• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

手性农药选择性生物活性与毒性效应研究进展

郭浩铭 魏一木 刘雪科 刘东晖 王鹏 周志强

郭浩铭, 魏一木, 刘雪科, 刘东晖, 王鹏, 周志强. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5): 1108-1124. doi: 10.16801/j.issn.1008-7303.2022.0108
引用本文: 郭浩铭, 魏一木, 刘雪科, 刘东晖, 王鹏, 周志强. 手性农药选择性生物活性与毒性效应研究进展[J]. 农药学学报, 2022, 24(5): 1108-1124. doi: 10.16801/j.issn.1008-7303.2022.0108
GUO Haoming, WEI Yimu, LIU Xueke, LIU Donghui, WANG Peng, ZHOU Zhiqiang. Research progress on the stereoselective bioactivity and toxicity of chiral pesticides[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1108-1124. doi: 10.16801/j.issn.1008-7303.2022.0108
Citation: GUO Haoming, WEI Yimu, LIU Xueke, LIU Donghui, WANG Peng, ZHOU Zhiqiang. Research progress on the stereoselective bioactivity and toxicity of chiral pesticides[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1108-1124. doi: 10.16801/j.issn.1008-7303.2022.0108

手性农药选择性生物活性与毒性效应研究进展

doi: 10.16801/j.issn.1008-7303.2022.0108
基金项目: 中国农业大学2115 人才培育发展支持计划.
详细信息
    作者简介:

    郭浩铭,ghm5524@163.com

    通讯作者:

    王鹏,wangpeng@cau.edu.cn

  • 中图分类号: TQ450.2

Research progress on the stereoselective bioactivity and toxicity of chiral pesticides

Funds: the 2115 Talent Development Program of China Agricultural University.
  • 摘要: 手性农药因对映体在生物活性、毒性、环境行为等方面的差异性而备受关注,充分了解对映体的立体选择性对开发高活性农药及减量使用具有重要意义。本文聚焦手性农药对映体的立体选择性效应,系统地调研了对映体生物活性和毒性选择性差异,并进行了分类梳理,重点综述了手性农药对映体的生物活性及毒性和环境风险的差异性,阐述了手性农药对非靶标生物造成的氧化应激、内分泌干扰等慢性毒性,同时关注选择性的规律与机制,为环境友好型高效手性农药的开发、手性农药的风险评估及管理、手性农药对映体立体选择性机制研究提供参考。
  • 图  1  手性农药对映体生物活性差异倍数分布

    注:图中百分数代表对映体之间不同活性差异倍数所占百分比。

    Figure  1.  Differential fold distribution of enantiomeric bioactivity of chiral pesticides

    Note: The percentage in the figure represents the percentage of different activity differences between enantiomers.

    表  1  手性杀虫剂对映体生物活性差异

    Table  1.   Enantiomer bioactivity difference of chiral insecticides

    农药名称
    Pesticide name
    靶标生物      
    Target organism      
    对映体 LC50 或 LD50
    Enantiomer LC50 or LD50 value/[LC50/(mg/L), LD50/(mg/kg)]
    对映体生物活性
    差异倍数
    Differential multiple of
    enantiomer biological activity
    参考文献
    References
    RS
    吡丙醚 pyriproxyfen 柑桔矢尖蚧 Unaspis yanonensis (Kuwana) LC50 1.95 6.61 3.33 [22]
    柑橘木虱若虫 Diaphorina citri nymphs LC50 4.82 11.4 2.38
    fluralaner 二化螟 Chilo suppressalis LD50 9.80 0.290 33.8 [23]
    灰飞虱 Laodelphax striatellus LD50 3.20 0.0820 39.0
    仲丁威 fenobucarb 褐飞虱 Nilaparvata lugens LC50 5.84 16.0 2.78 [24]
    淡色库蚊 Culex pipiens pallens LC50 0.540 0.990 1.82
    水胺硫磷 isocarbophos 朱砂叶螨 Tetranychus cinnabarinus LC50 >500 16.8 29.7 [16-17]
    黏虫 Mythimna separata LC50 >500 9.00 55.6
    豆蚜 Aphis craccivora LC50 >500 13.0 38.5
    小菜蛾 Plutella xylostella LC50 >500 37.8 13.2
    飞蝗 Locusta migratoria manilensis LD50 79.4 0.609 130
    甲基异柳磷
    isofenphos-methyl
    褐飞虱 Nilaparvata lugens LC50 22.4 6.09 3.67 [25]
    豆长管蚜 Macrosiphum pisi LC50 50.5 2.27 22.3
    南方根结线虫 Meloidogyne incognita LC50 >200 13.8 14.5
    fluxametamide 小菜蛾 Plutella xylostella LC50 34.2 0.620 55.1 [26]
    甜菜夜蛾 Spodoptera exigua LC50 67.7 0.460 147
    棉蚜 Aphis gossypi LC50 32.8 0.630 52.1
    朱砂叶螨 Tetranychus cinnabarinus LC50 104 0.340 304
    丁虫腈 flufiprole 小菜蛾 Plutella xylostella LC50 0.360 0.660 1.82 [18]
    褐飞虱 Nilaparvata lugens LC50 0.460 1.28 2.78
    黏虫 Mythimna separata LC50 1.37 3.06 2.22
    豌豆长管蚜 Acyrthosiphon pisum LC50 0.950 4.88 5.26
    呋虫胺 dinotefuran 棉蚜 Aphis gossypii LC50 1.21 0.375 3.20 [27]
    绿盲蝽 Apolygus lucorum LC50 59.7 18.3 3.30
    七氟菊酯 tefluthrin 黏虫 Mythimna separata LD50 0.150 52.6 333 [28]
    甜菜夜蛾 Spodoptera exigua LD50 1.27 3.82 3.01
    斜纹夜蛾 Spodoptera litura F. LD50 2.99 >200 6.67
    联苯菊酯 bifenthrin 家蝇 Musca domestica L. LC50 1.08 30.7 0.350 [29]
    菜青虫 Pieris rapae L. LC50 0.850 >300 357
    乙螨唑 etoxazole 二斑叶螨 Tetranychus urticae LC50 1.27 0.0760 16.7 [30]
    朱砂叶螨 Tetanychus cinnabarinus LC50 0.837 0.034 24.6
    氟虫腈 fipronil 小菜蛾 Plutella xylostella LD50 2.80 2.00 1.40 [31-32]
    棉红蝽 Dysdercus cingulatus LD50 0.550 0.560 1.02
    家蝇 Musca domestica LD50 15.0 18.0 1.20
    谷象 Sitophilus granarius LD50 0.630 0.740 1.18
    茚虫威 indoxacarb 小菜蛾 Plutella xylostella LC50 404 3.52 115 [21]
    中华草岭 Chrysoperla sinica LC50 >2000 1.16 1724
    乙虫腈 ethiprole 豌豆蚜虫 Macrosiphum pisi LC50 0.249 1.06 4.27 [19]
    褐飞虱 Nilaparvata lugens LC50 1.75 4.26 2.43
    苯硫磷 epn 家蝇 Musca domestica L. LD50 (+) 1.1 (−) 3.2 2.94 [33]
    二化螟 Chilo suppressalis LD50 (+) 2.9 (−) 11.7 4.17
    蔬果磷 salithion 家蝇 Musca domestica L. LD50 0.400 0.050 8.00 [34]
    丙溴磷 profenofos 家蝇 Musca domestica L. LD50 (+) 23.0 (−) 6.00 3.83 [35]
    粉纹夜蛾 Trichoplusia LD50 (+) 56 (−) 13 4.31
    孑孓 Culicidae LD50 (+) 270 (−) 22 12.3
    氰戊菊酯 fenvalerate 德国小蠊 Blattella germanica (RS) LD50 0.300 (SS) 0.006 50 [20]
    氯菊酯 permethrin 家蝇 Musca domestica L. LD50 1R cis 8.2 1S cis 155.9 18.9 [36]
    LD50 1R tras16.7 1S tras 161 9.71
    苯醚菊酯 phenothrin epno 家蝇 Musca domestica L. LD50 1R cis41.6 1S cis 496.2 11.9 [36]
    LD50 1R tras 29.2 1S tras 424 14.5
    家蝇 Musca domestica L. LD50 (+) 0.097 (−) 0.16 1.64 [37]
    苯腈磷 cyanofenphos 家蝇 Musca domestica L. LD50 (+) 1.32 (−) 3.61 2.70 [38]
    二化螟 Chilo suppressalis LD50 (+) 2.92 (−) >73 25.0
    甲胺磷 methamidophos 家蝇 Musca domestica L. LD50 (+) 2.40 (−) 15.0 6.25 [39]
    德国小蠊 Blattella germanica LD50 (+) 2.40 (−) 2.30 1.04
    乙酰甲胺磷 acephate 家蝇 Musca domestica L. LD50 (+) 3.00 (−) 15.0 5.00 [39]
    德国小蠊 Blattella germanica LD50 (+) 4.2 (−) 4.5 11.08
    苯线磷 fenamiphos 乙酰胆碱酯酶 Acetylcholin esterase LC50 (+) 0.008 (−) 0.15 18.9 [40]
    地虫硫磷 fonofos 乙酰胆碱酯酶 Acetylcholin esterase IC50 (+) >0.406 (−) 0.176 2.31 [41]
    地虫磷 chlorethoxyfos 家蝇 Musca domestica L. LD50 6.30 25.0 3.97 [42]
    蚊子 Culicidae LD50 25.0 45.0 1.79
    巴毒磷 crotoxyphos 乙酰胆碱酯酶 Acetylcholin esterase IC50 (+) 0.0290 (−) >0.318 11.0 [41]
    稻丰散 phenthoate 家蝇 Musca domestica L. LD50 D: 0.0540 L: 0.0280 1.93 [42]
    蚊子 Culicidae LD50 D: 0.0760 L: 0.0300 2.53
    二化螟 Chilo suppressalis LD50 D: 0.0220 L: 0.109 4.98
    小菜蛾 Plutella xylostella LD50 D: 37.0 L: 66.0 1.79
    烯虫酯 methoprene 烟草天蛾 Manduca sexta S 体防效为 96%,R 体防效为 8%
    The control effect of S body was 96%, and that of
    R body was 8%
    [43]
    注:表格中(+) 代表该化合物旋光性为右旋体,(−) 代表该化合物旋光性为左旋体。Note: In the table, (+) means that the optical activity of the compound is dextro isomer, and (−) means that the optical activity of the compound is laevo isomer.
    下载: 导出CSV

