• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杀菌剂毒力及其生物测定

周明国

周明国. 杀菌剂毒力及其生物测定[J]. 农药学学报, 2022, 24(5): 904-920. doi: 10.16801/j.issn.1008-7303.2022.0107
引用本文: 周明国. 杀菌剂毒力及其生物测定[J]. 农药学学报, 2022, 24(5): 904-920. doi: 10.16801/j.issn.1008-7303.2022.0107
ZHOU Mingguo. Fungicide toxicity and its bioassy[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 904-920. doi: 10.16801/j.issn.1008-7303.2022.0107
Citation: ZHOU Mingguo. Fungicide toxicity and its bioassy[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 904-920. doi: 10.16801/j.issn.1008-7303.2022.0107

杀菌剂毒力及其生物测定

doi: 10.16801/j.issn.1008-7303.2022.0107
基金项目: 国家自然科学基金重点项目(31730072).
详细信息
    通讯作者:

    周明国,mgzhou@njau.edu.cn

  • 中图分类号: S481

Fungicide toxicity and its bioassy

Funds: the State Key Program of National Natural Science Foundation of China (31730072).
  • 摘要: 杀菌剂毒力是化合物具有开发和应用价值的固有生物学性状,不仅是农药登记部门予以注册登记的前置条件,而且也是反映杀菌剂生物活性及其安全性和有效性的关键技术参数。本文明确了杀菌剂毒力术语的定义,强调了杀菌剂可能的未知作用方式及通过与病原菌、寄主和环境因子相互作用的病害及流行防控效力在杀菌剂毒力评价中的重要性。深入分析了化合物与受体蛋白相互作用的结构特异性和精确性及干扰靶标蛋白功能的毒理学机制,揭示了杀菌剂毒力的选择性原理。综述了杀菌剂毒力生物测定及其结果分析方法,分析了可能影响毒力测定结果评价的常见因素。本文所述内容可为从事农药创制、加工、应用、毒理与抗性及分子互作科研工作者提供参考。
  • 图  1  肌球蛋白I可与小分子化合物互作的结构域示意图

    Figure  1.  Diagram of myosin I domains for potentially sensitivity to small compounds

  • [1] ANON. Definition of fungicide terms[J]. Phytopathology, 1943, 33: 624-626.
    [2] BLOCK S S. Definition of terms[M]. Philadelphia: Lippincott Williams&Wilkins Desktop Division, 2001:19-31.
    [3] Fungicide Resistance Action Committee. FRAC methods for monitoring fungicide resistance[J]. EPPO Bull, 1991, 21: 291-354.
    [4] DAN N. The value of in vitro fungicide tests[M]. Illinois Natural History Survey Biological Notes, No. 64: 8.
    [5] CUI H, TSUDA K, PARKER J E. Effector-triggered immunity: from pathogen perception to robust defense[J]. Annu Rev Plant Biol, 2015, 66(1): 487-511. doi: 10.1146/annurev-arplant-050213-040012
    [6] HE S, HUANG Y, SUN Y, et al. The secreted ribonuclease SRE1 contributes to Setosphaeria turcica virulence and activates plant immunity[J]. Frontiers in Microbiology, 2022, 13: 941991. doi: 10.3389/fmicb.2022.941991
    [7] WAARD M A, GEORGOPOULOS S G, HOLLOMON D W, et al. Chemical control of plant diseases: problems and prospects[J]. Annu Rev Phytopathol, 1993, 31: 403-421.
    [8] DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nat Rev Genet, 2010, 11: 539-548.
    [9] 赵斌, 陈来, 张乃楼等. 新型杀菌化合物靶标识别及其靶向候选药剂设计概述[J]. 农药学学报, 2018, 20(4): 397-407.

    ZHAO B, CHEN L, ZHANG N L, et al. General summary of novel fungicide target identification and itstargeted candidate design[J]. Chin J Pestic Sci, 2018, 20(4): 397-407.
    [10] LI X Y, YANG X Q, ZHENG X D, et al. Review on structures of pesticide targets[J]. Int J Mol Sci, 2020, 21: 7144. doi: 10.3390/ijms21197144
    [11] 李朝阳, 武彤, 李景印, 等. 手性农药对映体选择性环境行为的研究进展[J]. 生态环境, 2008, 17(3): 1268-1275.

