• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杀虫活性多肽研究进展

叶德兴 周源琳 张怡萌 陈黛妮 杨新玲

叶德兴, 周源琳, 张怡萌, 陈黛妮, 杨新玲. 杀虫活性多肽研究进展[J]. 农药学学报, 2022, 24(5): 962-981. doi: 10.16801/j.issn.1008-7303.2022.0114
引用本文: 叶德兴, 周源琳, 张怡萌, 陈黛妮, 杨新玲. 杀虫活性多肽研究进展[J]. 农药学学报, 2022, 24(5): 962-981. doi: 10.16801/j.issn.1008-7303.2022.0114
YE Dexing, ZHOU Yuanlin, ZHANG Yimeng, IQBAL Chandni, YANG Xinling. Research progress of insecticidal peptides: a review[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 962-981. doi: 10.16801/j.issn.1008-7303.2022.0114
Citation: YE Dexing, ZHOU Yuanlin, ZHANG Yimeng, IQBAL Chandni, YANG Xinling. Research progress of insecticidal peptides: a review[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 962-981. doi: 10.16801/j.issn.1008-7303.2022.0114

杀虫活性多肽研究进展

doi: 10.16801/j.issn.1008-7303.2022.0114
基金项目: 国家自然科学基金 (21877126).
详细信息
    作者简介:

    叶德兴,S20213101993@cau.edu.cn

    通讯作者:

    杨新玲,yangxl@cau.edu.cn

  • 中图分类号: S482.38

Research progress of insecticidal peptides: a review

Funds: the National Natural Science Foundation of China (21877126).
  • 摘要: 传统杀虫剂在防治害虫、保障农作物丰收等方面做出了卓越贡献,但是由于其化学性质以及不合理使用,对环境也带来了一些负面影响。因此,以环境友好为前提,寻找结构独特、性能优异以及绿色安全的杀虫剂尤为迫切。多肽是由多个氨基酸通过肽键连接而成,也是蛋白质降解而成的中间产物,在生命过程中具有重要作用。近年来,杀虫活性多肽因其新颖的作用机制、优异的活性、理想的环境相容性而成为农药领域一颗冉冉升起的新星。本文主要从来源于动物、植物和微生物的杀虫活性多肽角度出发,综述了其近年来的研究进展及应用,并对未来的研究趋势进行了展望。
  • 图  1  不同时期农业背景下的杀虫剂发展历程

    Figure  1.  The development of insecticides in different periods of agriculture

    图  2  多肽杀虫剂的研究趋势 (1992—2022年,数据源自Scifinder数据库)

    Figure  2.  Research progress in the field of peptide insecticide from 1992 to 2022

    图  3  不同功能微生物多肽的发文量占比 (1992—2022年,数据源自Scifinder数据库)

    Figure  3.  Proportion of publications about microbial peptides with different functions from 1992 to 2022

    表  1  不同动物来源的杀虫活性多肽及其作用的主要靶标害虫

    Table  1.   The insecticidal peptides from different animals and their main target pests

