 (62.88~358.37)5.02 (2.40~10.49)
    14130.25 (61.77~274.66)4.48 (2.44~8.22)
    下载: 导出CSV
  • [1] 毛程鑫, 陆强, 周小军, 等. 浙江省稻田藤仓镰孢霉对咪鲜胺的敏感性及抗药性菌株的适合度与交互抗性[J]. 农药学学报, 2020, 22(3): 432-438. doi: 10.16801/j.issn.1008-7303.2020.0071

    MAO C X, LU Q, ZHOU X J, et al. Sensitives, fitness and cross-resistance of Fusarium fujikuroi resistant to prochloraz from rice fields in Zhejiang Province[J]. Chin J Pestic Sci, 2020, 22(3): 432-438. doi: 10.16801/j.issn.1008-7303.2020.0071
    [2] 胡贤锋, 李荣玉, 李明, 等. 贵州省水稻稻曲病菌对咪鲜胺的敏感性基线[J]. 农药, 2017, 56(3): 219-221,227. doi: 10.16820/j.cnki.1006-0413.2017.03.018

    HU X F, LI R Y, LI M, et al. Sensitive baseline of Ustilaginoidea virens to prochloraz in Guizhou Province[J]. Agrochemicals, 2017, 56(3): 219-221,227. doi: 10.16820/j.cnki.1006-0413.2017.03.018
    [3] 黄桂珍, 冯逸鑫, 刘明杰, 等. 高分子乳化剂在咪鲜胺水乳剂中的应用[J]. 现代农药, 2018, 17(1): 23-25.

    HUANG G Z, FENG Y X, LIU M J, et al. Application of polymer emulsifier in prochloraz EW[J]. Mod Agrochem, 2018, 17(1): 23-25.
    [4] BAUMANN L, KNöRR S, KEITER S, et al. Prochloraz causes irreversible masculinization of zebrafish (Danio rerio)[J]. Environ Sci Pollut Res, 2015, 22(21): 16417-16422. doi: 10.1007/s11356-014-3486-3
    [5] VINGGAARD A M, HASS U, DALGAARD M, et al. Prochloraz: an imidazole fungicide with multiple mechanisms of action[J]. Int J Androl, 2006, 29(1): 186-192. doi: 10.1111/j.1365-2605.2005.00604.x
    [6] GAO Y T, ZHANG Y, HONG Y L, et al. Multifunctional role of silica in pharmaceutical formulations[J]. AAPS Pharmscitech, 2022, 23(4): 90. doi: 10.1208/s12249-022-02237-5
    [7] GU X S, GUO J S, MAI Y P, et al. Improved transdermal permeability of tanshinone IIA from cataplasms by loading onto nanocrystals and porous silica[J]. Pharm Dev Technol, 2021, 26(10): 1061-1072. doi: 10.1080/10837450.2021.1980800
    [8] 孙德权, 陆新华, 李伟明, 等. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239.

    SUN D Q, LU X H, LI W M, et al. Application of mesoporous silica nanoparticles in agriculture[J]. Biotechnol Bull, 2022, 38(5): 228-239.
    [9] CHEN H Y, CHEN L S, SHEN Z C, et al. Synthesis of mesoporous silica post-loaded by methyl eugenol as an environment-friendly slow-release bio pesticide[J]. Sci Rep, 2020, 10: 6108. doi: 10.1038/s41598-020-63015-6
    [10] ZHAO P Y, CAO L D, MA D K, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale, 2018, 10(4): 1798-1806. doi: 10.1039/C7NR08107C
    [11] GAO Y H, LIU Y, QIN X Y, et al. Dual stimuli-responsive fungicide carrier based on hollow mesoporous silica/hydroxypropyl cellulose hybrid nanoparticles[J]. J Hazard Mater, 2021, 414: 125513. doi: 10.1016/j.jhazmat.2021.125513
    [12] 许春丽, Muhammad BILAL, 徐博, 等. 荧光介孔二氧化硅负载丙硫菌唑纳米颗粒的制备及性能研究[J]. 农药学学报, 2020, 22(2): 214-224. doi: 10.16801/j.issn.1008-7303.2020.0046

