Research progress on the occurrence, damage and prevention of Fusarium crown rot caused by Fusarium pseudograminearum
-
摘要: 小麦茎基腐病近年来在我国发生日趋严重,不但威胁我国粮食安全,还存在真菌毒素污染的潜在威胁,危害人畜健康。本文概述了小麦茎基腐病的危害现状以及在不同地区引起该病害的优势镰孢菌种类,明确了假禾谷镰孢Fusarium pseudograminearum在我国多个小麦主产区已逐渐上升为茎基腐病的优势病原。在此基础上,进一步分析了假禾谷镰孢的侵染循环和遗传多样性,揭示了小麦茎基腐病严重发生与土壤中的病原菌积累、农业措施及多种环境气候因素,尤其是干旱环境密切相关。总结了目前已报道的调控假禾谷镰孢致病的关键蛋白,揭示了假禾谷镰孢的产毒类型,明确了脱氧雪腐镰刀菌烯醇 (DON) 合成的生化途径,不同杀菌剂对镰孢菌毒素合成的影响,以及杀菌剂刺激或抑制DON合成的机制。并以“防病减毒”为目的,提出了多种协同防病的综合防治措施,可为小麦茎基腐病绿色防控提供参考。
-
关键词:
- 假禾谷镰孢 /
- 小麦茎基腐病 /
- 脱氧雪腐镰刀菌烯醇(DON) /
- 杀菌剂
Abstract: Fusarium crown rot (FCR) of wheat has become more and more serious in China in recent years, which not only threatens food security, but also has the potential threat of mycotoxin contamination, which endangers human and animal health. This paper summarizes the damage status of wheat crown rot and the dominant Fusarium spp. that cause the disease in different regions. It is clear that Fusarium pseudograminearum has gradually become the dominant pathogen of FCR in many major wheat producing areas in China. On this basis, the infection cycle and genetic diversity of F. pseudograminearum were further analyzed, revealing the serious occurrence of FCR and the accumulation of F. pseudograminearum in soil, agricultural measures and various environmental and climatic factors, especially drought environment is closely related. This paper also summarized the reported key proteins that regulate the pathogenicity of F. pseudograminearum, revealed the toxin production type of F. pseudograminearum, clarified the biochemical pathway of deoxynivalenol (DON) synthesis, effects of different fungicides on DON synthesis, and the mechanism by which fungicides stimulate or inhibit DON synthesis. With the purpose of "disease control and deoxynivalenol reduction", a variety of comprehensive prevention and control measures for coordinated disease prevention are proposed, which have important reference value for the realization of green prevention and control of FCR.-
Key words:
- Fusarium pseudograminearum /
- Fusarium crown rot (FCR) /
- Deoxynivalenol (DON) /
- fungicide
-
图 1 小麦茎基腐病症状
注:A、B、C:小麦茎基部变褐,节间产生白色 (B) 或粉色霉层 (C);D:根部变褐;E、F:白穗症状。
Figure 1. Fusarium crown rot (FCR) symptoms caused by Fusarium pseudograminearum on wheat
Note: A, B and C: Browning on the stem base of infected plants, and internodal sections from infected wheat plants showing white (B) or pink (C); D: Browning on the root; E and F: White heads of infected wheat.
表 1 杀菌剂对镰孢菌毒素合成的影响
Table 1. Effect of fungicide on DON biosynthesis of Fusarium spp.