    多肽名称
    Name of peptides
    来源      
    Sources      
    靶标害虫            
    Target pests            
    参考文献
    References
    δ-PaluIT (1,2,3,4) 阴暗拟隙蛛 Pireneitega luctuosa 斜纹夜蛾 Spodoptera litura
    (钠离子通道 sodium channel)
    [88]
    Magi-(2,3) 巨型上户蜘蛛 Macrothele gigas 斜纹夜蛾 S litura
    (钠离子通道 sodium channel)
    [89]
    Magi3 巨型上户蜘蛛 M. gigas 双斑大蟋 Gryllus bimaculatus
    (钠离子通道 sodium channel)
    [90]
    PnTx4–3 巴西漫游蜘蛛 Phoneutria nigriventer 家蝇 Musca domestica
    (离子型谷氨酸受体 ionotropic glutamate receptors, iGluRs)
    [91]
    PnTx4(5–5) 巴西漫游蜘蛛 P. nigriventer 家蝇 M. domestica
    (离子型谷氨酸受体 iGluRs)
    [92]
    GS-ω/κ-HXTX-Hv1
    (Spear)
    蓝山漏斗网蜘蛛 Hadronyche versuta 蚜虫 aphids
    蓟马 thrips
    飞虱 delphacidaes
    (烟碱乙酰胆碱受体 Nicotinic acetylcholine receptors, nAChRs)
    [3]
    J-ACTX-Hv(1a,1b,1c) 蓝山漏斗网蜘蛛 H. versuta 蟋蟀 A. domestica
    Acheta domesticus(钙离子通道 calcium channel)
    [93]
    ω-ACTX-Hv2a 蓝山漏斗网蜘蛛 H. versuta 蟋蟀 A. domestica
    (钙离子通道 calcium channel)
    [94]
    ω-ACTX-Ar1a 悉尼漏斗网蜘蛛 Atrax robutus 蟋蟀 A. domestica
    (钙离子通道 calcium channel)
    [94]
    Tx4(6–1) 巴西流浪蜘蛛 Phoneutria nigriventer 美洲大蠊 Periplaneta americana
    家蝇 M. domestica
    (钠离子通道 sodium channel)
    [95]
    CsTx-(1,2a,2b) 美国流浪蜘蛛 Cupiennius salei 黑腹果蝇 Drosophila melanogaster
    (钙离子通道 calcium channel)
    [96]
    HWTX-V 中国鸟类蜘蛛 Haplopelma schmidti 迁飞蝗虫 Migratory manieusis
    (钙离子通道 calcium channel)
    [97]
    Ba (1,2) 墨西哥金背红尾蜘蛛
    Brachypelma ruhnaui
    蟋蟀 A. domestica [98]
    CpTx1 大袋蜘蛛 Cheiracanthium punctorium 麻蝇 Sarcophaga carnaria
    (可能是脂质双分子层 may be lipid bilayer)
    [99]
    CpTx (2a,3a,4a) 大袋蜘蛛 C. punctorium 麻蝇 S. carnaria [100]
    LaSicTox-αIB2bi 亚利桑那棕色蜘蛛
    Loxosceles arizonica
    蟋蟀 A. domesticus [101]
    β-diguetoxin-Dc1a 沙漠灌木蜘蛛 Diguetia canities 德国小蠊 Blattella germanica [21]
    μ-DGTX-Dc1a 沙漠灌木蜘蛛 D. canities 绿棉铃虫 Heliothis virescens
    (钠离子通道 sodium channel)
    [102]
    μ-theraphotoxin-Ae1a 非洲狼蛛 Augacephalus ezendami 德国小蠊 B. germanica [22]
    OAIP-1 狼蛛属 Selenotypus plumipes 黄粉虫 Tenebrio molitor
    棉铃虫 Helicoverpa armigera
    [25]
    κ-TRTX-Ec (2a,2b) 狼蛛属 Eucratoscelus constrictus 双斑大蟋 Gryllus bimaculatus
    (钙离子通道 calcium channel)
    [103]
    U1-TRTX-Ct1 (a,b) 狼蛛属 Coremiocnemis tropix 铜绿蝇 Lucilia cuprina
    (可能是钙离子通道 may be calcium channel)
    [104]
    Oxki (1,2)
    Pin2
    狼蛛属 Oxyopes kitabensis 斜纹夜蛾 S. litura
    (钠离子通道 sodium channel)
    [105]
    brachyin 洪都拉斯卷毛蜘蛛
    Brachypelma albopilosum
    美洲大蠊 Periplaneta americana
    黄粉虫 T. molitor
    [106]
    ω-Tbo-IT1 短胸长逍遥蛛 Tibellus oblongus 家蝇 M. domestica
    马达加斯加蟑螂 Gromphadorhina portentosa
    (钙离子通道 calcium channel)
    [107]
    Ba1 金红臀部狼蛛 Brachypelma albiceps 蟋蟀 A. domesticus
    (钠离子通道 sodium channel)
    [108]
    Latroeggtoxin-III 间斑寇蛛
    Latrodectus tredecimguttatus
    美洲大蠊 P. americana
    (钠、钙离子通道 sodium, calcium channel)
    [109]
    Sf1a 地窖蜘蛛 Segesteria florentina 铜绿蝇 Lucilia cuprina
    (钠离子通道 sodium channel)
    [110]
    OxyTx (1,2) 猞猁蜘蛛 Oxyopes lineatus 草地贪夜蛾 Spodoptera frugiperda
    (钙离子通道 calcium channel)
    [111]
    OtTx1 猞猁蜘蛛 O. takobius 麻蝇 S. carnaria [112]
    μ -TRTX-Ae1a 莫桑比克半月巴布 Augacephalus ezendami 铜绿蝇 L. cuprina
    黑腹果蝇 D. melanogaster
    长红猎蝽 Rhodnius prolixus
    (钠离子通道 sodium channel)
    [113]
    μ-NPTX-Nc1a 棒络新妇 Nephila clavata 美洲大蠊 P. americana
    (钠、钾离子通道 sodium, calcium channel)
    [114]
    β-TRTX-Cd1a 后角狒狒蜘蛛 Ceratogyrus darlingi 铜绿蝇 L. cuprina
    (钠、钙离子通道 sodium, calcium channel)
    [115]
    U2-SCTX-Li1b 棕色蜘蛛属 Loxosceles intermedia 铜绿蝇 L. cuprina [116]
    μ/ω-TRTX-Mb1 (a,b) 梦幻蓝巴布捕鸟蛛
    Monocentropus balfouri
    铜绿蝇 L. cuprina
    (钠、钙离子通道 sodium, calcium channel)
    [117]
    μ-SPRTX-Hv2 白额巨蟹蛛 Heteropoda venatoria 美洲大蠊 P. americana
    (钠离子通道 sodium channel)
    [118]
    AaHIT1 黄肥尾蝎 Androctonus australis 斜纹夜蛾 S. litura
    (钠离子通道 sodium channel)
    [119]
    LqhIT2 以色列金蝎 Leiurus quinquestriatus 斜纹夜蛾 S. litura
    (钠离子通道 sodium channel)
    [120]
    LqhαIT 以色列金蝎 L. quinquestriatus 肉蝇 Sarcophaga falculata
    (钠离子通道 sodium channel)
    [121]
    BotIT (1,4,5) 地中海黄蝎 Buthus occitanus 德国小蠊 B. germanica
    (钠离子通道 sodium channel)
    [122]
    Bot IT2 地中海黄蝎 B. occitanus 德国小蠊 B. germanica
    (钠离子通道 sodium channel)
    [123]
    BotIT6 地中海黄蝎 B. occitanus 德国小蠊 B. germanica
    (钠离子通道 sodium channel)
    [124]
    BmKIT1 东亚钳蝎 Mesobuthus martensii 双斑大蟋 G. bimaculatus
    (钠离子通道 sodium channel)
    [125]
    TbIT-1 巴伊亚戾蝎 Tityus bahiensis 家蝇 M. domestica