    表  2  手性杀菌剂对映体生物活性差异

    Table  2.   Differences in enantiomer bioactivity of chiral fungicides

    农药名称
    Pesticide name
    靶标生物
    Target organism
    对映体 EC50
    Enantiomer EC50 value/(mg/L)
    对映体差异倍数
    Enantiomer difference
    multiple
    参考文献
    References
    RS
    丙硫菌唑 prothioconazole 腐皮镰刀菌 Fusarium solani 1.24 314 250 [46]
    核盘菌 Sclerotinia sclerotiorum 0.65 23.4 33.3
    戊菌唑 penconazole 胶孢炭疽菌 Colletotrichum gloeosporioides 4.91 1.72 2.85 [47]
    尖孢镰刀菌 Fusarium oxysporum 4.52 2.36 1.92
    氯氟醚菌唑 mefentrifluconazole 核盘菌 Sclerotinia sclerotiorum 0.0240 2.00 100 [48]
    尖孢镰刀菌 Fusarium oxysporum 0.0350 11.6 333
    葡萄孢菌 Botrytis cinerea 0.0280 4.10 146
    抑霉唑 imazalil 番茄叶霉病菌 Fulvia fulva 0.544 0.0990 5.49 [49]
    番茄早疫病菌 Alternaria solani 0.718 0.109 6.59
    马铃薯晚疫病菌 Phytophthora infestans 2.75 0.915 3.00
    灭菌唑 triticonazole 立枯丝核菌 Rhizoctonia solani 0.006 0.2619 50.0 [50]
    轮枝镰孢菌 Fusarium verticillioide 0.0335 2.78 83.0
    葡萄孢菌 (草莓) Botrytis cinerea (strawberry) 0.119 1.38 11.6
    禾谷镰刀菌 Fusarium graminearum 19.5 83.3 4.27
    噁唑菌酮 famoxadone 立枯丝核菌 Rhizoctonia solani 0.280 49.9 178 [44]
    尖孢镰刀菌 Fusarium oxysporum 8.78 31.3 3.56
    氟噻唑吡乙酮 oxathiapiprolin 辣椒疫霉菌 Phytophthora capsici 0.170 0.660 3.88 [51]
    黄瓜疫霉菌 Phytophthora melonis 0.450 1.12 2.49
    荔枝霜疫霉菌 Peronophythora litchi 0.270 1.23 4.56
    双炔酰菌胺 mandipropamid 辣椒疫霉菌 Phytophthora capsici 8.98 0.0170 528 [7]
    大豆疫霉菌 Phytophthora sojae 1.63 0.007 233
    黄瓜疫霉菌 Phytophthora melonis 6.52 0.011 592
    氟唑菌酰羟胺 pydiflumetofen 核盘菌 Sclerotinia sclerotiorum 0.0029 2.31 797 [52]
    禾谷镰刀菌 Fusarium graminearum 0.025 24.0 960
    粉唑醇 flutriafol 立枯丝核菌 Rhizoctonia solani 0.130 0.810 6.23 [53]
    番茄早疫病菌 Alternaria solani 0.650 3.69 5.68
    氟唑菌苯胺 penflufen 尖孢镰刀菌 Fusarium oxysporum 85.6 46.8 1.83 [54]
    串珠镰刀菌 Fusarium moniliforme 68.5 41.2 1.66
    苯酰菌胺 zoxamide 辣椒疫霉菌 Phytophthora capsici 0.120 4.14 34.5 [55]
    番茄早疫病菌 Alternaria solani 5.39 64.2 11.9
    葡萄孢菌 Botrytis cinerea 0.126 17.6 140
    戊唑醇 tebuconazole 葡萄孢菌 Botrytis cinerea 9.10 0.208 43.7 [4]
    溴菌腈 bromothalonil 立枯丝核菌 Rhizoctonia solan 4.44 2.92 1.52 [6]
    禾谷镰刀菌 Fusarium graminearum 6.65 5.83 1.14
    葡萄孢菌 Botrytis cinerea 4.13 3.20 1.29
    氟醚唑 tetraconazole 谷丝核菌 Rhizoctonia cerealis 0.540 0.802 1.49 [56]
    小麦赤霉病菌 Fusahum graminearum 0.382 0.756 1.98
    戊菌唑 penconazole 链格孢菌 Alternaria alternate 1.40 0.780 1.79 [47]
    轮纹病菌 Botryosphaeria berengeriana 1.37 0.310 4.42
    胶孢炭疽菌 Colletotrichum gloeosporioides 4.91 1.72 2.85
    尖孢镰刀菌 Fusarium oxysporum 4.52 2.36 1.92
    氟醚唑 tetraconazole 小麦基腐病菌 Pseudocercosporella herpotrichoides 0.250 2.00 8.00 [57]
    壳针孢菌 Septoria nodorum 0.100 0.400 4.00
    白腐小核菌 Sclerotium cepivorum 0.150 1.90 12.7
    腈菌唑 myclobutanil 镰刀菌 Fusarium spp. (+) 0.425 (−) 0.578 1.36 [58]
    甲霜灵 metalaxyl 掘氏疫霉菌 Phytophthora drechsleri 0.129 (Rac) 0.427 [59]
    己唑醇 hexaconazole 枸杞炭疽病 Colletotrichum gloeosporioides Penz (+) 3.17 (−) 0.287 11.0 [60]
    轮斑病菌 Alternaria solani (+) 10.1 (−) 0.751 13.5
    褐腐病菌 Monilinia fructicola (+) 0.411 (−) 0.032 12.8
    烯唑醇 diniconazole 柑橘黑点病菌 Diaporthe citri 0.029 1.40 48.3 [61]
    赤霉病菌 Gibberella fujikuroi 0.460 24.0 52.2
    玉蜀黍赤霉 Gibberella zeae 0.420 42.0 100
    注:表格中(+) 代表该化合物旋光性为右旋体,(−) 代表该化合物旋光性为左旋体。Note: In the table, (+) means that the optical activity of the compound is dextro isomer, and (−) means that the optical activity of the compound is laevo isomer.
    下载: 导出CSV

