• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微塑料对氯氟醚菌唑在水稻环境中的立体选择性降解行为的影响

金银银 李晨琛 朱云龙 李宗杰 刘艳霞 符康 柴婷婷 崔峰

金银银, 李晨琛, 朱云龙, 李宗杰, 刘艳霞, 符康, 柴婷婷, 崔峰. 微塑料对氯氟醚菌唑在水稻环境中的立体选择性降解行为的影响[J]. 农药学学报, 2022, 24(5): 1278-1286. doi: 10.16801/j.issn.1008-7303.2022.0113
引用本文: 金银银, 李晨琛, 朱云龙, 李宗杰, 刘艳霞, 符康, 柴婷婷, 崔峰. 微塑料对氯氟醚菌唑在水稻环境中的立体选择性降解行为的影响[J]. 农药学学报, 2022, 24(5): 1278-1286. doi: 10.16801/j.issn.1008-7303.2022.0113
JIN Yinyin, LI Chenchen, ZHU Yunlong, LI Zongjie, LIU Yanxia, FU Kang, CHAI Tingting, CUI Feng. Effects of micro-plastics on stereoselective degradation behavior of mefentrifluconazole in paddy environment[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1278-1286. doi: 10.16801/j.issn.1008-7303.2022.0113
Citation: JIN Yinyin, LI Chenchen, ZHU Yunlong, LI Zongjie, LIU Yanxia, FU Kang, CHAI Tingting, CUI Feng. Effects of micro-plastics on stereoselective degradation behavior of mefentrifluconazole in paddy environment[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1278-1286. doi: 10.16801/j.issn.1008-7303.2022.0113

微塑料对氯氟醚菌唑在水稻环境中的立体选择性降解行为的影响

doi: 10.16801/j.issn.1008-7303.2022.0113
基金项目: 国家自然科学基金 (219006149).
详细信息
    作者简介:

    金银银,jinyinyin2022@163.com

    通讯作者:

    柴婷婷,tingtingchai@zafu.edu.cn

    崔峰,cuifeng@zafu.edu.cn

  • 中图分类号: TQ450.263

Effects of micro-plastics on stereoselective degradation behavior of mefentrifluconazole in paddy environment

Funds: the National Natural Science Foundation of China (219006149)
  • 摘要: 为明确手性农药氯氟醚菌唑 (mefentrifluconazole,MFZ)在水稻环境中的立体选择性行为,本研究基于高效液相色谱-串联质谱 (HPLC-MS/MS)法建立了氯氟醚菌唑对映体在水稻植株、根系、土壤和田水中的残留测定方法,并通过水稻环境盆栽模拟试验,考察了氯氟醚菌唑在水稻环境中的行为规律及微塑料对氯氟醚菌唑在水稻环境中的立体选择性及降解动态的影响。结果表明:氯氟醚菌唑对映体在手性柱Chiralpak IG上可完全分离,且在0.0005~0.1 mg/L范围内,对映体的峰面积与相应的质量浓度间呈良好线性关系 (R2均大于0.999),其在水稻环境样本中的平均回收率为76%~108%,相对标准偏差 (RSD)为1.3%~12%。盆栽模拟试验结果表明,氯氟醚菌唑对映体在水稻植株、根系、土壤和田水中均无立体选择性差异 (P>0.05);微塑料对氯氟醚菌唑在水稻环境中的立体选择性无显著影响 (P>0.05),但可显著延长其在田水和水稻植株中半衰期。氯氟醚菌唑R体和S体在田水中的半衰期分别从6.7和6.7 d延长至11.6和11.7 d,在水稻植株中则分别从7.5和7.4 d延长至11.7和11.6 d。该结果可为氯氟醚菌唑在水稻环境中的合理使用提供参考。
  • 1  氯氟醚菌唑对映异构体化学结构式

    1.  The structural formula of mefentrifluconazole enantiomers

    图  1  氯氟醚菌唑对映体典型色谱图

    Figure  1.  Typical chromatogram of mefentrifluconazole enantiomers

    图  2  氯氟醚菌唑对映体在土壤中残留量 (A、B和D) 以及EF值变化曲线 (C)

    注:M:无微塑料但施药处理组;MP:有微塑料且施药处理组;M-R(S):M组氯氟醚菌唑R体(S体)残留量;MP-R(S):MP组氯氟醚菌唑R体(S体)残留量。

    Figure  2.  Residue (A, B and D) and EF value (C) of MFZ enantiomers in soil

    Note:M: treated with MFZ; MP: treated with MFZ and MPs; M-R(S): the residue of R(S)-MFZ in group M; MP-R(S): the residue of R(S)-MFZ in group MP.