    (钠离子通道 sodium channel)
    [126]
    BsIT (1,2,3,4) 杀牛蝎属 Buthus sindicus 肉蝇 S. falculata
    德国小蠊 B. germanica
    (钠离子通道 sodium channel)
    [127]
    BmBKTx1 东亚钳蝎 Mesobuthus martensii 黑腹果蝇 D. melanogaster
    美洲大蠊 P. americana
    [128]
    BjαIT 钳蝎 Buthotus judaicus 肉蝇 S. falculata
    (钠离子通道 sodium channel)
    [129]
    BoiTx1 地中海黄蝎 B. occitanus 果蝇 Drosophila [130]
    U1-liotoxin-Lw1a 雨林蝎子 Liocheles waigiensis 黄粉虫 Tenebrio molitor
    铜绿蝇 L. cuprina
    [131]
    Ct-IT (1,2) 特克曼似刺尾蝎
    Centruroides tecomanus
    蟋蟀 A. domesticus
    (钠离子通道 sodium channel)
    [28]
    AaIT 黄肥尾蝎 Androctonus australis 绿棉铃虫 H. virescens
    (钠离子通道 sodium channel)
    [29]
    Checacin1 伪蝎 Chelifer Cancroides 豌豆蚜 A. pisum [132]
    poneratoxin 子弹蚁 Paraponera clavata 草地贪夜蛾 S. frugiperda
    (钠离子通道 sodium channel)
    [12]
    U-MYRTX-MANr1 马尼卡蚁属 Manica rubida 蚜虫 aphids (离子通道 ion channels) [13]
    Ponericins 厚结猛蚁属Pachycondyla goeldii 蟋蟀 Acheta domesticus [14]
    Brh-(I,V) 麦蛾茧蜂 Bracon hebetor 蜡螟 Galleria mellonella [15]
    Vespulakinin 额斑黄胡蜂 Vespula maculifrons 蟑螂 cockroach
    (缓激肽受体 bradykinin receptor)
    [16]
    NnFV 野村水母 Nemopilema nomurai 胭脂红蜘蛛螨 T. cinnabarinus [31]
    RFV 水母 Rhopilema esculentum 杜鹃冠网蝽 Stephanitis pyri, 花生蚜 A. medicaginis,
    桃蚜 M. persicae
    [33]
    GF1 舟山黄海葵 Anthopleura xanthogrammica 黄粉虫 Tenebrio molitor
    (钠离子通道 sodium channel)
    [35]
    Av3 沟迎风海葵 Anemonia viridis 果蝇 Drosophila
    (钠离子通道 sodium channel)
    [36]
    TxVIA 锥形蜗牛 Conus 家蝇 M. domestica
    (烟碱乙酰胆碱受体 nAChRs)
    [40]
    ImI 锥形蜗牛 Conus 黄粉虫 T. molitor
    (钠离子通道 sodium channel)
    [41]
    α-nemertides 靴带蠕虫 Lineus longissimus 绿蟹 Carcinus maenas
    (钠离子通道 sodium channel)
    [133]
    Adipokinetic hormone 东亚飞蝗 Locusta migratoria 东亚飞蝗 L. migratoria
    (影响发育和蜕皮 effects of development and ecdysis)
    [134]
    Anti-diuretic Factor 黄粉虫 T. molitor 黄粉虫 T. molitor
    (抑制马氏管液体分泌 inhibit liquid secretion in malpighian tubules)
    [135]
    Allatotropin 烟草天蛾 Manduca sexta 烟草天蛾 M. sexta
    (刺激 JH生物合成 stimulate JH biosynthesis)
    [136]
    Neuropeptide F 果蝇 Drosophila 果蝇 Drosophila
    (影响觅食、取食 influence feeding and foraging)
    [137]
    Neuropeptide-like precursor 果蝇 Drosophila 果蝇 Drosophila
    (调控发育 regulate development)
    [138]
    Natalisin 果蝇 Drosophila 果蝇 Drosophila
    (影响繁殖 influence reproduction)
    [139]
    Short neuropeptide F 果蝇 Drosophila (影响取食和生长 influence feeding and growth) [140]
    Bursicon 黑腹果蝇 Drosophila melanogaster 黑腹果蝇 D. melanogaster
    (影响角质层 influence cuticle)
    [141-142]
    GP2, 5 黑腹果蝇 D. melanogaster 黑腹果蝇 D. melanogaster
    (抗利尿 antidiuresis)
    [143-144]
    Partner of bursicon 黑腹果蝇 D. melanogaster 黑腹果蝇 D. melanogaster
    (影响角质层 influence cuticle)
    [143-144]
    Trissin 黑腹果蝇 D. melanogaster 黑腹果蝇 D. melanogaster
    (调节前肠、中肠收缩 regulate foregut-midgut contractions)
    [145]
    CNMamide 黑腹果蝇 D. melanogaster 黑腹果蝇 D. melanogaster [146]
    RY amide 寄生黄蜂 Nasonia vitripennis 寄生黄蜂 N. vitripennis [147]
    CCHamide 桑蚕 Bombyx mori 桑蚕 B. mori
    (影响取食 influence feeding)
    [148]
    Orcokinin 桑蚕 B. mori 桑蚕 B. mori
    (影响肠道功能 influence gut function)
    [149]
    Kinin 马德拉蜚蠊 Leucophaea maderae 马德拉蜚蠊 L.maderae
    (影响肌肉、利尿活动 influence myotropic, diuretic activities)
    [72]
    Pheromone biosynthesis
    Activating neuropeptide
    (PBAN)
    马德拉蜚蠊 L. maderae 马德拉蜚蠊 L.maderae
    (调控信息素生物合成 regulate pheromone biosynthesis)
    [58]
    Sulfakinin 马德拉蜚蠊 L. maderae 马德拉蜚蠊 L.maderae
    (持续兴奋 continued excitement)
    [150]
    Diuretic hormone 31 太平洋折翅蠊 Diploptera punctata 太平洋折翅蠊 D. punctata
    (调节液体分泌 regulate fluid secretion)
    [151]
    AllatostatinA,B,C 蟑螂 Cockroach
    蟋蟀 Cricket
    蛾 Moth
    蟑螂 Cockroach
    蟋蟀 Cricket
    蛾 Moth
    (抑制 JH 合成 inhibit JH synthesis)
    [152-154]
    H17 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [64]
    K15,K24 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [65]
    P5 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [66]
    B1 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [67]
    II12 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [68]
    A6 抑咽侧体素模拟物
    Allatostatin mimic
    太平洋折翅蠊 D. punctata [69]
    K-Aib-1 激肽模拟物 Kinin mimic 豌豆蚜 Acyrthosiphon pisum [83]
    II-1 激肽模拟物 Kinin mimic 大豆蚜 Aphis glycines [84]
    IV-3 等 IV-3 etc. 激肽模拟物 Kinin mimic 大豆蚜 A. glycines [85]
    M1 等 M1 etc. 激肽模拟物 Kinin mimic 大豆蚜 A. glycines [86]
    L25、L7 等 L25, L7 etc. 激肽模拟物 Kinin mimic 大豆蚜 A. glycines [87]
    下载: 导出CSV