类别
Group药剂
Fungicide质量浓度
Concentration/
(µg/mL)病原菌
PathogenDON含量变化
Trends of DON
content参考文献
Reference苯并咪唑类 Benzimidazoles 多菌灵 carbendazim 1.4 禾谷镰孢 F. graminearum 增加 Increased [88] 氨基丙烯酸类 Cyanoacrylates 氰烯菌酯 phenamacril 0.5 禾谷镰孢 F. graminearum 降低 Reduced [90] 苯醌外抑制剂类 QoIs 唑菌胺酯 pyraclostrobin;
丁香菌酯 coumoxystrobin;
啶氧菌酯 picoxystrobin;
嘧菌酯 azoxystrobin;
氟嘧菌酯 fluoxastrobin;
烯肟菌胺 fenaminstrobinEC50, 10 × EC50,
100 × EC50禾谷镰孢 F. graminearum 增加 Increased [87] 琥珀酸脱氢酶抑制剂类 SDHIs 氟吡菌酰胺 fluopyram;
氟酰胺 flutolanil;
啶酰菌胺 boscalid;
苯并烯氟菌唑 benzovindiflupyr;
氟唑菌酰胺 fluxapyroxadEC50, 10 × EC50,
100 × EC50亚洲镰孢 F. asiaticum 降低 Reduced [91] 甾醇脱甲基抑制剂类 DMIs 丙环唑 propiconazole;
戊唑醇 tebuconazole;
苯醚甲环唑 difenoconazole;
氟菌唑 triflumizole;
烯唑醇 tenazolol;
丙硫菌唑 prothioconazole;
三唑酮 triadimefon;EC90 禾谷镰孢 F. graminearum 增加 Increased [86] 氟环唑 epoxiconazole 0.28, 10 禾谷镰孢 F. graminearum 增加 Increased [85] -
[1] PAULITZ T C, SMILEY R W, COOK R J. Insights into the prevalence and management of soilborne cereal pathogens under direct seeding in the Pacific Northwest, U. S. A.[J]. Can J Plant Pathol, 2002, 24(4): 416-428. doi: 10.1080/07060660209507029 [2] 中国科学技术学会[DB/OL]. (2022-06-27) [2022-09-04]. https://www.cast.org.cn/art/2022/6/27/art_79_190334.htmlCAST [DB/OL]. (2022-06-27) [2022-09-04]. https://www.cast.org.cn/art/2022/6/27/art_79_190334.html [3] AKINSANMI O A, MITTER V, SIMPFENDORFER S, et al. Identity and pathogenicity of Fusarium spp. isolated from wheat fields in Queensland and northern New South Wales[J]. Aust J Agric Res, 2004, 55: 97-107. doi: 10.1071/AR03090 [4] KLEIN T A, BURGESS L W, ELLISON F W. The incidence and spatial patterns of wheat plants infected by Fusarium graminearum group 1 and the effect of crown rot on yield[J]. Aust J Agric Res, 1991, 42(3): 399-407. [5] SMILEY R W, GOURLIE J A, EASLEY S A, et al. Pathogenicity of fungi associated with the wheat crown rot complex in Oregon and Washington[J]. Plant Dis, 2005, 89(9): 949-957. doi: 10.1094/PD-89-0949 [6] MONDS R D, CROMEY M G, LAUREN D R, et al. Fusarium graminearum, F. cortaderiae and F. pseudograminearum in New Zealand: molecular phylogenetic analysis, mycotoxin chemotypes and co-existence of species[J]. Mycol Res, 2005, 109(Pt 4): 410-420. [7] MOYA-ELIZONDO E, ARISMENDI N, CASTRO M P, et al. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile[J]. Chilean JAR, 2015, 75(1): 78-84. [8] ASTAñARES E, WEHRHAHNE L, STENGLEIN S A, et al. Fusarium pseudograminearum associated with barley kernels in Argentina[J]. Plant Dis, 2012, 96(5): 763. [9] HAMEED M A, RANA R M, ALI Z. Identification and characterization of a novel Iraqi isolate of Fusarium pseudograminearum causing crown rot in wheat[J]. Genet Mol Res, 2012, 11(2): 1341-1348. doi: 10.4238/2012.May.15.4 [10] GEBREMARIAM S E, SHARMA-POUDYAL D, PAULITZ T C, et al. Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey[J]. Eur J Plant Pathol, 2018, 150: 387-399. doi: 10.1007/s10658-017-1285-7 [11] ABDALLAH-NEKACHE N, LARABA I, DUCOS C, et al. Occurrence of Fusarium head blight and Fusarium crown rot in Algerian wheat: identification of associated species and assessment of aggressiveness[J]. Eur J Plant Pathol, 2019, 154: 499-512. doi: 10.1007/s10658-019-01673-7 [12] ÖZER G, PAULITZ T C, IMREN M, et al. Identity and pathogenicity of fungi associated with crown and root rot of dryland winter wheat in Azerbaijan[J]. Plant Dis, 2020, 104(8): 2149-2157. doi: 10.1094/PDIS-08-19-1799-RE [13] KAZAN K, GARDINER D M. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects[J]. Mol Plant Pathol, 2018, 19(7): 1547-1562. doi: 10.1111/mpp.12639 [14] 徐飞, 宋玉立, 周益林, 等. 2013-2016年河南省小麦茎基腐病的发生危害情况及特点[J]. 