    图  3  氯氟醚菌唑对映体在水稻根系中残留量 (A、B和D) 以及EF值变化曲线 (C)

    注:M:无微塑料但施药处理组;MP:有微塑料且施药处理组;M-R(S):M组氯氟醚菌唑R体(S体)残留量;MP-R(S):MP组氯氟醚菌唑R体(S体)残留量。

    Figure  3.  Residue (A, B and D) and EF value (C) of MFZ enantiomers in root

    Note: M: treated with MFZ; MP: treated with MFZ and MPs; M-R(S): the residue of R(S)-MFZ in group M; MP-R(S): the residue of R(S)-MFZ in group MP.

    图  4  氯氟醚菌唑对映体在田水中降解曲线 (A和B) 及EF值变化曲线 (C) 和水稻植株中降解曲线 (D和E) 及EF值变化曲线 (F)

    注:M:无微塑料但施药处理组;MP:有微塑料且施药处理组;M-R(S):M组氯氟醚菌唑R体(S体)残留量;MP-R(S):MP组氯氟醚菌唑R体(S体)残留量。

    Figure  4.  Degradation curve (A and B) and EF value (C) of MFZ enantiomers in paddy water and degradation curve (D and E) and EF value (F) of MFZ enantiomers in plant

    Note: M: treated with MFZ; MP: treated with MFZ and MPs; M-R(S): the residue of R(S)-MFZ in group M; MP-R(S): the residue of R(S)-MFZ in group MP.

    表  1  氯氟醚菌唑离子对信息

    Table  1.   The ion-pair information of mefentrifluconazole

    离子对
    Ion-pair, m/z
    Q1 偏转电压
    Q1 pre-rod/V
    碰撞电压
    CE/V
    Q3 偏转电压
    Q3 pre-rod/V
    397.9>70.15*−29.0−18.0−20.0
    397.9>182.0−29.0−13.0−21.0
    注:*定量离子对。Note: *Quantitative ion.
    下载: 导出CSV

    表  2  氯氟醚菌唑对映体在样品中的添加回收率 ( n=5)

    Table  2.   Recoveries of MFZ enantiomers in samples (n=5)

    样品类型
    Sample
    type
    添加水平
    Spiked level/
    (μg/kg)
    P 组 Group PCK 组 Group CK
    R-(−)-氯氟醚菌唑
    R-MFZ
    S-(+)-氯氟醚菌唑
    S-MFZ
    R-(−)-氯氟醚菌唑
    R-MFZ
    S-(+)-氯氟醚菌唑
    S-MFZ
    平均回收
    Average
    recovery/%
    相对标
    准偏差
    RSD/%
    平均回收
    Average
    recovery/%
    相对标
    准偏差
    RSD/%
    平均回收
    Average
    recovery/%
    相对标
    准偏差
    RSD/%
    平均回收
    Average
    recovery/%
    相对标
    准偏差
    RSD/%
    植株
    Plant
    2.5 97 6.4 100 9.4 90 6.5 90 7.6
    5 95 9.8 88 11 84 7.2 87 9.3
    50 107 4.0 109 4.1 84 5.3 90 5.2
    1000 86 5.8 84 6.6 81 7.7 83 5.5
    根系
    Root
    2.5 91 1.8 81 5.3 101 3.9 99 1.3
    5 99 5.3 103 7.5 94 9.4 92 9.9
    50 106 10 95 12 100 12 106 6.4
    1000 91 6.2 87 4.4 104 5.1 101 2.2
    土壤
    Soil
    2.5 83 4.5 98 4.0 100 4.4 96 7.3
    5 85 1.4 95 5.0 81 4.6 82 9.5
    50 90 7.4 94 7.4 105 5.4 108 11
    1000 85 4.2 80 7.8 77 4.9 76 8.2
    田水*
    Paddy water
    0.25 84 13 96 10 91 2.0 87 1.7
    0.5 75 2.2 99 3.8 87 8.8 91 9.9
    5 94 4.4 108 5.4 84 9.7 81 9.9
    10 91 7.2 86 6.4 85 8.9 83 6.8
    注:*田水样本添加水平的单位为 μg/L。 P组:有微塑料但不施药处理组;CK组:空白对照组。Note: *The unit of the spiked level in paddy water is μg/L. Group P: Treated with MPs; Group CK: Control group.
    下载: 导出CSV