    表  2  不同植物来源的杀虫活性多肽及其作用的主要靶标害虫

    Table  2.   The insecticidal peptides from different plants and their main target pests

    多肽名称       
    Name of peptides       
    来源     
    Sources     
    靶标害虫          
    Target pests          
    参考文献
    References
    Kalata (B1,B2) 百花蛇舌草 Oldenlandia affinis 棉铃虫 Helicoverpa armigera [161]
    Kalata (B1,B2,B7,B8) 百花蛇舌草 O. affinis 福寿螺 Pomacea canaliculata [162]
    Kalata (B1,B2,B6,B7) 百花蛇舌草 O. affinis 捻转血矛线虫 Hemonchus contortus
    蛇形毛圆线虫 Trichostrongylus colubriformis
    [163]
    Cycloviolacin ( O2,O3,O13,O19) 香堇菜 Viola odorata 桃蚜 Myzus persicae [164]
    Cycloviolacin O1 香堇菜 V. odorata 福寿螺 P. canaliculata [163]
    Varv A/ Kalata S 香堇菜 V. odorata 捻转血矛线虫 H. contortus
    蛇形毛圆线虫 T. colubriformis
    [170]
    VarvE/Cycloviolacin O12 香堇菜 V. odorata 捻转血矛线虫 H. contortus
    蛇形毛圆线虫 T. colubriformis
    [170]
    Cycloviolacin (H3,O1,O8,O13,
    O14,O15,O16,O24,Y1,Y4,Y5)
    肾叶堇菜 Viola hederacea 捻转血矛线虫 H.contortus
    蛇形毛圆线虫 T. colubriformis
    [170]
    Vhl-1 肾叶堇菜 V. hederacea 捻转血矛线虫 H. contortus
    蛇形毛圆线虫 T. colubriformis
    [170]
    Hypa A 鼠鞭草 Hybanthus parviflorus 地中海实蝇 Ceratitis capitata
    [185]
    Cter M (cliotide T3) 蝴蝶豌豆 Clitorea ternatea 棉铃虫 H. armigera [162]
    Sero-X 蝴蝶豌豆 C. ternatea 棉铃虫 H. armigera
    烟粉虱 Bemesia tabaci
    稻绿蝽 Nezara viridula
    [159]
    Parigidin-Br1 茜草科 Palicourea rigida
    小蔗螟 Diatraea saccharalis
    草地贪夜蛾 Spodoptera frugiperda
    [165]
    PA1b 豌豆 Pisum sativum 米象 Sitophilus oryzae
    谷象 Sitophilus granarius
    玉米象 Sitophylus zeamays
    [172]
    PA1b 豌豆 P. sativum 尖音库蚊 Culex pipiens
    豌豆蚜 Acyrthonsiphon pisum
    [173]
    PA1b 豌豆 P. sativum 埃及伊蚊 Aedes aegypti [174]
    VrCRP 绿豆 Vigna radiata 绿豆象 Callosobruchus chinensis [182]
    VrD1 绿豆 V. radiata 豆象科 Bruchidae [181]
    BrD1 芜菁 Brassica rapa 褐飞虱 Nilaparvata lugens [183]
    Jaburetox-2Ec 刀豆 Canavalia ensiformis 秘鲁皮蠹 Dysdercus peruvianus
    四纹豆象 Callosobruchus maculatus
    草地贪夜蛾 S. frugiperda
    [185]
    下载: 导出CSV
  • [1] ZHAO Y Y, YANG J W, REN J B, et al. Exposure level of neonicotinoid insecticides in the food chain and the evaluation of their human health impact and environmental risk: an overview[J]. Sustainability, 2020, 12(18): 7523. doi: 10.3390/su12187523
    [2] 林涛, 游泳, 郑丽祯, 等. 三种双酰胺类杀虫剂制剂对环境非靶标生物的急性毒性[J]. 农药学学报, 2015, 17(6): 757-762. doi: 10.3969/j.issn.1008-7303.2015.06.018