    XU C L, BILAL M, XU B, et al. Preparation and characterization of prothioconazole-loaded fluorescent mesoporous silica nanoparticles[J]. Chin J Pestic Sci, 2020, 22(2): 214-224. doi: 10.16801/j.issn.1008-7303.2020.0046
    [13] ZHOU Z Y, GAO Y H, CHEN X, et al. One-pot facile synthesis of double-shelled mesoporous silica microcapsules with an improved soft-template method for sustainable pest management[J]. ACS Appl Mater Interfaces, 2021, 13(33): 39066-39075. doi: 10.1021/acsami.1c10135
    [14] KAZIEM A E, GAO Y H, HE S, et al. Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release[J]. J Agric Food Chem, 2017, 65(36): 7854-7864. doi: 10.1021/acs.jafc.7b02560
    [15] CAO L D, ZHOU Z L, NIU S J, et al. Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2, 4-dichlorophenoxy acetic acid sodium salt release[J]. J Agric Food Chem, 2018, 66(26): 6594-6603. doi: 10.1021/acs.jafc.7b01957
    [16] HEIDARI NIA M, KOSHANI R, MUNGUIA-LOPEZ J G, et al. Biotemplated hollow mesoporous silica particles as efficient carriers for drug delivery[J]. ACS Appl Bio Mater, 2021, 4(5): 4201-4214. doi: 10.1021/acsabm.0c01671
    [17] TAO C Y, YAN H W, YUAN X D, et al. Synthesis of shape-controlled hollow silica nanostructures with a simple soft-templating method and their application as superhydrophobic antireflective coatings with ultralow refractive indices[J]. Colloids Surf A: Physicochem Eng Aspects, 2016, 501: 17-23. doi: 10.1016/j.colsurfa.2016.04.051
    [18] CHEN J, WU X, HOU X D, et al. Shape-tunable hollow silica nanomaterials based on a soft-templating method and their application as a drug carrier[J]. ACS Appl Mater Interfaces, 2014, 6(24): 21921-21930. doi: 10.1021/am507642t
    [19] SU G F, QIU S F, LIN J Q, et al. Mesoporous silica doped with different water-soluble ligands to enhance the antibacterial performance of nano zinc oxides by coordination effect[J]. Colloids Surf A: Physicochem Eng Aspects, 2022, 640: 128414. doi: 10.1016/j.colsurfa.2022.128414
    [20] WU L T, PAN H, HUANG W L, et al. pH and redox dual-responsive mesoporous silica nanoparticle as nanovehicle for improving fungicidal efficiency[J]. Materials (Basel), 2022, 15(6): 2207. doi: 10.3390/ma15062207
    [21] ABDELRAHMAN T M, QIN X Y, LI D L, et al. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants[J]. Chem Eng J, 2021, 404: 126440. doi: 10.1016/j.cej.2020.126440
    [22] GAO Y H, LIANG Y, DONG H Q, et al. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence[J]. ACS Sustainable Chem Eng, 2020, 8(14): 5716-5723. doi: 10.1021/acssuschemeng.0c00649
    [23] PAN H, HUANG W L, WU L T, et al. A pH dual-responsive multifunctional nanoparticle based on mesoporous silica with metal-polymethacrylic acid gatekeeper for improving plant protection and nutrition[J]. Nanomaterials (Basel), 2022, 12(4): 687. doi: 10.3390/nano12040687
    [24] FENG J G, YANG J H, SHEN Y M, et al. Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: properties and applications[J]. Micropor Mesopor Mat, 2021, 311: 110688. doi: 10.1016/j.micromeso.2020.110688
    [25] GAO Y H, ZHANG Y H, HE S, et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide[J]. Chem Eng J, 2019, 364: 361-369. doi: 10.1016/j.cej.2019.01.105
    [26] 颜建民, 张裕卿. 氨基化修饰介孔二氧化硅用于疏水性药物的负载和释放[J]. 化学工业与工程, 2017, 34(3): 43-49. doi: 10.13353/j.issn.1004.9533.20151017

    YAN J M, ZHANG Y Q. Preparation of amino group modified mesoporous silica nano-particles and its application in hydrophobic drug loading and release[J]. Chem Ind Eng, 2017, 34(3): 43-49. doi: 10.13353/j.issn.1004.9533.20151017
    [27] YANG C, LI T, JIANG L Y, et al. Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents[J]. Bioorg Chem, 2020, 94: 103469. doi: 10.1016/j.bioorg.2019.103469
    [28] 化学农药环境安全评价试验准则: GB/T 31270.12—2014[S]. 北京: 中国标准出版社, 2014.