    LI Z Y, WU T, LI J Y, et al. Progress in the research on enantioselective environmental behavior of chiral pesticides[J]. Ecol Environ, 2008, 17(3): 1268-1275.
    [12] 唐梦龄, 王丹, 傅柳松, 等. 手性农药毒性机制的对映体选择性[J]. 农药学学报, 2011, 13(4): 335-340. doi: 10.3969/j.issn.1008-7303.2011.04.01

    TANG M L, WANG D, FU L S, et al. Enantioselectivity on toxic mechanisms of chiral pesticides[J]. Chin J Pestic Sci, 2011, 13(4): 335-340. doi: 10.3969/j.issn.1008-7303.2011.04.01
    [13] DENG Y, LIU R, WANG Z K, et al. The stereoselectivity of metconazole on wheat grain filling and harvested seeds germination: implication for the application of triazole chiral pesticides[J]. J Hazard Mater, 2021, 416: 125911. doi: 10.1016/j.jhazmat.2021.125911
    [14] ZHOU Y X, ZHOU X E, GONG Y P, et al. Structural basis of Fusarium myosin I inhibition by phenamacril[J]. PLoS Pathog, 2020, 16(3): e1008323. doi: 10.1371/journal.ppat.1008323
    [15] STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 180(4): 688-702.e13. doi: 10.1016/j.cell.2020.01.021
    [16] ZHOU Y J, XU J Q, ZHU Y Y, et al. Mechanism of action of the benzimidazole fungicide on Fusarium graminearum: interfering with polymerization of monomeric tubulin but not polymerized microtubule[J]. Phytopathology, 2016, 106(8): 807-813. doi: 10.1094/PHYTO-08-15-0186-R
    [17] ZHU Y Y, LIANG X Y, LI Y J, et al. F240 of β2-tubulin explains why Fusarium graminearum is less sensitive to carbendazim than Botrytis cinerea[J]. Phytopathology, 2018, 108(3): 352-361. doi: 10.1094/PHYTO-09-17-0295-R
    [18] ZHU Y Y, ZHANG Y S, HE Z Z, et al. Detrimental effects of multiple mutations in position 240 of Fusarium graminearum β2-tubulin[J]. Phytopathology, 2020, 110(9): 1522-1529. doi: 10.1094/PHYTO-11-19-0409-R
    [19] ZHOU Z H, DUAN Y, ZHOU M G. Carbendazim-resistance associated β2-tubulin substitutions increase deoxynivalenol biosynthesis by reducing the interaction between β2-tubulin and IDH3 in Fusarium graminearum[J]. Environ Microbiol, 2020, 22: 598-614. doi: 10.1111/1462-2920.14874
    [20] 陶丽红, 李佳俊, 夏美荣, 等. 五种琥珀酸脱氢酶抑制剂类杀菌剂与灰葡萄孢琥珀酸脱氢酶的结合模式及抗性机制分析[J]. 农药学学报, 2021, 23(6): 1085-1096.

    TAO L H, LI J J, XIA M R, et al. Analysis of the binding modes and resistance mechanism of five succinate dehydrogenase inhibitor fungicides with Botrytis cinerea succinate dehydrogenase[J]. Chin J Pestic Sci, 2021, 23(6): 1085-1096.
    [21] SHAO W, SUN J, ZHANG X, et al. Amino acid polymorphism in succinate dehydrogenase subunit C involved in biological fitness of botrytis cinerea[J]. Mol Plant-Microbe Interact, 2020, 33(4): 580-589.
    [22] KULKA M, VON SCHMELING B. Modern selective fungicides: properties, applications, mechanisms of action[M]. LYR H. 2nd Ed. Gustav Fischer Verlag, Germany and New York, 1995: 133-147.
    [23] STEINHAUSER D, SALAT M, FREY R, et al. A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici[J]. PLoS Pathog, 2019, 15(12): e1007780. doi: 10.1371/journal.ppat.1007780
    [24] 朱原野. 禾谷镰孢菌(Fusarium graminearum) β2-微管蛋白240位苯丙氨酸的特性以及α-、β-微管蛋白的功能差异研究[D]. 南京: 南京农业大学, 2021.