    LIN T, YOU Y, ZHENG L Z, et al. Acute toxicity of three diamide insecticide preparations to environmental non-target organisms[J]. Chin J Pestic Sci, 2015, 17(6): 757-762. doi: 10.3969/j.issn.1008-7303.2015.06.018
    [3] BOMGARDNER M. Spider venom: an insecticide whose time has come?[J]. C& EN Glob Enterp, 2017, 95(11): 30-31.
    [4] TAM J K, LEE L T, JIN J, et al. Molecular evolution of GPCRs: secretin/secretin receptors[J]. J Mol Endocrinol, 2014, 52(3): T1-14. doi: 10.1530/JME-13-0259
    [5] AKBARIAN M, KHANI A, EGHBALPOUR S, et al. Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action[J]. Int J Mol Sci, 2022, 23(3): 1445. doi: 10.3390/ijms23031445
    [6] MUTTENTHALER M, KING G F, ADAMS D J, et al. Trends in peptide drug discovery[J]. Nat Rev Drug Discov, 2021, 20(4): 309-325. doi: 10.1038/s41573-020-00135-8
    [7] SHAMBHAWI, SRIVASTAVA S, MISHRA A, et al. Biopesticidal potential of cyclotides: an insight[J]. Phytochem Rev, 2022: 1-21.
    [8] BLAND J M, EDWARDS J V, EATON S R, et al. Potential of natural peptidic compounds as leads for novel pesticides[J]. Pestic Sci, 1993, 39(4): 331-340. doi: 10.1002/ps.2780390414
    [9] GÄDE G, GOLDSWORTHY G J. Insect peptide hormones: a selective review of their physiology and potential application for pest control[J]. Pest Manag Sci, 2003, 59(10): 1063-1075. doi: 10.1002/ps.755
    [10] GRESSEL J. Perspective: it is time to consider new ways to attack unpesticidable (undruggable) target sites by designing peptide pesticides[J]. Pest Manag Sci, 2022, 78(6): 2108-2112. doi: 10.1002/ps.6817
    [11] CASEWELL N R, WÜSTER W, VONK F J, et al. Complex cocktails: the evolutionary novelty of venoms[J]. Trends Ecol Evol, 2013, 28(4): 219-229. doi: 10.1016/j.tree.2012.10.020
    [12] ORIVEL J, REDEKER V, LE CAER J P, et al. Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii[J]. J Biol Chem, 2001, 276(21): 17823-17829. doi: 10.1074/jbc.M100216200
    [13] SZOLAJSKA E, POZNANSKI J, FERBER M L, et al. Poneratoxin, a neurotoxin from ant venom[J]. Eur J Biochem, 2004, 271(11): 2127-2136. doi: 10.1111/j.1432-1033.2004.04128.x
    [14] HEEP J, SKALJAC M, GROTMANN J, et al. Identification and functional characterization of a novel insecticidal decapeptide from the myrmicine ant Manica rubida[J]. Toxins, 2019, 11(10): 562. doi: 10.3390/toxins11100562
    [15] QUISTAD G B, NGUYEN Q, BERNASCONI P, et al. Purification and characterization of insecticidal toxins from venom glands of the parasitic wasp, Bracon hebetor[J]. Insect Biochem Mol Biol, 1994, 24(10): 955-961. doi: 10.1016/0965-1748(94)90132-5
    [16] PIEK T, HUE B, LE CORRONC H, et al. Presynaptic block of transmission in the insect cns by mono- and di-galactosyl analogues of vespulakinin 1, a wasp (Paravespula maculifrons) venom neurotoxin[J]. Comp Biochem Physiol C Comp Pharmacol Toxicol, 1993, 105(2): 189-196. doi: 10.1016/0742-8413(93)90193-O
    [17] SCHWARTZ E F, MOURÃO C B F, MOREIRA K G, et al. Arthropod venoms: a vast arsenal of insecticidal neuropeptides[J]. Biopolymers, 2012, 98(4): 385-405. doi: 10.1002/bip.22100
    [18] RIVERA-DE-TORRE E, RIMBAULT C, JENKINS T P, et al. Strategies for heterologous expression, synthesis, and purification of animal venom toxins[J]. Front Bioeng Biotechnol, 2022, 9: 811905. doi: 10.3389/fbioe.2021.811905
    [19] UTKIN Y N. Animal venom studies: Current benefits and future developments[J]. World J Biol Chem, 2015, 6(2): 28-33. doi: 10.4331/wjbc.v6.i2.28
    [20] SAEZ N J, HERZIG V. Versatile spider venom peptides and their medical and agricultural applications[J]. Toxicon, 2019, 158: 109-126. doi: 10.1016/j.toxicon.2018.11.298
    [21] BENDE N S, DZIEMBOROWICZ S, MOBLI M, et al. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a[J]. Nat Commun, 2014, 5: 4350. doi: 10.1038/ncomms5350
    [22] HERZIG V, CRISTOFORI-ARMSTRONG B, ISRAEL M R, et al. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery[J]. Biochem Pharmacol, 2020, 181: 114096. doi: 10.1016/j.bcp.2020.114096
    [23] MUKHERJEE A K, SOLLOD B L, WIKEL S K, et al. Orally active acaricidal peptide toxins from spider venom[J]. Toxicon, 2006, 47(2): 182-187. doi: 10.1016/j.toxicon.2005.10.011
    [24] GUO S D, HERZIG V, KING G F. Dipteran toxicity assays for determining the oral insecticidal activity of venoms and toxins[J]. Toxicon, 2018, 150: 297-303. doi: 10.1016/j.toxicon.2018.06.077
    [25] HARDY M C, DALY N L, MOBLI M, et al. Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula[J]. PLoS One, 2013, 8(9): e73136. doi: 10.1371/journal.pone.0073136
    [26] DOWN R E, FITCHES E C, WILES D P, et al. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Pest Manag Sci, 2006, 62(1): 77-85. doi: 10.1002/ps.1119
    [27] AL-ASMARI A K, KUNNATHODI F, AL SAADON K, et al. Elemental analysis of scorpion venoms[J]. J Venom Res, 2016, 7: 16-20.
    [28] BERMÚDEZ-GUZMÁN M J, JIMÉNEZ-VARGAS J M, POSSANI L D, et al. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus[J]. Toxicon, 2022, 206: 90-102. doi: 10.1016/j.toxicon.2021.12.015
    [29] DENG S Q, CHEN J T, LI W W, et al. Application of the scorpion neurotoxin AaIT against insect pests[J]. Int J Mol Sci, 2019, 20(14): 3467. doi: 10.3390/ijms20143467
    [30] GUREVITZ M, KARBAT I, COHEN L, et al. The insecticidal potential of scorpion β-toxins[J]. Toxicon, 2007, 49(4): 473-489. doi: 10.1016/j.toxicon.2006.11.015
    [31] YU H H, YUE Y, DONG X L, et al. The acaricidal activity of venom from the jellyfish Nemopilema nomurai against the carmine spider mite Tetranychus cinnabarinus[J]. Toxins, 2016, 8(6): 179. doi: 10.3390/toxins8060179
    [32] YU H H, LI R F, WANG X Q, et al. Field experiment effect on Citrus spider mite Panonychus citri of venom from jellyfish Nemopilema nomurai: the potential use of jellyfish in agriculture[J]. Toxins, 2021, 13(6): 411. doi: 10.3390/toxins13060411
    [33] YU H H, LIU X G, DONG X L, et al. Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye[J]. Bioorg Med Chem Lett, 2005, 15(22): 4949-4952. doi: 10.1016/j.bmcl.2005.08.015
    [34] BOSMANS F, TYTGAT J. Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels[J]. Toxicon, 2007, 49(4): 550-560. doi: 10.1016/j.toxicon.2006.11.029
    [35] 刘少华, 杨林, 章晨, 等. 舟山黄海葵杀虫活性多肽的初步研究[J]. 浙江海洋学院学报(自然科学版), 2010, 29(6): 566-571.