    表  3  氯氟醚菌唑对映体在田水和水稻植株中的降解方程及半衰期

    Table  3.   Degradation equations and half-life of MFZ enantiomers in paddy water and plant

    处理组
    Group
    样品类型
    Sample type
    R-(−)-氯氟醚菌唑
    R-MFZ
    S-(+)-氯氟醚菌唑
    S-MFZ
    Ct = C0 × e-ktR²t1/2/dCt = C0 × e-ktR²t1/2/d
    M 组
    Group M
    田水 Paddy water Ct = 4.7893e−0.104t 0.8719 6.7 Ct = 5.2730e −0.104t 0.8694 6.7
    植株 Plant Ct = 391.21e−0.093t 0.6598 7.5 Ct = 394.56e −0.094t 0.6615 7.4
    MP 组
    Group MP
    田水 Paddy water Ct = 4.6087e−0.06t 0.8573 11.6 Ct = 4.5858e −0.059t 0.9249 11.7
    植株 Plant Ct = 303.27e−0.059t 0.5033 11.7 Ct = 306.60e−0.06t 0.5030 11.6
    注:M组:无微塑料但施药处理组;MP组:有微塑料且施药处理组。Note: Group M: treated with MFZ; Group MP: treated with MFZ and MPs.
    下载: 导出CSV
  • [1] GAO Y Y, LIU Y, HE L F, et al. Activity of the novel fungicide mefentrifluconazole against Colletotrichum scovillei[J]. Plant Dis, 2021, 105(5): 1522-1530. doi: 10.1094/PDIS-10-20-2157-RE
    [2] XU S J, SHEN F, SONG J L, et al. Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida)[J]. Sci Total Environ, 2022, 815: 152937. doi: 10.1016/j.scitotenv.2022.152937
    [3] 李艳红. 氯氟醚菌唑对斑马鱼的对映体选择性毒性效应研究[D]. 呼和浩特: 内蒙古大学, 2021.

    LI Y H. Enantioselective toxic effects of mefentrifluconazole and its enantiomers on different life stages of zebrafish (Danio rerio)[D]. Hohhot: Inner Mongolia University, 2021.
    [4] CUI F, CHAI T T, DI S S, et al. Toxicity of mefentrifluconazole enantiomers on multiple stages of zebrafish (Danio rerio)[J]. J Environ Chem Eng, 2022, 10(3): 107653. doi: 10.1016/j.jece.2022.107653
    [5] LI L S, SUN X F, ZHAO X J, et al. Absolute configuration, enantioselective bioactivity, and degradation of the novel chiral triazole fungicide mefentrifluconazole[J]. J Agric Food Chem, 2021, 69(17): 4960-4967. doi: 10.1021/acs.jafc.0c07947
    [6] 王佳青. 微塑料影响下土壤磺胺甲恶唑的吸附-解吸与迁移特征[D]. 杭州: 浙江农林大学, 2021.

    WANG J Q. Adsorption-desorption and vertical migration of sulfamethoxazole in a soil under the impact of microplastics[D]. Hangzhou: Zhejiang A & F University, 2021.
    [7] DU S, ZHU R W, CAI Y J, et al. Environmental fate and impacts of microplastics in aquatic ecosystems: a review[J]. RSC Adv, 2021, 11(26): 15762-15784. doi: 10.1039/D1RA00880C
    [8] DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environ Sci Technol, 2018, 52(17): 9656-9665. doi: 10.1021/acs.est.8b02212
    [9] RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Sci Total Environ, 2015, 523: 74-81. doi: 10.1016/j.scitotenv.2015.03.142
    [10] QU H, MA R X, WANG B, et al. Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem[J]. J Hazard Mater, 2018, 359: 104-112. doi: 10.1016/j.jhazmat.2018.07.016
    [11] 延雨宸, 杨忠芳, 余涛. 土壤中微塑料的来源、生态环境危害及治理技术[J]. 中国地质, 2022, 49(3): 770-788.