    ZHU Y Y. Specificity of position 240 of β2-tubulin and functional divergence of α-, β-tubulin isotypes in Fusarium graminearum [D]. Nanjing: Nanjing Agricultural University, 2021.
    [25] KACZMAREK D K, RZEMIENIECKI T, MARCINKOWSKA K, et al. Synthesis, properties and adjuvant activity of docusate-based ionic liquids in pesticide formulations[J]. J Ind Eng Chem, 2019, 78: 440-447. doi: 10.1016/j.jiec.2019.05.023
    [26] SONG X S, XIAO X M, GU K X, et al. The ASK1 gene regulates the sensitivity of Fusarium graminearum to carbendazim, conidiation and sexual production by combining with β2-tubulin[J]. Curr Genet, 2021, 67(1): 165-176. doi: 10.1007/s00294-020-01120-9
    [27] ZHU Y Y, ZHANG Y S, LIU N, et al. The Dis1/Stu2/XMAP215 family gene FgStu2 is involved in vegetative growth, morphology, sexual and asexual reproduction, pathogenicity and DON production of Fusarium graminearum[J]. Front Microbiol, 2020, 11: 545015. doi: 10.3389/fmicb.2020.545015
    [28] 刘开启. 真菌生态学概述[J]. 仲恺农业技术学院学报, 2004, 17(4): 59-66.

    LIU K Q. A review of fungal ecology[J]. Zhongkai Agrotech Coll, 2004, 17(4): 59-66.
    [29] KANEKO I, ISHII H. Effect of azoxystrobin on activities of antioxidant enzymes and alternative oxidase in wheat head blight pathogens Fusarium graminearum and Microdochium nivale[J]. J Gen Plant Pathol, 2009, 75(5): 388-398. doi: 10.1007/s10327-009-0178-9
    [30] BARTLETT D W, CLOUGH J M, GODWIN J R, et al. The strobilurin fungicides[J]. Pest Manag Sci, 2002, 58(7): 649-662. doi: 10.1002/ps.520
    [31] DUAN Y B, XIU Q, LI H R, et al. Pharmacological characteristics and control efficacy of a novel SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum[J]. Plant Dis, 2019, 103(1): 77-82. doi: 10.1094/PDIS-05-18-0763-RE
    [32] CHEN Y L, MAO X W, WANG J X, et al. Activity of the dinitroaniline fungicide fluazinam against Bipolaris maydis[J]. Pestic Biochem Physiol, 2018, 148: 8-15. doi: 10.1016/j.pestbp.2018.03.005
    [33] JOSEPH R S I. Metabolism of azoxystrobin in plants and animals[M]. Cambridge: Special publication-royal society of chemistry, 1999, 233: 265-278.
    [34] EMARA A R, IBRAHIM H M, MASOUD S A. The role of storage on Mancozeb fungicide formulations and their antifungal activity against Fusarium oxysporium and Rhizoctonia solani[J]. Arab J Chem, 2021, 14(10): 103322. doi: 10.1016/j.arabjc.2021.103322
    [35] WONG F P, WILCOX W F. Comparative physical modes of action of azoxystrobin, mancozeb, and metalaxyl against Plasmopara viticola (grapevine downy mildew)[J]. Plant Dis, 2001, 85(6): 649-656. doi: 10.1094/PDIS.2001.85.6.649
    [36] NEIDERT K, VAN EPPS L, WELCH W. Inhibition of Penicillium duponti carboxylesterase by the fungicides captan and folpet[J]. Pestic Biochem Physiol, 1985, 23(2): 221-227. doi: 10.1016/0048-3575(85)90009-4
    [37] LI J, DUAN Y B, BIAN C H, et al. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: inhibition of DON biosynthesis and induction of host resistance[J]. Pestic Biochem Physiol, 2019, 153: 152-160. doi: 10.1016/j.pestbp.2018.11.012
    [38] BIAN C H, DUAN Y B, WANG J Y, et al. Validamycin A induces broad-spectrum resistance involving salicylic acid and jasmonic acid/ethylene signaling pathways[J]. Mol Plant Microbe Interact, 2020, 33(12): 1424-1437. doi: 10.1094/MPMI-08-20-0211-R
    [39] RUIZ F, DUPUIS-WILLIAMS P, KLOTZ C, et al. Genetic evidence for interaction between eta- and beta-tubulins[J]. Eukaryot Cell, 2004, 3(1): 212-220. doi: 10.1128/EC.3.1.212-220.2004
    [40] 仇剑波. 禾谷镰孢菌β-微管蛋白基因定点突变及敲除对多菌灵敏感性和基因表达谱的影响[D]. 南京: 南京农业大学, 2012.