    LIU S H, YANG L, ZHANG C, et al. Purification of peptides with insecticidal activity from the venom of sea Anemone Anthopleura xanthogrammica[J]. J Zhejiang Ocean Univ (Nat Sci), 2010, 29(6): 566-571.
    [36] GUR BARZILAI M, KAHN R, REGEV N, et al. The specificity of Av3 sea Anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels[J]. Biochem J, 2014, 463(2): 271-277. doi: 10.1042/BJ20140576
    [37] YAN F, CHENG X, DING X Z, et al. Improved insecticidal toxicity by fusing Cry1Ac of Bacillus thuringiensis with Av3 of Anemonia viridis[J]. Curr Microbiol, 2014, 68(5): 604-609. doi: 10.1007/s00284-013-0516-1
    [38] CHEN J, LIU X M, ZHANG Y. Venom based neural modulators[J]. Exp Ther Med, 2018, 15(1): 615-619.
    [39] LEBBE E K M, PEIGNEUR S, WIJESEKARA I, et al. Conotoxins targeting nicotinic acetylcholine receptors: an overview[J]. Mar Drugs, 2014, 12(5): 2970-3004. doi: 10.3390/md12052970
    [40] BRUCE C, FITCHES E C, CHOUGULE N, et al. Recombinant conotoxin, TxVIA, produced in yeast has insecticidal activity[J]. Toxicon, 2011, 58(1): 93-100. doi: 10.1016/j.toxicon.2011.05.009
    [41] GAO B M, PENG C, LIN B, et al. Screening and validation of highly-efficient insecticidal conotoxins from a transcriptome-based dataset of Chinese tubular cone snail[J]. Toxins, 2017, 9(7): 214. doi: 10.3390/toxins9070214
    [42] 黄翠燕, 彭超, 高炳淼. 海洋多肽CTx-btg01的制备及其杀虫活性研究[J]. 毒理学杂志, 2020, 34(6): 441-444. doi: 10.16421/j.cnki.1002-3127.2020.06.003