    表  3  手性除草剂对映体生物活性

    Table  3.   Enantioselective bioactivities of chiral herbicides

    农药名称
    Pesticide name
    受试生物
    Test organism
    对映体生物活性差异
    Difference in enantiomer biological activity
    参考文献
    References
    2,4-滴丙酸
    dichlorprop-p
    藜草
    Chenopodium album L.
    R 体具有更高除草活性
    The R body has higher weed control activity
    [63]
    野生堇菜
    Viola arvensis
    2甲4氯丙酸
    mecoprop-p
    拟南芥
    Arabidopsis thaliana
    R 体表现出更高的除草活性
    The R body has higher weed control activity
    [64]
    氟吡甲禾灵
    haloxyfop
    禾本科杂草
    Grassy weed
    R 体防效是 S 体的 6 倍
    The efficacy of R body was 6 times that of S body
    [65]
    草铵膦
    glufosinate
    玉米
    Zea mays L.
    右旋体活性是左旋体的 2.7 倍
    The activity of the dextral body was 2.7 times that of the left-handed body
    [66-67]
    小麦
    Triticum aestivum L.
    噁唑禾草灵
    fenoxaprop-ethyl
    野燕麦
    Avena fatua L.
    R 体高效
    R body efficient
    [68]
    喹禾灵
    quizalofop-ethyl
    玉米
    Zea mays L.
    R 体高效
    R body efficient
    [69-70]
    吡氟禾草灵
    fusilade
    禾本科杂草
    Grassy weed
    R 体除草活性是 S 体的 1000 倍
    The herbicidal activity of R body was 1000 times that of S body
    [8]
    炔草酯
    clodinafop-propargyl
    野燕麦
    Avena fatua L.
    R 体高效
    R body efficient
    [8]
    氰氟草酯
    cyhalofop-butyl
    马唐
    Digitaria sanguinalis L.
    R 体可达 90% 以上防效
    R body can reach more than 90% of the control effect
    [8]
    稗草
    Echinochloa crusgalli L.
    狗尾草
    Setaria Viridis L.
    禾草灵
    diclofop-methyl
    燕麦
    Avena sativa L.
    R 体活性为 S 体的 10 倍
    The activity of R bodies was 10 times that of S bodies
    [71]
    乳氟禾草灵
    lactofen
    稗草
    Echinochloa crusgalli L.
    R 体高效
    R body efficient
    [72]
    唑酮草酯
    carfentrazone-ethyl
    玉米
    Zea mays L.
    S 体的活性是 R 体的 2 倍
    S body are twice as active as R body
    [73]
    敌草胺
    napropamide
    苇状羊茅
    Festuca arundinacea Schreb.
    R 体活性是 S 体的 53 倍
    R body were 53 times more active than S body
    [74]
    乙氧呋草黄
    ethofumesate
    小麦
    Triticum aestivum L.
    右旋体活性是左旋体的 3.5 倍
    The activity of the dextral body was 3.5 times that of the left-handed body
    [75]
    高粱
    Sorghum bicolor L.
    黄瓜
    Cucumis sativus L.
    氟丁酰草胺
    beflubutamid
    水芹
    Lepidium sativum
    右消旋体无活性,左消旋体 EC50 值为 0.5 μmol/L
    Dexracemic was inactive and levoracemic EC50 value was 0.5 μmol/L
    [76]
    异丙甲草胺
    metolachlor
    稗草
    Echinochloa crusgalli L.
    除草活性顺序依次为 SS > SR > RS > RR
    The weeding activity was in the following order: SS > SR > RS > RR
    [77]
    灭草烟
    imazapyr
    拟南芥
    Arabidopsis thaliana
    (+) 灭草烟对乙酰乳酸合成酶(ALS)的抑制效果是 (−) 的 4 倍
    The inhibitory effect of (+) imazapyr on acetolactate synthase (ALS) was four
    times that of (−)imazapyr
    [78]
    乳氟禾草灵
    lactofen
    稗草
    Echinochloa crusgalli L.
    R 体对根抑制率 78.35%,S 体 56.58%
    The root inhibition rates of R body and S body were 78.35% and 56.58% respectively
    [72]
    丙酰胺
    propionamide
    马唐
    Digitaria sanguinalis L.
    D 体 EC50 值为 0.33 mg/L, L 体 EC50 值为 2.86 mg/L
    D body EC50 value was 0.33 mg/L, L body EC50 value was 2.86 mg/L
    [79]
    咪唑乙烟酸
    imazethapyr
    玉米
    Zea mays L.
    R 体活性是 S 体的 25 倍
    R body was 25 times more active than S body
    [80]
    甲氧咪草烟
    imazamox
    玉米
    Zea mays L.
    R 体 EC50 值为 0.229 mg/L, S 体 EC50 值为 1.54 mg/L
    R body EC50 value was 0.229 mg/L, S body EC50 value was 1.54 mg/L
    [81]
    乙草胺
    acetochlor
    稗草
    Echinochloa crusgalli L.
    R 体活性约是 S 体的 1.64 倍
    The activity of R bodies was about 1.64 times that of S bodies
    [82]
    注:表格中(+)代表该化合物旋光性为右旋体,(−)代表该化合物旋光性为左旋体。Note: In the table, (+) means that the optical activity of the compound is dextro isomer, and (−) means that the optical activity of the compound is laevo isomer.
    下载: 导出CSV

    表  4  部分手性农药对非靶标生物对映体选择性急性毒性

    Table  4.   Enantioselective acute toxicity of some chiral pesticides on nontarget organisms