    QIU J B. Effect of site-directed mutagenesis and gene deletion of Gibberella Zeae β-tubulin on its sensitivity to carbendazim and gene expression proflie[D]. Nanjing: Nanjing Agricultural University, 2012.
    [41] VANDEN BOSSCHE H. Mode of action of pyridine, pyrimidine and azole antifungals[J]. Sterol Biosynthesis Inhibitors, 1988: 79-119.
    [42] LEPESHEVA G I, WATERMAN M R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms[J]. Biochim Biophys Acta BBA Gen Subj, 2007, 1770(3): 467-477. doi: 10.1016/j.bbagen.2006.07.018
    [43] KELLY S L, LAMB D C, CORRAN A J, et al. Mode of action and resistance to azole antifungals associated with the formation of 14α-methylergosta-8,24(28)-dien-3β,6α-diol[J]. Biochem Biophys Res Commun, 1995, 207(3): 910-915. doi: 10.1006/bbrc.1995.1272
    [44] 杨利. 麦角甾醇生物合成抑制剂的合成及抑菌活性研究[D]. 杨凌: 西北农林科技大学, 2008.

    YANG L. Studies on synthesis and fungicidal activity of inhibitior of ergosterol biosynthesis[D]. Yangling: Northwest A & F University, 2008.
    [45] MIAO J Q, DONG X, LIN D, et al. Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes[J]. Pest Manag Sci, 2016, 72(8): 1572-1577. doi: 10.1002/ps.4189
    [46] PASTERIS R J, HANAGAN M A, BISAHA J J, et al. Discovery of oxathiapiprolin, a new oomycete fungicide that targets an oxysterol binding protein[J]. Bioorg Med Chem, 2016, 24(3): 354-361. doi: 10.1016/j.bmc.2015.07.064
    [47] KUMAR M, CHAND R, DUBEY R S, et al. Effect of Tricyclazole on morphology, virulence and enzymatic alterations in pathogenic fungi Bipolaris sorokiniana for management of spot blotch disease in barley[J]. World J Microbiol Biotechnol, 2015, 31(1): 23-35. doi: 10.1007/s11274-014-1756-3
    [48] GESSLER N N, EGOROVA A S, BELOZERSKAIA T A. Melanin pigments of fungi under extreme environmental conditions (review)[J]. Prikl Biokhim Mikrobiol, 2014, 50(2): 125-134.
    [49] TOLEDO A V, FRANCO M E E, YANIL LOPEZ S M, et al. Melanins in fungi: types, localization and putative biological roles[J]. Physiol Mol Plant Pathol, 2017, 99: 2-6. doi: 10.1016/j.pmpp.2017.04.004
    [50] HARTMAN M A, SPUDICH J A. The myosin superfamily at a glance[J]. J Cell Sci, 2012, 125(Pt 7): 1627-1632.
    [51] ROSS J L, ALI M Y, WARSHAW D M. Cargo transport: molecular motors navigate a complex cytoskeleton[J]. Curr Opin Cell Biol, 2008, 20(1): 41-47. doi: 10.1016/j.ceb.2007.11.006
    [52] BYRDE R J W, RICHMOND D V. A review of the selectivity of fungicides in agriculture and horticulture[J]. Pestic Sci, 1976, 7(4): 372-378. doi: 10.1002/ps.2780070409
    [53] LI B, ZHENG Z T, LIU X M, et al. Genotypes and characteristics of phenamacril-resistant mutants in Fusarium asiaticum[J]. Plant Dis, 2016, 100(8): 1754-1761. doi: 10.1094/PDIS-02-16-0169-RE
    [54] 肖婷, 许媛, 陈宏州, 等. 江苏丘陵地区草莓灰霉病菌(Botrytis cinerea)对QoIs类杀菌剂的抗药性研究[J]. 果树学报, 2017, 34(5): 603-610.