植物保护, 2016, 42(6): 126-132.XU F, SUN Y L, ZHOU Y L, et al. Occurrence dynamic and characteristics of Fusarium root and crown rot wheat in Henan Province during 2013-2016[J]. Plant Prot, 2016, 42(6): 126-132. [15] MURRAY G. M, BRENNAN J P. Estimating disease losses to the Australian wheat industry[J]. Australas Plant Path, 2009, 38: 558-570. doi: 10.1071/AP09053 [16] LI H L, YUAN H X, FU B, et al. First report of Fusarium pseudograminearum causing crown rot of wheat in Henan, China[J]. Plant Dis, 2012, 96(7): 1065. [17] 赵利民, 吕国强, 何洋, 等. 河南省小麦茎基腐病发生现状及综合防控措施[J]. 中国植保导刊, 2022, 42(5): 49-51.ZHAO L M, LV G Q, HE Y, et al. Occurrence status and integrated control measures of wheat crown rot in Henan Province[J], China Plant Prot, 2022, 42(5): 49-51. [18] 纪莉景, 栗秋生, 王连生, 等. 警惕小麦冠腐病发生及时做好病害防控[J]. 中国植保导刊, 2016, 36(12): 39-42. doi: 10.3969/j.issn.1672-6820.2016.12.009JI L J, LI Q S, WANG L S, et al. Waring on the outbreaks of wheat disease and its controlling[J]. China Plant Prot, 2016, 36(12): 39-42. doi: 10.3969/j.issn.1672-6820.2016.12.009 [19] 李伟东. 小麦茎基腐病菌消长规律及其病害综合防治研究[D]. 泰安: 山东农业大学, 2021.LI W D. Dynamic changes of wheat crown rot pathogens and its integrated control[D]. Taian: Shandong Agricultural University, 2021. [20] OBANOR F, CHAKRABORTY S. Aetiology and toxigenicity of Fusarium graminearum and F. pseudograminearum causing crown rot and head blight in Australia under natural and artificial infection[J]. Plant Pathol, 2014, 63(6): 1218-1229. doi: 10.1111/ppa.12200 [21] DYER A T, JOHNSTON R H, HOGG A C, et al. Comparison of pathogenicity of the Fusarium crown rot (FCR) complex (F. culmorum, F. pseudograminearum and F. graminearum) on hard red spring and durum wheat[J]. Eur J of Plant Pathol, 2009, 125(3): 387-395. doi: 10.1007/s10658-009-9488-1 [22] 范学锋. 中国小麦茎基腐病病原菌群体组成及遗传结构分析[D]. 北京: 中国农业科学院, 2021.FAN X F. Analysis of population composition and genetic structure of pathogens causing Fusarium crown rot in China[D]. Beijing: Chinese Academy of Agricultural Science, 2021. [23] BACKHOUSE D, ABUBAKAR A A, BURGESS L W, et al. Survey of Fusarium species associated with crown rot of wheat and barley in eastern Australia[J]. Australas Plant Path, 2004, 33(2): 255-261. doi: 10.1071/AP04010 [24] CHAKRABORTY S, LIU C J, MITTER V, et al. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management[J]. Australas Plant Path, 2006, 35(6): 643-655. doi: 10.1071/AP06068 [25] TROTH E E G, JOHNSTON J A, DYER A T. Competition between Fusarium pseudograminearum and cochliobolus sativus observed in field and greenhouse studies[J]. Phytopathology, 2018, 108(2): 215-222. doi: 10.1094/PHYTO-03-17-0110-R [26] KHANGURA R K, MACNISH G C, MACLEOD W J, et al. Current status of cereal root diseases in western Australia under intensive cereal production and their comparison with the historical survey conducted during 1976–1982[J]. J Phytopathol, 2013, 161(11-12): 828-840. doi: 10.1111/jph.12144 [27] ZHANG X X, SUN H Y, SHEN C M, et al. Survey of Fusarium spp. causing wheat crown rot in major winter wheat growing regions of China[J]. Plant Dis, 2015, 99(11): 1610-1615. doi: 10.1094/PDIS-04-14-0422-RE [28] ZHOU H F, HE X L, WANG S, et al. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China[J]. Environ Microbiol, 2019, 21(8): 2740-2754. doi: 10.1111/1462-2920.14602 [29] DENG Y Y, LI W, ZHANG P, et al. Fusarium pseudograminearum as an emerging pathogen of crown rot of wheat in eastern China[J]. Plant Pathol, 2020, 69: 240-248. doi: 10.1111/ppa.13122 [30] 朱运启, 靳鹏飞, 王峭, 等. 