    Test guidelines on environmental safety assessment for chemical pesticides: GB/T 31270.12‒2014[S]. Beijing: Standards Press of China, 2014.
    [29] 化学农药环境安全评价试验准则: GB/T 31270.15—2014[S]. 北京: 中国标准出版社, 2014.

    Test guidelines on environmental safety assessment for chemical pesticides: GB/T 31270.15—2014[S]. Beijing: Standards Press of China, 2014.
    [30] PARIDA D, SALMEIA K A, SADEGHPOUR A, et al. Template-free synthesis of hybrid silica nanoparticle with functionalized mesostructure for efficient methylene blue removal[J]. Mater Des, 2021, 201: 109494. doi: 10.1016/j.matdes.2021.109494
    [31] XU C L, CAO L D, ZHAO P Y, et al. Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release[J]. Chem Eng J, 2018, 348: 244-254. doi: 10.1016/j.cej.2018.05.008
    [32] XUE F, ZHU Z W, WEI Z, et al. The preparation of prochloraz pH-responsive nanocapsules by the Pickering emulsion polymerization method and the study of their performance[J]. RSC Adv, 2020, 10(8): 4598-4606. doi: 10.1039/C9RA09920D
    [33] 朱海峰. 高效低毒农药咪鲜胺的绿色合成[D]. 温州: 温州大学, 2011.

    ZhU H F. Green synthesis of high efficiency and low toxicity pesticide micoramine [D]. Wenzhou: Wenzhou University, 2011.
    [34] YUSAIDI N J, ABDULLAH S A, ZARIB N A. X-ray diffractometer (XRD) and scanning electron microscopy (SEM) of silica extracted from banana stems via acid leaching treatment[J]. IOP Conf Ser: Mater Sci Eng, 2020, 834(1): 012053. doi: 10.1088/1757-899X/834/1/012053
    [35] LI W J, CHOUNTOULESI M, ANTONIADI L, et al. Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol[J]. Food Chem, 2022, 384: 132470. doi: 10.1016/j.foodchem.2022.132470
    [36] HE H Q, QIN X J, DONG F Y, et al. Synthesis, characterization of two matrine derivatives and their cytotoxic effect on Sf9 cell of Spodoptera frugiperda[J]. Sci Rep, 2020, 10: 17999. doi: 10.1038/s41598-020-75053-1
    [37] XIAO D X, CHENG J L, LIANG W L, et al. Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery[J]. Chem Eng J, 2021, 418: 129274. doi: 10.1016/j.cej.2021.129274
    [38] YANG G Z, WIBOWO D, YUN J H, et al. Biomimetic silica nanocapsules for tunable sustained release and cargo protection[J]. Langmuir, 2017, 33(23): 5777-5785. doi: 10.1021/acs.langmuir.7b00590
    [39] GAO Y H, LIANG Y, ZHOU Z Y, et al. Metal-organic framework nanohybrid carrier for precise pesticide delivery and pest management[J]. Chem Eng J, 2021, 422: 130143. doi: 10.1016/j.cej.2021.130143
    [40] KAZIEM A E, GAO Y H, ZHANG Y, et al. α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella[J]. J Hazard Mater, 2018, 359: 213-221. doi: 10.1016/j.jhazmat.2018.07.059
    [41] HUANG N, WANG J, CHENG X Y, et al. Fabrication of PNIPAM-chitosan/decatungstoeuropate/silica nanocomposite for thermo/pH dual-stimuli-responsive and luminescent drug delivery system[J]. J Inorg Biochem, 2020, 211: 111216. doi: 10.1016/j.jinorgbio.2020.111216
    [42] LIANG Y, SONG J H, DONG H Q, et al. Fabrication of pH-responsive nanoparticles for high efficiency pyraclostrobin delivery and reducing environmental impact[J]. Sci Total Environ, 2021, 787: 147422. doi: 10.1016/j.scitotenv.2021.147422
    [43] LI M W, XU W M, HU D Y, et al. Preparation and application of pyraclostrobin microcapsule formulations[J]. Colloids Surf A: Physicochem Eng Aspects, 2018, 553: 578-585. doi: 10.1016/j.colsurfa.2018.06.009
    [44] ŞEKEROĞLU V, ERTüRK B, ATL ŞEKEROĞLU Z. Effects of deltamethrin and thiacloprid on cell viability, colony formation and DNA double-strand breaks in human bronchial epithelial cells[J]. Chemosphere, 2021, 263: 128293. doi: 10.1016/j.chemosphere.2020.128293
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  12
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 录用日期:  2022-09-10
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回