    农药名称
    Pesticide name
    受试生物
    Test organism
    对映体毒性数据
    Enantiomer toxicity data/(mg/L)
    对映体毒性差异倍数
    Enantiomer toxicity
    differential multiple
    参考文献
    References
    RS
    氟唑菌酰羟胺 pydiflumetofen 斑马鱼胚胎 Zebrafish embryos LC50 0.34 3.63 10.7 [10]
    斑马鱼幼鱼 Zebrafish larvae LC50 0.47 6.92 14.7
    斑马鱼 D. rerio LC50 0.72 8.23 11.4
    氟噻唑吡乙酮 oxathiapiprolin 蛋白核小球藻 Chlorella pyrenoidosa EC50 2.04 4.27 2.09 [87]
    紫萍 Spirodela polyrrhiza L. EC50 5.49 9.66 1.76
    斑马鱼胚胎 Zebrafish embryos LC50 6.27 10.3 1.64
    斑马鱼幼鱼 Zebrafish larvae LC50 6.51 12.5 1.93
    斑马鱼 D. rerio LC50 7.13 15.1 2.11
    仲丁威 fenobucarb 小球藻 Chlorella vulgaris EC50 27.48 20.9 1.32 [24]
    Hepg2细胞 Hepg2 cell EC50 399.16 231 1.73
    斑马鱼胚胎 Zebrafish embryos LC50 12.22 8.87 1.38
    斑马鱼 D. rerio LC50 14.95 5.00 2.99
    氟虫腈 fipronil 四尾栅藻 Scenedesmus quadricauda EC50 3.27 7.24 2.21 [11, 88]
    小球藻 Chlorella vulgaris EC50 4.58 5.99 1.31
    蜜蜂 Apis mellifera L. LC50 3.45 3.38 1.02
    浮萍 Lemna minor L. EC50 8.51 10.1 1.19
    背角无齿蚌 Anodonta woodiana LC50 3.27 0.63 5.19
    赤子爱胜蚓 Eisenia foetida LC50 29 μg/cm2 50 μg/cm2 1.72
    氟环唑 epoxiconazole 小球藻 Chlorella vulgaris EC50 (R,S) 19.24 (S,R) 15.4 1.24 [86]
    氟噁唑酰胺 fluxametamide 蜜蜂 Apis mellifera L. LC50 >200 6.47 30.9 [26]
    氯氟醚菌唑 mefentrifluconazole 斑马鱼胚胎 Zebrafish embryos LC50 0.753 1.55 2.06 [89]
    斑马鱼幼鱼 Zebrafish larvae LC50 0.553 1.19 2.15
    赤子爱胜蚓 Eisenia foetida LC50 4.1 μg/cm2 11.4 μg/cm2 2.78
    双炔酰菌胺 mandipropamid 斑马鱼胚胎 Zebrafish embryos LC50 13.53 12.61 1.07 [7]
    斑马鱼幼鱼 Zebrafish larvae LC50 6.61 3.5 1.89
    斑马鱼成鱼 D. rerio LC50 4.58 5.04 1.10
    紫萍 Spirodela polyrrhiza L. EC50 5.18 14.86 2.87
    苯酰菌胺 zoxamide 羊角月牙藻 Selenastrum carpricornutum EC50 0.02 0.217 10.8 [55]
    大型溞 Daphnia magna S. LC50 0.246 1.19 5.48
    灭菌唑 triticonazole 浮萍 Lemna minor L. EC50 5.86 1.13 5.19 [90]
    大型溞 Daphnia magna S. LC50 1.43 0.0611 23.4
    斑马鱼 Danio rerio LC50 18.1 5.06 3.58
    爪蟾蝌蚪 Xenopus laevis LC50 >20.0 8.06 >2.48
    赤子爱胜蚓 Eisenia foetida LC50 0.116 μg/cm2 0.0671 μg/cm2 1.73
    蛋白核小球藻 Chlorella pyrenoidosa EC50 0.853 22.002 25.8
    烯效唑 uniconazole 斑马鱼 Danio rerio LC50 10.03 11.63 1.16 [91]
    敌草胺 napropamide 小球藻 Chlorella vulgaris EC50 9.72 8.74 1.11 [69]
    乳氟禾草灵 lactofen 赤子爱胜蚓 Eisenia foetida LC50 0.378 μg/cm2 17.7 μg/cm2 46.8 [92]
    噁唑菌酮 famoxadone 月牙藻 Selenastrum bibraianum EC50 0.222 0.394 1.77 [44, 93]
    大型溞 Daphnia magna S. LC50 0.043 0.276 6.42
    斑马鱼 Danio rerio LC50 0.105 >10 >95.2
    赤子爱胜蚓 Eisenia foetida LC50 0.3 μg/cm2 50 μg/cm2 167
    苯霜灵 benalaxyl 赤子爱胜蚓 Eisenia foetida LC50 4.99 μg/cm2 6.66 μg/cm2 1.33 [94]
    水胺硫磷 isocarbophos 斑马鱼 Danio rerio LC50 38.6 1.58 24.4 [15]
    青鳉 Oryzias latipes LC50 37.2 1.62 23.0
    鮈鲫 Gobiocypris rarus LC50 31.1 1.29 24.1
    吡唑硫磷 pyraclofos 斑马鱼 Danio rerio LC50 2.23 3.99 1.79 [95]
    甲氧咪草烟 imazamox 浮萍 Lemna minor L. EC50 0.035 0.203 5.8 [96]
    乙虫腈 ethiprole 小球藻 Chlorella vulgaris EC50 7.5 8.07 1.076 [97]
    丁虫腈 flufiprole 蛋白核小球藻 Chlorella pyrenoidosa EC50 8.7 15.8 1.82 [98]
    泥鳅 Misgurnus anguillicaudatus LC50 0.13 0.16 1.23
    银鲫 Silver prussian carp LC50 0.09 0.08 1.13
    黑斑侧褶蛙 Pelophylax nigromaculatus LC50 1.07 1.56 1.46
    大型溞 Daphnia magna S. LC50 0.74 0.83 1.12
    乙草胺 acetochlor Hepg2细胞 Hepg2 cell EC50 68.81 49.14 1.40 [99]
    赤子爱胜蚓 Eisenia foetida LC50 12.28 μg/cm2 23.32 μg/cm2 1.90
    丙硫菌唑 prothioconazole 大型溞 Daphnia magna S. LC50 2.65 5.91 2.23 [100]
    小球藻 Chlorella vulgaris EC50 119.1 89.4 1.33
    浮萍 Lemna minor L. EC50 0.53 0.49 1.08
    己唑醇 hexaconazole 赤子爱胜蚓 Eisenia foetida LC50 22.35 μg/cm2 8.62 μg/cm2 2.59 [101]
    多效唑 paclobutrazol 小球藻 Chlorella vulgaris EC50 2.4 8.97 3.73 [102]
    顺式联苯菊酯 cis-bifenthrin 非洲爪蟾蝌蚪 Xenopus laevis LC50 0.041 0.219 5.34 [103]
    七氟菊酯 tefluthrin 赤子爱胜蚓 Eisenia foetida LC50 5.55 μg/cm2 1192.1 μg/cm2 215 [104]
    戊唑醇 tebuconazole 赤子爱胜蚓 Eisenia foetida LC50 10.48 μg/cm2 10.84 μg/cm2 1.03 [4]
    戊菌唑 penconazole 大型溞 Daphnia magna S. LC50 5.96 0.91 6.55 [47]
    吡丙醚 pyriproxyfen 蜜蜂 Apis mellifera L. LC50 >100 26.32 >3.80 [22]
    斑马鱼 Danio rerio LC50 2.81 1.65 1.70
    溴菌腈 bromothalonil 赤子爱胜蚓 Eisenia foetida LC50 17.53 μg/cm2 11.99 μg/cm2 1.46 [6]
    茚虫威 indoxacarb 斑马鱼胚胎 Zebrafish embryos LC50 8.67 11.3 1.30 [105]
    呋虫胺 dinotefuran 赤子爱胜蚓 Eisenia foetida LC50 0.698 μg/cm2 0.05 μg/cm2 14.0 [106-107]
    蜜蜂 Apis mellifera L. LC50 6.42 0.28 22.9
    呋霜灵 furalaxyl 赤子爱胜蚓 Eisenia foetida LC50 1.9 μg/cm2 1.0 μg/cm2 1.90 [108]
    斜生栅藻 Tetradesmus obliquus EC50 15.26 13.59 1.12
    唑酮草酯 carfentrazone-ethyl 斑马鱼 Danio rerio LC50 4.60 3.66 1.25 [109]
    大型溞 Daphnia magna S. LC50 15.24 16.27 1.07
    羊角月芽藻 Selenastrum carpricornutum EC50 0.44 0.09 4.89
    玉米 Zea mays L. EC50 3.93 1.94 2.03
    下载: 导出CSV
  • [1] KATAGI T. Isomerization of chiral pesticides in the environment[J]. J Pestic Sci, 2012, 37(1): 1-14. doi: 10.1584/jpestics.D11-036
    [2] YE J, ZHAO M R, LIU J, et al. Enantioselectivity in environmental risk assessment of modern chiral pesticides[J]. Environ Pollut, 2010, 158(7): 2371-2383. doi: 10.1016/j.envpol.2010.03.014
    [3] ARMSTRONG D W, REID G L III, HILTON M L, et al. Relevance of enantiomeric separations in environmental science[J]. Environ Pollut, 1993, 79(1): 51-58. doi: 10.1016/0269-7491(93)90177-P
    [4] CUI N, XU H Y, YAO S J, et al. Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils[J]. Environ Sci Pollut Res, 2018, 25(25): 25468-25475. doi: 10.1007/s11356-018-2587-9
    [5] XU S J, SHEN F, SONG J L, et al. Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida)[J]. Sci Total Environ, 2022, 815: 152937. doi: 10.1016/j.scitotenv.2022.152937
    [6] LIANG X Y, XU J B, HUANG X Z, et al. Systemic stereoselectivity study of bromothalonil: stereoselective bioactivity, toxicity, and degradation in vegetables and soil[J]. Pest Manag Sci, 2020, 76(5): 1823-1830. doi: 10.1002/ps.5711
    [7] ZHANG J, WU Q Q, ZHONG Y R, et al. Enantioselective bioactivity, toxicity, and degradation in vegetables and soil of chiral fungicide mandipropamid[J]. J Agric Food Chem, 2021, 69(45): 13416-13424. doi: 10.1021/acs.jafc.1c04370
    [8] 周青燕, 章程, 柴如山, 等. 手性除草剂研究进展[J]. 农药学学报, 2010, 12(2): 109-118.

    ZHOU Q Y, ZHANG C, CHAI R S, et al. Progress of research on chiral herbicides[J]. Chin J Pestic Sci, 2010, 12(2): 109-118.
    [9] WANG C, ZHANG Q, ZHAO M R, et al. Enantioselectivity in estrogenic potential of chiral pesticides[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2011: 121-134.
    [10] WANG Z, TAN Y T, LI Y H, et al. Comprehensive study of pydiflumetofen in Danio rerio: enantioselective insight into the toxic mechanism and fate[J]. Environ Int, 2022, 167: 107406. doi: 10.1016/j.envint.2022.107406
    [11] QU H, WANG P, MA R X, et al. Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida)[J]. Sci Total Environ, 2014, 485-486: 415-420. doi: 10.1016/j.scitotenv.2014.03.054
    [12] CHENG C, DI S S, CHEN L, et al. Enantioselective bioaccumulation, tissue distribution, and toxic effects of myclobutanil enantiomers in Pelophylax nigromaculatus tadpole[J]. J Agric Food Chem, 2017, 65(15): 3096-3102. doi: 10.1021/acs.jafc.7b00086
    [13] WANG X, LIU Y R, XUE M Y, et al. Enantioselective degradation of chiral fungicides triticonazole and prothioconazole in soils and their enantioselective accumulation in earthworms Eisenia fetida[J]. Ecotoxicol Environ Saf, 2019, 183: 109491. doi: 10.1016/j.ecoenv.2019.109491
    [14] TOMBO G M R, BELLUŠ D. Chirality and crop protection[J]. Angew Chem Int Ed Engl, 1991, 30(10): 1193-1215. doi: 10.1002/anie.199111933
    [15] DI S S, CANG T, QI P P, et al. A systemic study of enantioselectivity of isocarbophos in rice cultivation: enantioselective bioactivity, toxicity, and environmental fate[J]. J Hazard Mater, 2019, 375: 305-311. doi: 10.1016/j.jhazmat.2019.05.002
    [16] DI S S, CANG T, QI P P, et al. Comprehensive study of isocarbophos to various terrestrial organisms: enantioselective bioactivity, acute toxicity, and environmental behaviors[J]. J Agric Food Chem, 2019, 67(40): 10997-11004. doi: 10.1021/acs.jafc.9b02931
    [17] KONG Y, JI C Y, QU J L, et al. Old pesticide, new use: smart and safe enantiomer of isocarbophos in locust control[J]. Ecotoxicol Environ Saf, 2021, 225: 112710. doi: 10.1016/j.ecoenv.2021.112710
    [18] UMEDA K, YANO T, HIRANO M. Esfenvalerate: its biological activity against German cockroach, Blattella germanica (Orthoptera: Blattellidae)[J]. Jap J Sanit Zool, 1990, 41(4): 347-351.
    [19] 张青. 手性杀虫剂乙虫腈立体选择性降解、活性、毒性和生态毒理效应研究[D]. 南京: 南京农业大学, 2017

    ZHANG Q. Study on the stereoselectivity degradation, bioactivity, toxicology and ecotoxicology assessment for chiral insecticide ethiprole[D]. Nanjing: Nanjing Agricultural University, 2017.
    [20] TIAN M M, ZHANG Q, HUA X D, et al. Systemic stereoselectivity study of flufiprole: stereoselective bioactivity, acute toxicity and environmental fate[J]. J Hazard Mater, 2016, 320: 487-494. doi: 10.1016/j.jhazmat.2016.08.045
    [21] 于琦童. 茚虫威不同异构体对小菜蛾和中华通草蛉的选择毒力及亚致死效应[D]. 泰安: 山东农业大学, 2021