    XIAO T, XU Y, CHEN H Z, et al. Resistance to QoIs fungicides in Botrytis cinerea populations for strawberries in hilly area of Jiangsu[J]. J Fruit Sci, 2017, 34(5): 603-610.
    [55] SHAO W Y, SUN J T, ZHANG X K, et al. Amino acid polymorphism in succinate dehydrogenase subunit C involved in biological fitness of Botrytis cinerea[J]. Mol Plant Microbe Interact, 2020, 33(4): 580-589. doi: 10.1094/MPMI-07-19-0187-R
    [56] 张颂函, 陈秀, 赵莉, 等. 6种杀菌剂防治草莓灰霉病的田间药效评价[J]. 世界农药, 2015, 37(5): 47-49.

    ZHANG S H, CHEN X, ZHAO L, et al. Evaluation of control efficacy of six fungicides against gray mold rot of strawberry[J]. World Pestic, 2015, 37(5): 47-49.
    [57] MCGRATH M T. Efficacy of conventional fungicides for downy mildew in field-grown sweet basil in the United States[J]. Plant Dis, 2020, 104(11): 2967-2972. doi: 10.1094/PDIS-11-19-2382-RE
    [58] 程传英, 袁传卫, 殷万元, 等. 三种甲氧基丙烯酸酯类杀菌剂拌种对花生幼苗生长及生理作用的影响[J]. 植物生理学报, 2015, 51(3): 337-344.

    CHENG C Y, YUAN C W, YIN W Y, et al. Effects of seed dressing with three kinds of strobilurin fungicides on the growth and physiological function of peanut(Arachis hypogaea) seedling[J]. Plant Physiol J, 2015, 51(3): 337-344.
    [59] SOMERS E. The fungitoxicity of metal ions[J]. Ann Appl Biol, 1961, 49(2): 246-253. doi: 10.1111/j.1744-7348.1961.tb03612.x
    [60] ANESIADIS T, KARAOGLANIDIS G S, TZAVELLA-KLONARI K. Protective, curative and eradicant activity of the strobilurin fungicide azoxystrobin against Cercospora beticola and Erysiphe betae[J]. J Phytopathol, 2003, 151(11-12): 647-651. doi: 10.1046/j.1439-0434.2003.00780.x
    [61] BAI Y, GU C Y, PAN R, et al. Activity of a novel succinate dehydrogenase inhibitor fungicide pydiflumetofen against Fusarium fujikuroi causing rice bakanae disease[J]. Plant Dis, 2021, 105(10): 3208-3217. doi: 10.1094/PDIS-10-20-2274-RE
    [62] DOWLEY L, OSULLIVAN E. Activity of fluazinam against late blight of potatoes[J]. Ir J Agric Food Res, 1995, 34(1): 33-37.
    [63] DANGL J L, JONES J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001, 411(6839): 826-833. doi: 10.1038/35081161
    [64] VAN DE WOUW A P, IDNURM A. Biotechnological potential of engineering pathogen effector proteins for use in plant disease management[J]. Biotechnol Adv, 2019, 37(6): 107387. doi: 10.1016/j.biotechadv.2019.04.009
    [65] LO PRESTI L, LANVER D, SCHWEIZER G, et al. Fungal effectors and plant susceptibility[J]. Annu Rev Plant Biol, 2015, 66: 513-545. doi: 10.1146/annurev-arplant-043014-114623
    [66] ASANO N, YAMAGUCHI T, KAMEDA Y, et al. Effect of validamycins on glycohydrolases of Rhizoctonia solani[J]. J Antibiot (Tokyo), 1987, 40(4): 526-532. doi: 10.7164/antibiotics.40.526
    [67] 孙涛, 曹致中, 马晖玲, 等. 水杨酸诱导苜蓿对霜霉病抗性的研究[J]. 甘肃农业大学学报, 2006, 41(3): 61-64. doi: 10.3969/j.issn.1003-4315.2006.03.014