陕西省小麦茎基腐病病原菌鉴定及其致病力分析[J]. 植物保护学报, 2022, 49(3): 824-831. doi: 10.13802/j.cnki.zwbhxb.2021.2020187ZHU Y Q, JIN P F, WANG Q, et al. Species identification and pathogenicity analysis of the pathogens causing wheat crown rot in Shaanxi Province[J]. Plant Prot, 2022, 49(3): 824-831. doi: 10.13802/j.cnki.zwbhxb.2021.2020187 [31] XU F, YANG G, WANG J, et al. Spatial distribution of root and crown rot fungi associated with winter wheat in the north China plain and its relationship with climate variables[J]. Front Microbiol, 2018, 25(9): 1054. [32] MOYA-ELIZONDO E A, REW L J, JACOBSEN B J, et al. Distribution and prevalence of Fusarium crown rot and common root rot pathogens of wheat in Montana[J]. Plant Dis, 2011, 95(9): 1099-1108. doi: 10.1094/PDIS-11-10-0795 [33] 谢顺培, 李海洋, 张宛莹, 等. 假禾谷镰孢子囊壳的田间采集和子囊孢子后代室内杂交条件优化[J]. 植物病理学报, 2022, 52(1): 77-85. doi: 10.13926/j.cnki.apps.000742XIE S P, LI H Y, ZHANG W Y, et al. Optimum culture conditions in the lab for sexual stage formation of ascospore from perithecia collected in filed for Fusarium pseudograminerum[J]. Acta Phytoparhologica sinica, 2022, 52(1): 77-85. doi: 10.13926/j.cnki.apps.000742 [34] KNIGHT N L and SUTHERLAND M W. Histopathological assessment of Fusarium pseudograminearum colonization of cereal culms during crown rot infections[J]. Plant Dis, 2016, 100(2): 252-259. doi: 10.1094/PDIS-04-15-0476-RE [35] MUDGE A M, DILL-MACKY R, DONG Y, et al. A role for the mycotoxin deoxynivalenol in stem colonisation during crown rot disease of wheat caused by Fusarium graminearum and Fusarium pseudograminearum[J]. Physiol Mol Plant P, 2006, 69(1-3): 73-85. doi: 10.1016/j.pmpp.2007.01.003 [36] KNIGHT N L, MACDONALD B, SUTHERLAND M W. Colonization of durum wheat (Triticum turgidum L, var. durum) culms exhibiting premature senescence (dead heads) associated with Fusarium pseudograminearum crown rot[J]. Plant Dis, 2017, 101: 1788-1794. doi: 10.1094/PDIS-03-17-0415-RE [37] OBANOR F, NEATE S, SIMPFENDORFER S, et al. Fusarium graminearum and Fusarium pseudograminearum caused the 2010 head blight epidemics in Australia[J]. Plant Pathol, 2013, 62(1): 79-91. doi: 10.1111/j.1365-3059.2012.02615.x [38] LI J J, LI Q S, WANG Y J, et al. Monitoring of Fusarium species and trichothecene genotypes associated with Fusarium head blight on wheat in Hebei Province, China[J]. Toxins (Basel), 2019, 11(5): 243. doi: 10.3390/toxins11050243 [39] JIANG H, MA L G, QI K, et al. First report of maize seedling blight caused by Fusarium pseudograminearum in China[J]. Plant Dis, 2022, 106(9): 2519. [40] KNIGHT N L and SUTHERLAND M W. Assessment of Fusarium pseudograminearum and F. culmorum biomass in seedlings of potential host cereal species[J]. Plant Dis, 2017, 101(12): 2116-2122. doi: 10.1094/PDIS-12-16-1739-RE [41] O'DONNELL K, KISTLER H C, TACKE B K, et al. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab[J]. P Natl Acad Sci USA, 2000, 97(14): 7905-7910. doi: 10.1073/pnas.130193297 [42] BURGESS L W, WEARING A H, TOUSSOUN T A. Surveys of Fusaria associated with crown rot of wheat in eastern Australia[J]. Aust J Agr Res, 1975: 26(5): 791-799. [43] AOKI T and O'DONNELL K. Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum[J]. Mycologia, 1999, 91(4): 597-609. doi: 10.1080/00275514.1999.12061058 [44] KHUDHAIR M, OBANOR F, KAZAN K, et al. Genetic diversity of Australian Fusarium pseudograminearum populations causing crown rot in wheat[J]. Eur J Plant Pathol, 2021, 159: 741-753. doi: 10.1007/s10658-020-02198-0 [45] KHUDHAIR M, THATCHER L F, GARDINER D M, et al. Comparative analysis of genetic structures and aggressiveness of Fusarium pseudograminearum populations from two surveys undertaken in 2008 and 2015 at two sites in the wheat belt of Western Australia[J]. Plant Pathol, 2019, 68(7): 1337-1349. doi: 10.1111/ppa.13056 [46] 贺小伦, 周海峰, 袁虹霞, 等. 