    YU Q T. Selective toxicity and sublethal effect of different indoxacarb isomers against Plutella xylostell and Chrysoperla sinica[D]. Taian: Shandong Agricultural University, 2021.
    [22] TONG Z, YANG T M, SUN M N, et al. Systemic assessment of the chiral insecticide pyriproxyfen in a citrus nectar source system: stereoselective degradation, biological effect and exposure risk[J]. Pest Manag Sci, 2022, 78(7): 3012-3018. doi: 10.1002/ps.6926
    [23] ZHANG Z X, ZHOU L L, GAO Y Y, et al. Enantioselective detection, bioactivity, and metabolism of the novel chiral insecticide fluralaner[J]. J Agric Food Chem, 2020, 68(25): 6802-6810. doi: 10.1021/acs.jafc.9b07907
    [24] HE Z Z, LI C L, XIA W T, et al. Comprehensive enantioselectivity evaluation of insecticidal activity and mammalian toxicity of fenobucarb[J]. J Agric Food Chem, 2022, 70(17): 5330-5338. doi: 10.1021/acs.jafc.2c00093
    [25] GAO B B, ZHANG Z X, LI L S, et al. Stereoselective environmental behavior and biological effect of the chiral organophosphorus insecticide isofenphos-methyl[J]. Sci Total Environ, 2019, 648: 703-710. doi: 10.1016/j.scitotenv.2018.08.182
    [26] LI R N, PAN X L, WANG Q Q, et al. Development of S-fluxametamide for bioactivity improvement and risk reduction: systemic evaluation of the novel insecticide fluxametamide at the enantiomeric level[J]. Environ Sci Technol, 2019, 53(23): 13657-13665. doi: 10.1021/acs.est.9b03697
    [27] CHEN Z L, YAO X M, DONG F S, et al. Ecological toxicity reduction of dinotefuran to honeybee: new perspective from an enantiomeric level[J]. Environ Int, 2019, 130: 104854. doi: 10.1016/j.envint.2019.05.048
    [28] 温勇. 手性杀虫剂七氟菊酯对映体环境行为和生物效应研究[D]. 南京: 南京农业大学, 2020

    WEN Y. Studies on enantioselective environmental behaviours and biological effect of chiral insecticide tefluthirn[D]. Nanjing: Nanjing Agricultural University, 2020.
    [29] 张聪, 刘慧刚, 章晓凤. 联苯菊酯对靶标生物及非靶标生物毒性的对映体差异[J]. 浙江工业大学学报, 2009, 37(4): 366-371. doi: 10.3969/j.issn.1006-4303.2009.04.003

    ZHANG C, LIU H G, ZHANG X F. Enantioselective toxicity induced by bifenthrin between target organism and non-target organism[J]. J Zhejiang Univ Technol, 2009, 37(4): 366-371. doi: 10.3969/j.issn.1006-4303.2009.04.003
    [30] 常维霞. 手性农药乙螨唑对映体的果园环境行为及毒性研究[D]. 北京: 中国农业科学院, 2020.

    CHANG W X. Study of etoxazole stereoselective environmental behavior in orchard and toxicology effect[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [31] 赵琳, 包琛, 杨代斌, 等. 氟虫腈对斑马鱼和小菜蛾毒性的手性选择性研究[J]. 环境科学学报, 2010, 30(7): 1451-1456. doi: 10.13671/j.hjkxxb.2010.07.016

    ZHAO L, BAO C, YANG D B, et al. Acute toxicities of fipronil enantiomers to zebrafish and diamondback moth[J]. Acta Sci Circumstantiae, 2010, 30(7): 1451-1456. doi: 10.13671/j.hjkxxb.2010.07.016
    [32] TEICHER H B, KOFOED-HANSEN B, JACOBSEN N. Insecticidal activity of the enantiomers of fipronil[J]. Pest Manag Sci, 2003, 59(12): 1273-1275. doi: 10.1002/ps.819
    [33] OHKAWA H, MIKAMI N, OKUNO Y, et al. Stereospecificity in toxicity of the optical isomers of EPN[J]. Bull Environ Contam Toxicol, 1977, 18(5): 534-540. doi: 10.1007/BF01683998
    [34] HIRASHIMA A, ISHAAYA I, UENO R, et al. Biological activity of optically active salithion and salioxon[J]. Agric Biol Chem, 1989, 53(1): 175-178.
    [35] LEADER H, CASIDA J E. Resolution and biological activity of the chiral isomers of O-(4-bromo-2-chlorophenyl) O-ethyl S-propyl phosphorothioate (profenofos insecticide)[J]. J Agric Food Chem, 1982, 30(3): 546-551. doi: 10.1021/jf00111a034
    [36] PAP L, KELEMEN M, TÓTH A, et al. The synthetic pyrethroid isomers II. Biological activity[J]. J Environ Sci Health B, 1996, 31(3): 527-543. doi: 10.1080/03601239609373015
    [37] NOMEIR A A, DAUTERMAN W C. Studies on the optical isomers of EPN and EPNO[J]. Pestic Biochem Physiol, 1979, 10(2): 121-127. doi: 10.1016/0048-3575(79)90013-0
    [38] OHKAWA H, MIKAMI N, MIYAMOTO J. Metabolism of the optical isomers of cyanofenphos in rice stem borer larvae[J]. Agric Biol Chem, 1978, 42(2): 445-450.
    [39] MIYAZAKI A, NAKAMURA T, KAWARADANI M, et al. Resolution and biological activity of both enantiomers of methamidophos and acephate[J]. J Agric Food Chem, 1988, 36(4): 835-837. doi: 10.1021/jf00082a042
    [40] WANG Y S, TAI K T, YEN J H. Separation, bioactivity, and dissipation of enantiomers of the organophosphorus insecticide fenamiphos[J]. Ecotoxicol Environ Saf, 2004, 57(3): 346-353. doi: 10.1016/j.ecoenv.2003.08.012
    [41] NILLOS M G, RODRIGUEZ-FUENTES G, GAN J, et al. Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos[J]. Environ Toxicol Chem, 2007, 26(9): 1949-1954. doi: 10.1897/07-001R.1
    [42] 周润福. 有机磷旋光异构体与生物活性的关系[J]. 农药, 1983, 22(3): 41-44. doi: 10.16820/j.cnki.1006-0413.1983.03.015

    ZHOU R F. Relationship between optical isomers of organophosphorus and biological activity[J]. Agrochemicals, 1983, 22(3): 41-44. doi: 10.16820/j.cnki.1006-0413.1983.03.015
    [43] FURUTA K, ASHIBE K, SHIRAHASHI H, et al. Synthesis and anti-juvenile hormone activity of ethyl 4-(2-benzylalkyloxy)benzoates and their enantiomers[J]. J Pestic Sci, 2007, 32(2): 99-105. doi: 10.1584/jpestics.G06-46
    [44] WANG M, JI Z R, XU J B, et al. Study on stereoselective bioactivity, acute toxicity, and degradation in cucurbits and soil of chiral fungicide famoxadone[J]. Environ Sci Pollut Res Int, 2021, 28(13): 15947-15953. doi: 10.1007/s11356-020-11810-z
    [45] TANG S Y, MENG X R, WANG F, et al. Four propiconazole stereoisomers: stereoselective bioactivity, separation via liquid chromatography-tandem mass spectrometry, and dissipation in banana leaves[J]. J Agric Food Chem, 2022, 70(3): 877-886. doi: 10.1021/acs.jafc.1c06253
    [46] ZHANG Z X, GAO B B, HE Z Z, et al. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite[J]. Pestic Biochem Physiol, 2019, 160: 112-118. doi: 10.1016/j.pestbp.2019.07.012
    [47] LI Y, NIE J Y, ZHANG J, et al. Chiral fungicide penconazole: absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples[J]. Sci Total Environ, 2022, 808: 152061. doi: 10.1016/j.scitotenv.2021.152061
    [48] LI L S, SUN X F, ZHAO X J, et al. Absolute configuration, enantioselective bioactivity, and degradation of the novel chiral triazole fungicide mefentrifluconazole[J]. J Agric Food Chem, 2021, 69(17): 4960-4967. doi: 10.1021/acs.jafc.0c07947
    [49] LI R N, PAN X L, TAO Y, et al. Systematic evaluation of chiral fungicide imazalil and its major metabolite R14821 (imazalil-M): stability of enantiomers, enantioselective bioactivity, aquatic toxicity, and dissipation in greenhouse vegetables and soil[J]. J Agric Food Chem, 2019, 67(41): 11331-11339. doi: 10.1021/acs.jafc.9b03848
    [50] ZHANG Q, ZHANG Z X, TANG B W, et al. Mechanistic insights into stereospecific bioactivity and dissipation of chiral fungicide triticonazole in agricultural management[J]. J Agric Food Chem, 2018, 66(28): 7286-7293. doi: 10.1021/acs.jafc.8b01771
    [51] GAO Y Y, ZHAO X J, SUN X F, et al. Enantioselective detection, bioactivity, and degradation of the novel chiral fungicide oxathiapiprolin[J]. J Agric Food Chem, 2021, 69(11): 3289-3297. doi: 10.1021/acs.jafc.0c04163
    [52] WANG Z, LI R, ZHANG J, et al. Evaluation of exploitive potential for higher bioactivity and lower residue risk enantiomer of chiral fungicide pydiflumetofen[J]. Pest Manag Sci, 2021, 77(7): 3419-3426. doi: 10.1002/ps.6389
    [53] ZHANG Q, HUA X D, SHI H Y, et al. Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol[J]. J Hazard Mater, 2015, 284: 65-72. doi: 10.1016/j.jhazmat.2014.10.033
    [54] FANG K, FANG J W, HAN L X, et al. Systematic evaluation of chiral fungicide penflufen for the bioactivity improvement and input reduction using alphafold2 models and transcriptome sequencing[J]. J Hazard Mater, 2022, 440: 129729. doi: 10.1016/j.jhazmat.2022.129729
    [55] PAN X L, WU X M, LIU N, et al. A systematic evaluation of zoxamide at enantiomeric level[J]. Sci Total Environ, 2020, 733: 139069. doi: 10.1016/j.scitotenv.2020.139069
    [56] TONG Z, DONG X, YANG S S, et al. Enantioselective effects of the chiral fungicide tetraconazole in wheat: fungicidal activity and degradation behavior[J]. Environ Pollut, 2019, 247: 1-8. doi: 10.1016/j.envpol.2019.01.013
    [57] GOZZO F, CARELLI A, CARZANIGA R, et al. Stereoselective interaction of tetraconazole with 14α-demethylase in fungi[J]. Pestic Biochem Physiol, 1995, 53(1): 10-22. doi: 10.1006/pest.1995.1050
    [58] 李纳, 张丽阳, 刁雪, 等. 3种三唑类杀菌剂对映体对镰刀菌的选择性活性[J]. 华南农业大学学报, 2017, 38(5): 56-60. doi: 10.7671/j.issn.1001-411X.2017.05.010