    SUN T, CAO Z Z, MA H L, et al. Study on resistance of alfalfa to downy mildew induced by SA[J]. J Gansu Agric Univ, 2006, 41(3): 61-64. doi: 10.3969/j.issn.1003-4315.2006.03.014
    [68] KAMEDA Y, ASANO N, YAMAGUCHI T, et al. Validoxylamines as trehalase inhibitors[J]. J Antibiot (Tokyo), 1987, 40(4): 563-565. doi: 10.7164/antibiotics.40.563
    [69] BIAN C H, DUAN Y B, XIU Q, et al. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum[J]. Mol Plant Pathol, 2021, 22(7): 769-785. doi: 10.1111/mpp.13060
    [70] SLAWECKI R A, RYAN E P, YOUNG D H. Novel fungitoxicity assays for inhibition of germination-associated adhesion of Botrytis cinerea and Puccinia recondita spores[J]. Appl Environ Microbiol, 2002, 68(2): 597-601. doi: 10.1128/AEM.68.2.597-601.2002
    [71] MERCER P C. Phytotoxicity and fungitoxicity tests for tree wound paints[J]. Ann Appl Biol, 1979, 91(2): 199-202. doi: 10.1111/j.1744-7348.1979.tb06490.x
    [72] WOLLENBERG R D, TAFT M H, GIESE S, et al. Phenamacril is a reversible and noncompetitive inhibitor of Fusarium class I myosin[J]. J Biol Chem, 2019, 294(4): 1328-1337. doi: 10.1074/jbc.RA118.005408
    [73] ZHENG Z T, HOU Y P, CAI Y Q, et al. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum[J]. Sci Rep, 2015, 5: 8248. doi: 10.1038/srep08248
    [74] SHIN J, KIM J E, LEE Y W, et al. Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum[J]. Toxins, 2018, 10(3): 112. doi: 10.3390/toxins10030112
    [75] 王学梅, 崔静英, 于蓉, 等. 不同化学农药处理对甜瓜商品性的影响[J]. 北方园艺, 2010(10): 57-59.

    WANG X M, CUI J Y, YU R, et al. Effects of different chemical pesticides on marketability of melon[J]. Northern Horticulture, 2010(10): 57-59.
    [76] 李水根. 嘧菌酯对大豆和玉米幼苗产生的药害被植物生长调节剂缓解的效果初探[D]. 南京农业大学, 2010.

    LI S G. Studies on plant growth regulators relieving the injury of azoxystrobin to maize and soybean seedling[D]. Nanjing: Nanjing Agricultural University, 2010.
    [77] MARQUES L N, PIZZUTTI I R, BALARDIN R S, et al. Occurrence of mycotoxins in wheat grains exposed to fungicides on fusarium head blight control in southern Brazil[J]. J Environ Sci Health B, 2017, 52(4): 244-250. doi: 10.1080/03601234.2016.1270682
    [78] EDWARDS S G. Pydiflumetofen co-formulated with prothioconazole: a novel fungicide for fusarium head blight and deoxynivalenol control[J]. Toxins, 2022, 14(1): 34. doi: 10.3390/toxins14010034
    [79] TANG G F, CHEN Y, XU J R, et al. The fungal myosin I is essential for Fusarium toxisome formation[J]. PLoS Pathog, 2018, 14(1): e1006827. doi: 10.1371/journal.ppat.1006827
    [80] LIU N, WU S Q, DAWOOD D H, et al. The b-ZIP transcription factor FgTfmI is required for the fungicide phenamacril tolerance and pathogenecity in Fusarium graminearum[J]. Pest Manag Sci, 2019, 75(12): 3312-3322. doi: 10.1002/ps.5454
    [81] 黄婷婷. 多菌灵、氰烯菌酯对禾谷镰孢菌DON毒素合成的影响[D]. 南京: 南京农业大学, 2012.

    HUANG T T. Effect of fungicides on DON production by Fusarium graminearum[D]. Nanjing: Nanjing Agricultural University, 2012.
    [82] BARRATT R W, HORSFALL J G. An improved grading system for measuring plant disease[J]. Phytopathology, 1945, 35: 655.
    [83] HORSFALL J G. Fungicides and their action [M]. Waltham: Chronica Botanica,1945: 239.
    [84] BLISS C I. Some principles of bioassay[J]. Am Sci, 1957, 45(5): 449-466.
  • 加载中
图(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  33
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回