    YAN Y C, YANG Z F, YU T. Sources, ecological hazards and treatment technologies of microplastics in soil[J]. Geol China, 2022, 49(3): 770-788.
    [12] MA J, AQEEL M, KHALID N, et al. Effects of microplastics on growth and metabolism of rice (Oryza sativa L.)[J]. Chemosphere, 2022, 307: 135749. doi: 10.1016/j.chemosphere.2022.135749
    [13] JIANG X F, CHANG Y Q, ZHANG T, et al. Toxicological effects of polystyrene microplastics on earthworm (Eisenia fetida)[J]. Environ pollut, 2020, 259: 113896. doi: 10.1016/j.envpol.2019.113896
    [14] 齐艳丽, 李春勇, 李晋栋, 等. 腈菌唑在番茄果实中的立体选择性降解[J]. 农药学学报, 2020, 22(4): 660-665. doi: 10.16801/j.issn.1008-7303.2020.0074

    QI Y L, LI C Y, LI J D, et al. Enantioselective degradation of fungicide myclobutanil in tomato[J]. Chin J Pestic Sci, 2020, 22(4): 660-665. doi: 10.16801/j.issn.1008-7303.2020.0074
    [15] STAHNKE H, KITTLAUS S, KEMPE G, et al. Reduction of matrix effects in liquid chromatography-electrospray ionization-mass spectrometry by dilution of the sample extracts: how much dilution is needed?[J]. Anal Chem, 2012, 84(3): 1474-1482. doi: 10.1021/ac202661j
    [16] 董超, 李晶, 杨秦, 等. 丙溴磷对映异构体在柑橘中的残留分析及选择性降解[J]. 农药学学报, 2021, 23(3): 530-536. doi: 10.16801/j.issn.1008-7303.2021.0063

    DONG C, LI J, YANG Q, et al. Residual analysis and selective degradation of profenofos enantiomers in Citrus[J]. Chin J Pestic Sci, 2021, 23(3): 530-536. doi: 10.16801/j.issn.1008-7303.2021.0063
    [17] 农作物中农药残留试验准则: NY/T 788—2018[S]. 北京: 中国农业出版社, 2018.

    Guideline of the testing of pesticide residues in crops: NY/T 788—2018 [S]. Beijing: China Agriculture Press, 2018.
    [18] 胡婷婷, 陈家玮. 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353-363.

    HU T T, CHEN J W. A review on adsorption and transport of microplastics in soil and the effect of ageing on environmental behavior of pollutants[J]. Rock Miner Anal, 2022, 41(3): 353-363.
    [19] 段劲生, 彭梅, 王梅, 等. 稻田施用氯氟吡氧乙酸后其在水稻植株、糙米、稻壳、土壤和田水中的残留消解动态[J]. 农药学学报, 2010, 12(3): 355-360. doi: 10.3969/j.issn.1008-7303.2010.03.21

    DUAN J S, PENG M, WANG M, et al. Study on residue decline dynamics of fluroxypyr in rice plant, rice and rice hull, paddy soil and water[J]. Chin J Pestic Sci, 2010, 12(3): 355-360. doi: 10.3969/j.issn.1008-7303.2010.03.21
    [20] TAYLOR S E, PEARCE C I, SANGUINET K A, et al. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots[J]. Environ Sci: Nano, 2020, 7(7): 1942-1953. doi: 10.1039/D0EN00309C
    [21] ASLI S, NEUMANN P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant Cell Environ, 2009, 32(5): 577-584. doi: 10.1111/j.1365-3040.2009.01952.x
    [22] LIAN J P, WU J N, XIONG H X, et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.)[J]. J Hazard Mater, 2020, 385: 121620. doi: 10.1016/j.jhazmat.2019.121620
    [23] 李远播. 几种典型手性三唑类杀菌剂对映体的分析、环境行为及其生物毒性研究[D]. 北京: 中国农业科学院, 2013.

    LI Y B. Studies on the analysis, environmental behaviors, and toxicity of typical chiral triazole fungicide enantiomers[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [24] SUN D L, QIU J, WU Y J, et al. Enantioselective degradation of indoxacarb in cabbage and soil under field conditions[J]. Chirality, 2012, 24(8): 628-633. doi: 10.1002/chir.22047
    [25] WANG M Y, HUA X D, ZHANG Q, et al. Enantioselective degradation of metalaxyl in grape, tomato, and rice plants[J]. Chirality, 2015, 27(2): 109-114. doi: 10.1002/chir.22397
    [26] 肖钰艳. 导向农药在水稻上的输导性研究及高吸收水稻品种的筛选[D]. 广州: 华南农业大学, 2019.

    XIAO Y Y. Systemic study of pesticide derivatives on rice and screening of highly absorbed rice varieties[D]. Guangzhou: South China Agricultural University, 2019.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  8
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 录用日期:  2022-09-20
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回