    LI N, ZHANG L Y, DIAO X, et al. Selective bioactivity of enantiomers of three triazole fungicides against Fusarium spp.[J]. J South China Agric Univ, 2017, 38(5): 56-60. doi: 10.7671/j.issn.1001-411X.2017.05.010
    [59] 刘西莉, 马安捷, 林吉柏, 等. 精甲霜灵与外消旋体甲霜灵对掘氏疫霉菌的抑菌活性比较[J]. 农药学学报, 2003, 5(3): 45-49. doi: 10.3321/j.issn:1008-7303.2003.03.007

    LIU X L, MA A J, LIN J B, et al. The comparison of inhibitory action between stereoisomers of metalaxyl[J]. Chin J Pestic Sci, 2003, 5(3): 45-49. doi: 10.3321/j.issn:1008-7303.2003.03.007
    [60] HAN J J, JIANG J Z, SU H, et al. Bioactivity, toxicity and dissipation of hexaconazole enantiomers[J]. Chemosphere, 2013, 93(10): 2523-2527. doi: 10.1016/j.chemosphere.2013.09.052
    [61] TAKANO H, OGURI Y, KATO T. Antifungal and plant growth regulating activities of enantiomers of (E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol (S-3308L)[J]. J Pestic Sci, 1986, 11(3): 373-378. doi: 10.1584/jpestics.11.373
    [62] BUERGE I J, BÄCHLI A, HELLER W E, et al. Environmental behavior of the chiral herbicide haloxyfop. 2. Unchanged enantiomer composition in blackgrass (Alopecurus myosuroides) and garden cress (Lepidium sativum)[J]. J Agric Food Chem, 2015, 63(10): 2591-2596. doi: 10.1021/jf505242f
    [63] CHEN S Y, CHEN H, CHEN Z W, et al. Enantioselective phytotoxic disturbances of fatty acids in Arabidopsis thaliana by dichlorprop[J]. Environ Sci Technol, 2019, 53(15): 9252-9259. doi: 10.1021/acs.est.9b03744
    [64] 常江海, 郭维, 郑姚颖, 等. 手性除草剂 2 甲 4 氯丙酸对映体在拟南芥中吸收转运及亚细胞分布的差异研究[J]. 核农学报, 2021, 35(3): 681-687. doi: 10.11869/j.issn.100-8551.2021.03.0681

    CHANG J H, GUO W, ZHENG Y Y, et al. Uptake, translocation and subcellular distribution of mecoprop enantiomers in Arabidopsis thaliana[J]. J Nucl Agric Sci, 2021, 35(3): 681-687. doi: 10.11869/j.issn.100-8551.2021.03.0681
    [65] GERWICK B C, JACKSON L A, HANDLY J, et al. Preemergence and postemergence activities of the (R) and (S) enantiomers of haloxyfop[J]. Weed Sci, 1988, 36(4): 453-456. doi: 10.1017/S0043174500075196
    [66] ZHANG Q, CUI Q M, YUE S Q, et al. Enantioselective effect of glufosinate on the growth of maize seedlings[J]. Environ Sci Pollut Res Int, 2019, 26(1): 171-178. doi: 10.1007/s11356-018-3576-8
    [67] KHODADADY M, RAMEZANI M K, MAHDAVI V, et al. Enantioseparation and enantioselective phytotoxicity of glufosinate ammonium on catechin biosynthesis in wheat[J]. Food Anal Methods, 2014, 7(4): 747-753. doi: 10.1007/s12161-013-9677-6
    [68] 李涛, 袁国徽, 钱振官, 等. 7种茎叶处理除草剂对野燕麦的生物活性评价[J]. 植物保护, 2018, 44(6): 224-229. doi: 10.16688/j.zwbh.2017456

    LI T, YUAN G H, QIAN Z G, et al. Bioactivity evaluation of seven post-emergence herbicides to Avena fatua[J]. Plant Prot, 2018, 44(6): 224-229. doi: 10.16688/j.zwbh.2017456
    [69] CAI X Y, LIU W P, SHENG G Y. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures[J]. J Agric Food Chem, 2008, 56(6): 2139-2146. doi: 10.1021/jf0728855
    [70] 刘祈星, 胡艾希, 王晓光, 等. N-杂环甲基2-(4-杂芳氧基苯氧基)丙酰胺的合成及除草活性[J]. 高等学校化学学报, 2014, 35(2): 262-269. doi: 10.7503/cjcu20130625

    LIU Q X, HU A X, WANG X G, et al. Synthesis and herbicidal activity of N-arylmethyl-2-(4-arylxoyphenoxy) propionamide[J]. Chem J Chin Univ, 2014, 35(2): 262-269. doi: 10.7503/cjcu20130625
    [71] SHIMABUKURO R H, HOFFER B L. Enantiomers of diclofop-methyl and their role in herbicide mechanism of action[J]. Pestic Biochem Physiol, 1995, 51(1): 68-82. doi: 10.1006/pest.1995.1008
    [72] XIE J Q, ZHAO L, LIU K, et al. Enantiomeric characterization of herbicide lactofen: enantioseparation, absolute configuration assignment and enantioselective activity and toxicity[J]. Chemosphere, 2018, 193: 351-357. doi: 10.1016/j.chemosphere.2017.10.168
    [73] 段劲生. 手性除草剂唑酮草酯立体选择性降解、活性和生物毒性研究[D]. 南京: 南京农业大学, 2018.

    DUAN J S. Study on the stereoselectivity degradation, bioactivity and toxicology of chiral herbicide carfentrazone-ethyl[D]. Nanjing: Nanjing Agricultural University, 2018.
    [74] QI Y L, LIU D H, ZHAO W T, et al. Enantioselective phytotoxicity and bioacitivity of the enantiomers of the herbicide napropamide[J]. Pestic Biochem Physiol, 2015, 125: 38-44.
    [75] 王萍. 手性农药乙氧呋草黄对映体在生物体和环境中的活性及立体选择性行为的研究[D]. 北京: 中国农业大学, 2005.