河南和河北冬小麦区假禾谷镰孢的遗传多样性[J]. 中国农业科学, 2016, 49(2): 272-281. doi: 10.3864/j.issn.0578-1752.2016.02.008HE X L, ZHOU H F, YUAN H X, et al. Genetic diversity of Fusarium pseudograminearum collected from Henan and Hebei winter wheat regions[J]. Scientia Agricultura Sinica, 2016, 49(2): 272-281. doi: 10.3864/j.issn.0578-1752.2016.02.008 [47] BENTLEY A R, LESLIE J F, LIEW E C Y, et al. Genetic structure of Fusarium pseudograminearum populations from the Australian grain belt[J]. Phytopathol, 2008, 98(2): 250-255. doi: 10.1094/PHYTO-98-2-0250 [48] MISHRA P K, TEWARI J P, CLEAR R M, et al. Genetic diversity and recombination within populations of Fusarium pseudograminearum from western Canada[J]. Int Microbiol, 2006, 9: 65-68. [49] SMILEY R W, MACHADO S. Fusarium crown rot of winter wheat influenced by resource competition near a tree windbreak[J]. Plant Dis, 2020, 104(2): 348-357. [50] SMILEY R W, GOURLIE J A, EASLEY S A, et al. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest[J]. Plant Dis, 2005, 89(6): 595-604. doi: 10.1094/PD-89-0595 [51] LIU X L and LIU C J. Effects of drought-stress on Fusarium crown rot development in barley[J]. PloS One, 2016, 11(12): e0167304. doi: 10.1371/journal.pone.0167304 [52] SU Z Y, POWELL J J, GAO S, et al. Comparing transcriptional responses to Fusarium crown rot in wheat and barley identified an important relationship between disease resistance and drought tolerance[J]. BMC Plant Biol, 2021, 21: 73. doi: 10.1186/s12870-020-02818-1 [53] 马璐璐, 闫翠梅, 冯彩莲, 等. 玉米秸秆还田对假禾谷镰刀菌及小麦茎基腐病化感效应的模拟研究[J]. 河北农业大学学报, 2019, 42(3): 38-44. doi: 10.13320/j.cnki.jauh.2019.0053MA L L, YAN C M, FENG C L, et al. Simulation study on allelopathic effects of corn straw returning on Fusarium pseudograminearum and wheat crown rot[J]. J Hebei Agric Univ, 2019, 42(3): 38-44. doi: 10.13320/j.cnki.jauh.2019.0053 [54] BLUM A, BENFIELD A H, SøRENSEN J L, et al. Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum[J]. Fungal Biol, 2019, 123(3): 255-266. doi: 10.1016/j.funbio.2018.12.009 [55] KANG R J, LI G N, ZHANG M J, et al. Expression of Fusarium pseudograminearum FpNPS9 in wheat plant and its function in pathogenicity[J]. Curr Genet, 2020, 66(1): 229-243. doi: 10.1007/s00294-019-01017-2 [56] 赵静雅, 彭梦雅, 张时雨, 等. C2H2锌指转录因子FpCzf7 参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38: 9-17.ZHAO J Y, PENG M Y, ZHANG S Y, et al. Role of C2H2 zinc finger transcription factor FpCzf7 in the growth and pathogenicity of Fusarium pseudograminearum[J]. Biotech Bull, 2022, 38: 9-17. [57] CHEN L L, ZHAO J Y, XIA H Q, et al. FpCzf14 is a putative C2H2 transcription factor regulating conidiation in Fusarium pseudograminearum[J]. Phytopathology Research, 2020, 2(1): 33. doi: 10.1186/s42483-020-00074-7 [58] 赵静雅, 夏荟清, 彭梦雅, 等. 假禾谷镰孢转录因子FpAPSES的鉴定与功能分析[J]. 中国农业科学, 2021, 54(16): 3428-3439. doi: 10.3864/j.issn.0578-1752.2021.16.006ZHAO J Y, XIA H Q, PENG M Y, et al. identification and functional analysis of transcription factors FpAPSES in Fusarium pseudograminearum[J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439. doi: 10.3864/j.issn.0578-1752.2021.16.006 [59] CHEN L L, GENG X J, MA Y M, et al. Identification of basic helix-loop-helix transcription factors reveals candidate genes involved in pathogenicity of Fusarium pseudograminearum[J]. Can J Plant Pathol, 2019, 41(2): 200-208. [60] ZHAO J Y, PENG M Y, CHEN W B, et al. Transcriptome analysis and functional validation identify a putative bZIP transcription factor, Fpkapc, that regulates development, stress responses, and virulence in Fusarium pseudograminearum[J]. 