    HUANG C Y, PENG C, GAO B M. The preparation and insecticidal activity of marine peptide CTx-btg01[J]. J Toxicol, 2020, 34(6): 441-444. doi: 10.16421/j.cnki.1002-3127.2020.06.003
    [43] KOPEĆ S. Studies on the necessity of the brain for the inception of insect metamorphosis[J]. Biol Bull, 1922, 42: 323-342. doi: 10.2307/1536759
    [44] KRISHNAMOORTHY E, PERUMAL Y, JUSTIN G, et al. Neuropeptides as novel insecticidal agents[J]. Int J Curr Microbiol Appl Sci, 2019, 8(2): 869-878. doi: 10.20546/ijcmas.2019.802.098
    [45] KATAOKA H, NAGASAWA H, ISOGAI A, et al. Prothoracicotropic hormone of the silkworm, Bombyx mori: amino acid sequence and dimeric structure[J]. Agric Biol Chem, 1991, 55(1): 73-86.
    [46] HUA Y J, TANAKA Y, NAKAMURA K, et al. Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori[J]. J Biol Chem, 1999, 274(44): 31169-31173. doi: 10.1074/jbc.274.44.31169
    [47] STAY B. A review of the role of neurosecretion in the control of juvenile hormone synthesis: a tribute to Berta Scharrer[J]. Insect Biochem Mol Biol, 2000, 30(8-9): 653-662. doi: 10.1016/S0965-1748(00)00036-9
    [48] KATAOKA H, TROETSCHLER R G, KRAMER S J, et al. Isolation and primary structure of the eclosion hormone of the tobacco hornworm, Manduca sexta[J]. Biochem Biophys Res Commun, 1987, 146(2): 746-750. doi: 10.1016/0006-291X(87)90592-4
    [49] GIRARDIE J, RICHARD O, HUET J C, et al. Physical characterization and sequence identification of the ovary maturating parsin. A new neurohormone purified from the nervous corpora cardiaca of the African locust (Locusta migratoria migratorioides[J]. Eur J Biochem, 1991, 202(3): 1121-1126. doi: 10.1111/j.1432-1033.1991.tb16479.x
    [50] PREDEL R, NACHMAN R J. The FXPRLamide (pyrokinin/PBAN) peptide family[M]//Handbook of Biologically Active Peptides. Amsterdam: Elsevier, 2006: 207-212.
    [51] COAST G M. Insect diuretic and antidiuretic hormones[M]//Handbook of Biologically Active Peptides. Amsterdam: Elsevier, 2006: 157-162.
    [52] BROWN B E. Proctolin: a peptide transmitter candidate in insects[J]. Life Sci, 1975, 17(8): 1241-1252. doi: 10.1016/0024-3205(75)90133-2
    [53] HOLMAN G M, NACHMAN R J, COAST G M. Isolation, characterization and biological activity of a diuretic myokinin neuropeptide from the housefly, Musca domestica[J]. Peptides, 1999, 20(1): 1-10. doi: 10.1016/S0196-9781(98)00150-8
    [54] NÄSSEL D R, ZANDAWALA M, KAWADA T, et al. Tachykinins: neuropeptides that are ancient, diverse, widespread and functionally pleiotropic[J]. Front Neurosci, 2019, 13: 1262. doi: 10.3389/fnins.2019.01262
    [55] TAYLOR-CLARK T, UNDEM B J. Transduction mechanisms in airway sensory nerves[J]. J Appl Physiol (1985), 2006, 101(3): 950-959. doi: 10.1152/japplphysiol.00222.2006
    [56] STRAND M R, BROWN M R, VOGEL K J. Mosquito peptide hormones: diversity, production, and function[J]. Adv Insect Phys, 2016, 51: 145-188.
    [57] TOBE S S, BENDENA W G. Allatostatins[M]//Handbook of Biologically Active Peptides. Amsterdam: Elsevier, 2013: 191-196.
    [58] NACHMAN R J, KIM Y J, WANG X J, et al. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor[J]. Bioorg Med Chem, 2009, 17(12): 4216-4220. doi: 10.1016/j.bmc.2009.03.036
    [59] HARITON A, BEN-AZIZ O, DAVIDOVITCH M, et al. Bioavailability of backbone cyclic PK/PBAN neuropeptide antagonists: inhibition of sex pheromone biosynthesis elicited by the natural mechanism in Heliothis peltigera females[J]. FEBS J, 2010, 277(4): 1035-1044. doi: 10.1111/j.1742-4658.2009.07547.x
    [60] NACHMAN R J, ROBERTS V A, LANGE A B, et al. Active conformation and mimetic analog development for the pyrokinin-pban-diapause-pupariation and myosuppressin insect neuropeptide families[M]//Phytochemicals for Pest Control: Vol. 658. American Chemical Society, 1997: 277-291.
    [61] NORONHA K F, LANGE A, OSBORNE R. Proctolin analogues and a proctolin metabolite as antagonists of the peptide proctolin 1 1 taken in part from a paper presented at a satellite symposium on insect neuropeptides during the seventh annual neuropeptide conference, February 1–6, 1996, Brecke[J]. Peptides, 1997, 18: 67-72. doi: 10.1016/S0196-9781(96)00235-5
    [62] SCHERKENBECK J, ZDOBINSKY T. Insect neuropeptides: Structures, chemical modifications and potential for insect control[J]. Bioorg Med Chem, 2009, 17(12): 4071-4084. doi: 10.1016/j.bmc.2008.12.061
    [63] KONOPINSKA D. Insect neuropetide proctolin and its analogues. An overview of the present literature[J]. J Pept Res, 1997, 49(6): 457-466.
    [64] KAI Z P, HUANG J, TOBE S S, et al. A potential insect growth regulator: synthesis and bioactivity of an allatostatin mimic[J]. Peptides, 2009, 30(7): 1249-1253. doi: 10.1016/j.peptides.2009.03.010
    [65] KAI Z P, HUANG J, XIE Y, et al. Synthesis, biological activity, and hologram quantitative structure-activity relationships of novel allatostatin analogues[J]. J Agric Food Chem, 2010, 58(5): 2652-2658. doi: 10.1021/jf902156k
    [66] 吴小庆. 抑咽侧体素类似物的设计、合成、生物活性及构效关系研究[D]. 北京: 中国农业大学, 2016