    WANG P. Studies on enantiomeric activity and stereoselective behavior of chiral pesticide ethofumesate in organism and environment[D]. Beijing: China Agricultural University, 2005.
    [76] BUERGE I J, BÄCHLI A, DE JOFFREY J P, et al. The chiral herbicide beflubutamid (I): isolation of pure enantiomers by HPLC, herbicidal activity of enantiomers, and analysis by enantioselective GC-MS[J]. Environ Sci Technol, 2013, 47(13): 6806-6811. doi: 10.1021/es301876d
    [77] ZHAO L, GAO Y, XIE J Q, et al. A strategy to reduce the dose of multichiral agricultural chemicals: the herbicidal activity of metolachlor against Echinochloa crusgalli[J]. Sci Total Environ, 2019, 690: 181-188. doi: 10.1016/j.scitotenv.2019.06.521
    [78] HSIAO Y L, WANG Y S, YEN J H. Enantioselective effects of herbicide imazapyr on Arabidopsis thaliana[J]. J Environ Sci Health Part B, 2014, 49(9): 646-653. doi: 10.1080/03601234.2014.922404
    [79] CHAN J H, WALKER F, TSENG C K, et al. Synthesis and herbicidal activity of N, N-diethyl-2-(1-naphthyloxy) propionamide and its optical isomers[J]. J Agric Food Chem, 1975, 23(5): 1008-1010. doi: 10.1021/jf60201a043
    [80] ZHOU Q Y, ZHANG N, ZHANG C, et al. Molecular mechanism of enantioselective inhibition of acetolactate synthase by imazethapyr enantiomers[J]. J Agric Food Chem, 2010, 58(7): 4202-4206. doi: 10.1021/jf9038953
    [81] WEI J, ZHANG X X, LI X S, et al. Enantioselective phytotoxicity of imazamox against maize seedlings[J]. Bull Environ Contam Toxicol, 2016, 96(2): 242-247. doi: 10.1007/s00128-015-1682-6
    [82] XIE J Q, ZHAO L, LIU K, et al. Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor: the more efficient R-enantiomer and its environmental friendly[J]. Sci Total Environ, 2018, 626: 860-866. doi: 10.1016/j.scitotenv.2018.01.140
    [83] LIU H G, LIU J, XU L H, et al. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes[J]. Toxicology, 2010, 276(2): 115-121. doi: 10.1016/j.tox.2010.07.018
    [84] 钮利喜, 朱欣凯, 王萍, 等. 吡唑硫磷对映体对东亚飞蝗的对映选择毒性及其机制研究[J]. 山西农业大学学报(自然科学版), 2016, 36(5): 357-363. doi: 10.13842/j.cnki.issn1671-8151.2016.05.011

    NIU L X, ZHU X K, WANG P, et al. Study on the mechanism of the enantioselective toxicity of pyraclofos to Locusta migratoria manilensis(meyen)[J]. J Shanxi Agric Univ(Nat Sci Ed), 2016, 36(5): 357-363. doi: 10.13842/j.cnki.issn1671-8151.2016.05.011
    [85] 廖逊, 万虎, 李建洪. 褐飞虱对杀虫剂抗性研究进展[J]. 农药学学报, 2019, 21(Z1): 718-728. doi: 10.16801/j.issn.1008-7303.2019.0083

    LIAO X, WAN H, LI J H. Research progress on insecticides resistance in brown planthopper, Nilaparvata lugens(Stål)[J]. Chin J Pestic Sci, 2019, 21(Z1): 718-728. doi: 10.16801/j.issn.1008-7303.2019.0083
    [86] KAZIEM A E, GAO B B, LI L S, et al. Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole[J]. J Hazard Mater, 2020, 386: 121951. doi: 10.1016/j.jhazmat.2019.121951
    [87] ZHOU L L, WU Q Q, GAO Y Y, et al. Enantioselective aquatic toxicity and degradation in soil of the chiral fungicide oxathiapiprolin[J]. Sci Total Environ, 2022, 836: 155632. doi: 10.1016/j.scitotenv.2022.155632
    [88] OU Y J, YAN Z Y, SHI G F, et al. Enantioselective toxicity, degradation and transformation of the chiral insecticide fipronil in two algae culture[J]. Ecotoxicol Environ Saf, 2022, 235: 113424. doi: 10.1016/j.ecoenv.2022.113424
    [89] LI Y H, REN B, ZHAO T T, et al. Enantioselective toxic effects of mefentrifluconazole in the early life stage of zebrafish (Danio rerio)[J]. Environ Toxicol, 2022, 37(7): 1662-1674. doi: 10.1002/tox.23515
    [90] LIU R, DENG Y, ZHANG W G, et al. Risk assessment of the chiral fungicide triticonazole: enantioselective effects, toxicity, and fate[J]. J Agric Food Chem, 2022, 70(8): 2712-2721. doi: 10.1021/acs.jafc.1c05975
    [91] GUO D, HE R J, LUO L L, et al. Enantioselective acute toxicity, oxidative stress effects, neurotoxicity, and thyroid disruption of uniconazole in zebrafish (Danio rerio)[J]. Environ Sci Pollut Res Int, 2022, 29(26): 40157-40168. doi: 10.1007/s11356-022-18997-3
    [92] DIAO J L, XU P, WANG P, et al. Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers[J]. J Agric Food Chem, 2010, 58(4): 2439-2445. doi: 10.1021/jf9038327
    [93] XU G F, JIA X H, WU C, et al. Chiral fungicide famoxadone: stereoselective bioactivity, aquatic toxicity, and environmental behavior in soils[J]. J Agric Food Chem, 2021, 69(30): 8530-8535. doi: 10.1021/acs.jafc.1c00825
    [94] XU P, LIU D H, DIAO J L, et al. Enantioselective acute toxicity and bioaccumulation of benalaxyl in earthworm (Eisenia fedtia)[J]. J Agric Food Chem, 2009, 57(18): 8545-8549. doi: 10.1021/jf902420a
    [95] ZHUANG S L, ZHANG Z S, ZHANG W J, et al. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)[J]. Aquat Toxicol, 2015, 159: 119-126. doi: 10.1016/j.aquatox.2014.12.006
    [96] LI R, LUO C X, QIU J S, et al. Metabolomic and transcriptomic investigation of the mechanism involved in enantioselective toxicity of imazamox in Lemna minor[J]. J Hazard Mater, 2022, 425: 127818. doi: 10.1016/j.jhazmat.2021.127818
    [97] GAO J, WANG F, WANG P, et al. Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa[J]. Environ Pollut, 2019, 244: 757-765. doi: 10.1016/j.envpol.2018.10.056
    [98] GAO J, WANG F, JIANG W Q, et al. Biodegradation of chiral flufiprole in Chlorella pyrenoidosa: kinetics, transformation products, and toxicity evaluation[J]. J Agric Food Chem, 2020, 68(7): 1966-1973. doi: 10.1021/acs.jafc.9b05860
    [99] WANG S S, ZHANG Y, GAO J F, et al. The enantioselective study of the toxicity effects of chiral acetochlor in HepG2 cells[J]. Ecotoxicol Environ Saf, 2021, 218: 112261. doi: 10.1016/j.ecoenv.2021.112261
    [100] ZHAI W J, ZHANG L L, CUI J N, et al. The biological activities of prothioconazole enantiomers and their toxicity assessment on aquatic organisms[J]. Chirality, 2019, 31(6): 468-475. doi: 10.1002/chir.23075
    [101] LIU T, FANG K, LIU Y L, et al. Enantioselective residues and toxicity effects of the chiral triazole fungicide hexaconazole in earthworms (Eisenia fetida)[J]. Environ Pollut, 2021, 270: 116269. doi: 10.1016/j.envpol.2020.116269
    [102] LIU C X, LIU S Z, DIAO J L. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers[J]. Environ Pollut, 2019, 250: 610-617.
    [103] ZHANG W J, CHEN L, DIAO J L, et al. Effects of cis-bifenthrin enantiomers on the growth, behavioral, biomarkers of oxidative damage and bioaccumulation in Xenopus laevis[J]. Aquat Toxicol, 2019, 214: 105237. doi: 10.1016/j.aquatox.2019.105237
    [104] WEN Y, ZHOU L L, LI D, et al. Ecotoxicological effects of the pyrethroid insecticide tefluthrin to the earthworm Eisenia fetida: a chiral view[J]. Environ Res, 2020, 190: 109991. doi: 10.1016/j.envres.2020.109991
    [105] FAN Y M, FENG Q, LAI K H, et al. Toxic effects of indoxacarb enantiomers on the embryonic development and induction of apotosis in zebrafish larvae (Danio rerio)[J]. Environ Toxicol, 2017, 32(1): 7-16.
    [106] LIU T, CHEN D, LI Y Q, et al. Enantioselective bioaccumulation and toxicity of the neonicotinoid insecticide dinotefuran in earthworms (Eisenia fetida)[J]. J Agric Food Chem, 2018, 66(17): 4531-4540. doi: 10.1021/acs.jafc.8b00285
    [107] LIU S H, LIU Y M, HE F M, et al. Enantioselective olfactory effects of the neonicotinoid dinotefuran on honey bees (Apis mellifera L.)[J]. J Agric Food Chem, 2019, 67(43): 12105-12116. doi: 10.1021/acs.jafc.9b04851
    [108] QIN F, GAO Y X, GUO B Y, et al. Enantioselective acute toxicity effects and bioaccumulation of furalaxyl in the earthworm (Eisenia foetida)[J]. Chirality, 2014, 26(6): 307-312. doi: 10.1002/chir.22323
    [109] DUAN J S, SUN M N, SHEN Y, et al. Enantioselective acute toxicity and bioactivity of carfentrazone-ethyl enantiomers[J]. Bull Environ Contam Toxicol, 2018, 101(5): 651-656. doi: 10.1007/s00128-018-2474-6
    [110] LI D J, SHEN L, ZHANG D, et al. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs[J]. J Environ Sci, 2023, 126: 683-696. doi: 10.1016/j.jes.2022.05.005
    [111] PANDA P, NATH S, CHANU T T, et al. Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.)[J]. Acta Physiol Plant, 2011, 33(5): 1737-1747. doi: 10.1007/s11738-011-0710-3
    [112] LEE K M, PARK S Y, LEE K, et al. Pesticide metabolite and oxidative stress in male farmers exposed to pesticide[J]. Ann Occup Environ Med, 2017, 29: 5-5.
    [113] LI L, HU F, WANG C, et al. Enantioselective induction of oxidative stress by acetofenate in rat PC12 cells[J]. J Environ Sci (China), 2010, 22(12): 1980-1986. doi: 10.1016/S1001-0742(09)60349-1
    [114] DI S S, QI P P, WU S G, et al. Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)?[J]. Environ Pollut, 2021, 269: 116191. doi: 10.1016/j.envpol.2020.116191
    [115] DI S S, WANG Z W, CANG T, et al. Enantioselective toxicity and mechanism of chiral fungicide penflufen based on experiments and computational chemistry[J]. Ecotoxicol Environ Saf, 2021, 222: 112534. doi: 10.1016/j.ecoenv.2021.112534
    [116] REN B, ZHAO T T, LI Y H, et al. Enantioselective bioaccumulation and toxicity of the novel chiral antifungal agrochemical penthiopyrad in zebrafish (Danio rerio)[J]. Ecotoxicol Environ Saf, 2021, 228: 113010. doi: 10.1016/j.ecoenv.2021.113010
    [117] LIU Y L, FANG K, ZHANG X L, et al. Enantioselective toxicity and oxidative stress effects of acetochlor on earthworms (Eisenia fetida) by mediating the signaling pathway[J]. Sci Total Environ, 2021, 766: 142630. doi: 10.1016/j.scitotenv.2020.142630
    [118] GUO D, LUO L L, KONG Y, et al. Enantioselective neurotoxicity and oxidative stress effects of paclobutrazol in zebrafish (Danio rerio)[J]. Pestic Biochem Physiol, 2022, 185: 105136-105136.
    [119] QU Q, KE M J, YE Y Z, et al. Enantioselective oxidative stress induced by S- and rac-metolachlor in wheat (Triticum aestivum L.) seedlings[J]. Bull Environ Contam Toxicol, 2019, 102(3): 439-445. doi: 10.1007/s00128-019-02565-6
    [120] HUANG J Y, BAO M X, LI J, et al. Enantioselective response of wheat seedlings to imazethapyr: from the perspective of Fe and the secondary metabolite DIMBOA[J]. J Agric Food Chem, 2022, 70(18): 5516-5525. doi: 10.1021/acs.jafc.1c07727
    [121] LIU R, ZHANG H J, DENG Y, et al. Enantioselective fungicidal activity and toxicity to early wheat growth of the chiral pesticide triticonazole[J]. J Agric Food Chem, 2021, 69(38): 11154-11162. doi: 10.1021/acs.jafc.0c07210
    [122] JI C Y, YU C, YUE S Q, et al. Enantioselectivity in endocrine disrupting effects of four cypermethrin enantiomers based on in vitro models[J]. Chemosphere, 2019, 220: 766-773. doi: 10.1016/j.chemosphere.2018.12.158
    [123] SONG Q, ZHANG Y, YAN L, et al. Risk assessment of the endocrine-disrupting effects of nine chiral pesticides[J]. J Hazard Mater, 2017, 338: 57-65. doi: 10.1016/j.jhazmat.2017.05.015
    [124] 王春蕾. 顺式联苯菊酯对映体对H295R细胞肾上腺皮质激素分泌的选择性干扰效应[D]. 杭州: 浙江省医学科学院, 2020.