2022, 112(6): 1299-1309. [61] CHEN L L, MA Y M, ZHAO J Y, et al. The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusarium pseudograminearum[J]. Curr Genet, 2020, 66(3): 507-515. doi: 10.1007/s00294-019-01042-1 [62] CHEN L L, GENG X J, MA Y M, et al. The ER lumenal Hsp70 protein FpLhs1 is important for conidiation and plant infection in Fusarium pseudograminearum[J]. Front Microbiol, 2019, 10: 1401. doi: 10.3389/fmicb.2019.01401 [63] XIA H Q, CHEN L L, FAN Z, et al. Heat stress tolerance gene FpHsp104 affects conidiation and pathogenicity of Fusarium pseudograminearum[J]. Front Microbiol, 2021, 12: 695535. doi: 10.3389/fmicb.2021.695535 [64] DUAN S N, JIN J J, GAO Y T, et al. Integrated transcriptome and metabolite profiling highlights the role of benzoxazinoids in wheat resistance against Fusarium crown rot[J]. Crop J, 2021, 10: 407-417. [65] KETTLE A J, CARERE J, BATLEY J, et al. A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins[J]. Fungal Genet Biol, 2015, 83: 1-9. doi: 10.1016/j.fgb.2015.08.005 [66] KETTLE A J, BATLEY J, BENFIELD A H, et al. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat[J]. Mol Plant Pathol, 2015, 16(9): 946-962. doi: 10.1111/mpp.12250 [67] FAN X F, YAN Z, YANG M X, et al. Contamination and translocation of deoxynivalenol and its derivatives associated with Fusarium crown rot of wheat in Northern China[J]. Plant Dis, 2021, 105(11): 3397-3406. doi: 10.1094/PDIS-03-21-0612-RE [68] 徐飞, 李淑芳, 石瑞杰, 等. 黄淮麦区主栽小麦品种抗茎基腐病评价及茎秆和籽粒中毒素积累分析[J]. 植物病理学报, 2021, 51(6): 912-920. doi: 10.13926/j.cnki.apps.000740XU F, LI S F, SHI R J, et al. Evaluation of resistances to Fusarium crown rot caused by Fusarium pseudograminearum in commercial wheat cultivars of Huanghuai wheat growing region and toxin accumulation[J]. Acta Phytopathologica Sinica, 2021, 51(6): 912-920. doi: 10.13926/j.cnki.apps.000740 [69] Voss K A. A new perspective on deoxynivalenol and growth suppression[J]. Toxicol Sci, 2010, 113: 281-283. doi: 10.1093/toxsci/kfp287 [70] POWELL J J, CARERE J, FITZGERALD T L, et al. The Fusarium crown rot pathogen Fusarium pseudograminearum triggers a suite of transcriptional and metabolic changes in bread wheat (Triticum aestivum L.)[J]. Ann Bot, 2017, 119(5): 853-867. [71] TUNALI B, OBANOR F, ERGINBAŞ G, et al. Fitness of three Fusarium pathogens of wheat[J]. FEMS Microbiol Ecol, 2012, 81(3): 596-609. doi: 10.1111/j.1574-6941.2012.01388.x [72] KIMURA M, TOKAI T, TAKAHASHI-ANDO N, et al. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution[J]. Biosci Biotechnol Biochem, 2007, 71(9): 2105-2123. doi: 10.1271/bbb.70183 [73] ZHOU Z H, DUAN Y B, ZHANG J, et al. Microtubule-assisted mechanism for toxisome assembly in Fusarium graminearum[J]. Mol Plant Pathol, 2021, 22(2): 163-174. doi: 10.1111/mpp.13015 [74] CHEN Y, KISTLER H C, MA Z H. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management[J]. Annu Rev Phytopathol, 2019, 57: 15-39. doi: 10.1146/annurev-phyto-082718-100318 [75] LI J, DUAN Y B, BIAN C H, et al. Effects of validamycin in controlling Fusarium head blight caused by Fusarium graminearum: inhibition of DON biosynthesis and induction of host resistance[J]. Pestic Biochem Physiol, 2019, 153: 152-160. doi: 10.1016/j.pestbp.2018.11.012 [76] PATTERSON J N, COUSTEILS K, LOU J W, et al. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion[J]. J Biol Chem, 2014, 289(19): 13335-13346. doi: 10.1074/jbc.M113.521666 [77] ZHANG L, LI B, ZHANG Y, et al. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum[J]. Mol Plant Pathol, 2016, 17(1): 16-28. doi: 10.1111/mpp.12258 [78] ZADROZNA M, GAWLIK M, NOWAK B, et al. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas[J]. Trace Elem Med Biol, 2009, 23(2): 144-148. doi: 10.1016/j.jtemb.2009.02.005 [79] BOWLES D, LIM E K, POPPENBERGER B, et al. Glycosyltransferases of lipophilic small molecules[J]. Annu Rev Plant Biol, 2006, 57: 567-597. doi: 10.1146/annurev.arplant.57.032905.105429 [80] MANDALÀ G, TUNDO S, FRANCESCONI S, et al. Deoxynivalenol detoxification in transgenic wheat confers resistance to Fusarium head blight and Crown rot diseases[J]. Mol Plant Microbe Interact, 2019, 32(5): 583-592. doi: 10.1094/MPMI-06-18-0155-R [81] KLUGER B, BUESCHL C, LEMMENS M, et al. Biotransformation of the mycotoxin deoxynivalenol in Fusarium resistant and susceptible near isogenic wheat lines[J]. PLoS One, 2015, 10(3): e0119656. [82] HE Y, WU L, LIU X, et al. TaUGT6, a novel UDP-Glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat[J]. Front Plant Sci, 2020, 11: 574775. [83] SIMPSON D R, WESTON G E, TURNER J A, et al. Differential control of Head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain[J]. Eur J Plant Pathol, 2001, 107(4): 421-431. doi: 10.1023/A:1011225817707 [84] MAGAN N, HOPE R, COLLEATE A, et al. Relationship between growth and mycotoxin production by Fusarium species, biocides and environment[J]. Eur J Plant Pathol, 2002, 108(7): 685-690. doi: 10.1023/A:1020618728175 [85] DUAN Y B, XIAO X M, LI T, et al. Impact of epoxiconazole on Fusarium head blight control, grain yield and deoxynivalenol accumulation in wheat[J]. Pestic Biochem Physiol, 152: 138-147. [86] LIU Z Y, JIAN Y Q, CHEN Y, et al. A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum[J]. Nat Commun, 2019, 10(1): 1228. doi: 10.1038/s41467-019-09145-6 [87] DUAN Y B, LU F, ZHOU Z H, et al. Quinone outside inhibitors affect DON biosynthesis, mitochondrial structure and toxisome formation in Fusarium graminearum[J]. J Hazard Mater, 2020, 398: 122908. doi: 10.1016/j.jhazmat.2020.122908 [88] ZHANG Y J, YU J J, ZHANG Y N, et al. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum[J]. Mol Plant Microbe Interact, 2009, 22(9): 1143-1150. doi: 10.1094/MPMI-22-9-1143 [89] ZHOU Z H, DUAN Y B, ZHOU M G. Carbendazim-resistance associated β2-tubulin substitutions increase deoxynivalenol biosynthesis by reducing the interaction between β2-tubulin and IDH3 in Fusarium graminearum[J]. Environ Microbiol, 2020, 22(2): 598-614. doi: 10.1111/1462-2920.14874 [90] TANG G F, CHEN Y, XU J R, et al. The fungal myosin I is essential for Fusarium toxisome formation[J]. PLoS Pathog, 2018, 14(1): e1006827. doi: 10.1371/journal.ppat.1006827 [91] XU C, LI M X, ZHOU Z H, et al. Impact of five succinate dehydrogenase inhibitors on DON biosynthesis of Fusarium asiaticum, causing Fusarium head blight in wheat[J]. Toxins, 2019, 11(5): 272. doi: 10.3390/toxins11050272 [92] HALLEN-ADAMS H E, WENNER N, KULDAU G A, et al. Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum[J]. Phytopathology, 2011, 101(9): 1091-1096. doi: 10.1094/PHYTO-01-11-0023 [93] BIAN C H, DUAN Y B, XIU Q, et al. Mechanism of validamycin A inhibiting DON biosynthesis and synergizing with DMI fungicides against Fusarium graminearum[J]. Mol Plant Pathol, 2021, 22(7): 769-785. doi: 10.1111/mpp.13060 [94] SUMMERELL B A, BURGESS L E, KLEIN T, et al. Stubble management and the site of penetration of wheat by Fusarium graminearum group 1[J]. Phytopathology, 1990, 80(9): 877-879. doi: 10.1094/Phyto-80-877 [95] 殷消茹, 徐建强, 孙莹, 等. 