    WANG C L. Selective disruption of cis-bifenthrin enantiomers on secretion of adrenocortical hormones in H295R cells[D]. Hangzhou: Zhejiang Academy of Medical Science, 2020.
    [125] HU K M, ZHOU L L, GAO Y Y, et al. Enantioselective endocrine-disrupting effects of the phenylpyrazole chiral insecticides in vitro and in silico[J]. Chemosphere, 2020, 252: 126572. doi: 10.1016/j.chemosphere.2020.126572
    [126] HE R J, GUO D, LIN C, et al. Enantioselective bioaccumulation, oxidative stress, and thyroid disruption assessment ofcis-metconazole enantiomers in zebrafish (Danio rerio)[J]. Aquat Toxicol, 2022, 248: 106205. doi: 10.1016/j.aquatox.2022.106205
    [127] XU C, SUN X H, NIU L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor[J]. Sci Total Environ, 2019, 653: 1140-1148. doi: 10.1016/j.scitotenv.2018.11.037
    [128] CHANG J, XU P, LI W, et al. Enantioselective elimination and gonadal disruption of lambda-cyhalothrin on lizards (Eremias argus)[J]. J Agric Food Chem, 2019, 67(8): 2183-2189. doi: 10.1021/acs.jafc.8b05990
    [129] 朱飞龙, 郝伟玉, 尹晶, 等. 腈菌唑不同对映体对丽斑麻蜥性腺系统的影响[J]. 生态毒理学报, 2018, 13(5): 147-155. doi: 10.7524/AJE.1673-5897.20180301001

    ZHU F L, HAO W Y, YIN J, et al. Effects of myclobutanil enantiomers on the gonadal system in Mongolia racerunner(Eremias argus)[J]. Asian J Ecotoxicol, 2018, 13(5): 147-155. doi: 10.7524/AJE.1673-5897.20180301001
    [130] OU-YANG K, FENG T Q, HAN Y F, et al. Bioaccumulation, metabolism and endocrine-reproductive effects of metolachlor and its S-enantiomer in adult zebrafish (Danio rerio)[J]. Sci Total Environ, 2022, 802: 149826. doi: 10.1016/j.scitotenv.2021.149826
    [131] ZHANG P, ZHU W T, WANG D Z, et al. Enantioselective effects of metalaxyl enantiomers on breast cancer cells metabolic profiling using HPLC-QTOF-based metabolomics[J]. Int J Mol Sci, 2017, 18(1): 142. doi: 10.3390/ijms18010142
    [132] GU J P, CHENG Y F, JI C Y, et al. Analysis of the different metabolic phenotypes of metalaxyl enantiomers in adolescent rat by using 1H NMR based urinary metabolomics[J]. Chem Res Toxicol, 2020, 33(6): 1449-1457. doi: 10.1021/acs.chemrestox.0c00011
    [133] ZHANG P, WANG S, HE Y H, et al. Identifying metabolic perturbations and toxic effects of rac-metalaxyl and metalaxyl-M in mice using integrative NMR and UPLC-MS/MS based metabolomics[J]. Int J Mol Sci, 2019, 20(21): 5457. doi: 10.3390/ijms20215457
    [134] QIU D Y, YE Y Z, KE M J, et al. Effects of chiral herbicide dichlorprop on Arabidopsis thaliana metabolic profile and its implications for microbial communities in the phyllosphere[J]. Environ Sci Pollut Res Int, 2022, 29(19): 28256-28266. doi: 10.1007/s11356-021-17936-y
    [135] ZHAO L Q, ZHANG Y W, WANG L, et al. Stereoselective metabolomic and lipidomic responses of lettuce (Lactuca sativa L.) exposing to chiral triazole fungicide tebuconazole[J]. Food Chem, 2022, 371: 131209. doi: 10.1016/j.foodchem.2021.131209
    [136] ZHOU X, YANG Y, MING R Y, et al. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS[J]. Environ Sci Pollut Res, 2022: 1-9.
    [137] ZHANG Y, CHEN D, XU Y Z, et al. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: new perspective from a spatial metabolomics study[J]. Sci Total Environ, 2022, 809: 151116. doi: 10.1016/j.scitotenv.2021.151116
    [138] FANG K, HAN L X, LIU Y L, et al. Enantioselective bioaccumulation and detoxification mechanisms of earthworms (Eisenia fetida) exposed to mandipropamid[J]. Sci Total Environ, 2021, 796: 149051. doi: 10.1016/j.scitotenv.2021.149051
    [139] LI Y H, LIANG H W, REN B, et al. Enantioselective toxic effects of mefentrifluconazole in the liver of adult zebrafish (Danio rerio) based on transcription level and metabolomic profile[J]. Toxicology, 2022, 467: 153095. doi: 10.1016/j.tox.2022.153095
    [140] XIANG D D, QIAO K, SONG Z Y, et al. Enantioselectivity of toxicological responses induced by maternal exposure of cis-bifenthrin enantiomers in zebrafish (Danio rerio) larvae[J]. J Hazard Mater, 2019, 371: 655-665. doi: 10.1016/j.jhazmat.2019.03.049
    [141] GU J P, JI C Y, YUE S Q, et al. Enantioselective effects of metalaxyl enantiomers in adolescent rat metabolic profiles using NMR-based metabolomics[J]. Environ Sci Technol, 2018, 52(9): 5438-5447. doi: 10.1021/acs.est.7b06540
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  13
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-28
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-09-28
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回