河南省假禾谷镰刀菌对多菌灵的敏感性[J]. 农药学学报, 2022, 24(1): 81-87. doi: 10.16801/j.issn.1008-7303.2021.0145YIN X R, XU J Q, SUN Y, et al. Sensitivity of the isolates of Fusarium pseudograminearum to carbendazim in Henan Province[J]. Chin J Pestic Sci, 2022, 24(1): 81-87. doi: 10.16801/j.issn.1008-7303.2021.0145 [96] 王莉莉, 徐建强, 朱凯, 等. 醚菌酯对假禾谷镰孢的抑制作用及对小麦茎基腐病的防效研究[J]. 植物病理学报, 2022, 52(3): 434-442. doi: 10.13926/j.cnki.apps.000758WANG L L, XU J Q, ZHU K, et al. Inhibitory effect of kresoxim-methyl on Fusarium pseudograminearum and control effect on crown rot of wheat[J]. Acta Phytopathologica Sinca, 2022, 52(3): 434-442. doi: 10.13926/j.cnki.apps.000758 [97] 康国强, 王卫, 苏立克, 等. 麦播期防治小麦茎基腐病的拌种药剂筛选[J]. 中国植保导刊, 2021, 41(11): 82-83. doi: 10.3969/j.issn.1672-6820.2021.11.022KANG G Q, WANG W, SU L K, et al. Screening of dressing agent to control crown rot of wheat during wheat seedtime[J]. China Plant Prot, 2021, 41(11): 82-83. doi: 10.3969/j.issn.1672-6820.2021.11.022 [98] 徐小娃, 杨艳会. 小麦茎基腐病药剂防治试验示范[J]. 河南农业, 2021(28): 28-29.XU X W, YANG Y H. Experiment and demonstration of chemical control to Fusarium crown rot[J]. Agriculture of Henan, 2021(28): 28-29. [99] 陈凯, 隋丽娜, 杨凯, 等. 两株木霉共培养发酵提高对小麦苗期茎基腐病的防治效果[J]. 植物病理学报, 2022, 52(3): 425-433. doi: 10.13926/j.cnki.apps.000759CHEN K, SUI L N, YANG K, et al. Co-culturation of two Trichoderma strains enchanced control efficiency against wheat crown rot at seedling stage[J]. Acta Phytopathologica Sinca, 2022, 52(3): 425-433. doi: 10.13926/j.cnki.apps.000759 [100] 扈进冬, 杨在东, 吴远征, 等. 哈茨木霉拌种对冬小麦生长、土传病害及根际真菌群落的影响[J]. 植物保护, 2021, 47(5): 35-40. doi: 10.16688/j.zwbh.2020409HU J D, YANG Z D, WU Y Z, et al. Effect of seed dressing treatment with Trichoderma harzianum on the growth of winter wheat seedlings, soil born disease and rhizosphere fungal community[J]. Plant Prot, 2021, 47(5): 35-40. doi: 10.16688/j.zwbh.2020409 [101] 张洁, 汤蒙蒙, 夏明聪, 等. 枯草芽胞杆菌YB-05与申嗪霉素复配防治小麦茎基腐病[J]. 中国生物防治学报, 34(6): 866-872.ZHANG J, TANG M M, XIA M C, et al. Combination of Bacillus subtilis YB-05 and shenqinmycin for integrated control of wheat crown rot[J]. Chin J Biol Cont, 34(6): 866-872. [102] ZHANG J, ZHU W, GOODWIN P H, et al. Response of Fusarium pseudograminearum to biocontrol agent Bacillus velezensis YB-185 by phenotypic and transcriptome analysis[J]. J Fungi (Basel), 2022, 8(8): 763. doi: 10.3390/jof8080763 [103] 林琪童, 杨丽荣, 夏明聪, 等. 小麦茎基腐病生防菌株YB-161的分离鉴定及防效测定[J]. 植物保护学报, 2020, 47(4): 939-948. doi: 10.13802/j.cnki.zwbhxb.2020.2019173LIN Q T, YANG L R, XIA M C, et al. Isolation, identification and control efficiency of biocontrol strain YB-161 against wheat crown rot[J]. J Plant Prot, 2020, 47(4): 939-948. doi: 10.13802/j.cnki.zwbhxb.2020.2019173 [104] ZHAO X L, HOU D Y, XU J Q, et al. Antagonistic activity of fungal strains against Fusarium crown rot[J]. Plants (Basel), 2022, 11(3): 255. [105] SPAGNOLETTI F N, CARMONA M, BALESTRASSE K, et al. The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat[J]. Rhizosphere, 2021, 19: 100369. doi: 10.1016/j.rhisph.2021.100369 [106] O'SULLIVAN C A, ROPER M M, MYERS C A, et al. Fusarium pseudograminearum developing actinobacterial endophytes as biocontrol products for in wheat[J]. Front Bioeng Biotechnol, 2021, 9: 691770. doi: 10.3389/fbioe.2021.691770 [107] YAO Y Z and LONG M. The biological detoxification of deoxynivalenol: a review[J]. Food Chem Toxicol, 2020, 145: 111649. doi: 10.1016/j.fct.2020.111649 -