    WU X Q. Design, synthesis, bioactivity and structure-activity relationship of allatostatin analogs[D]. Beijing: China Agricultural University, 2016
    [67] XIE Y, KAI Z P, TOBE S S, et al. Design, synthesis and biological activity of peptidomimetic analogs of insect allatostatins[J]. Peptides, 2011, 32(3): 581-586. doi: 10.1016/j.peptides.2010.10.016
    [68] WANG M Z, ZHANG L, WANG X W, et al. Exploring the N-Terminus region: synthesis, bioactivity and 3D-QSAR of allatostatin analogs as novel insect growth regulators[J]. Chin Chem Lett, 2018, 29(9): 1375-1378. doi: 10.1016/j.cclet.2017.11.022
    [69] WANG M Z, LI X L, CHEN M T, et al. 3D-QSAR based optimization of insect neuropeptide allatostatin analogs[J]. Bioorg Med Chem Lett, 2019, 29(7): 890-895. doi: 10.1016/j.bmcl.2019.02.001
    [70] 汪梅子, 金小宇, 周源琳, 等. 昆虫神经肽抑咽侧体素及其类似物的研究进展[J]. 农药学学报, 2019, 21(3): 255-272. doi: 10.16801/j.issn.1008-7303.2019.0052

    WANG M Z, JIN X Y, ZHOU Y L, et al. Research progress of insect neuropeptide allatostatins and their analogues[J]. Chin J Pestic Sci, 2019, 21(3): 255-272. doi: 10.16801/j.issn.1008-7303.2019.0052
    [71] NACHMAN R J, HOLMAN G M. Myotropic insect neuropeptide families from the cockroach Leucophaea maderae[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1991: 194-214.
    [72] HOLMAN G M, COOK B J, NACHMAN R J. Isolation, primary structure and synthesis of leucokinins VII and VIII: the final members of this new family of cephalomyotropic peptides isolated from head extracts of leucophaea maderae[J]. Comp Biochem Physiol C Comp Pharmacol, 1987, 88(1): 31-34. doi: 10.1016/0742-8413(87)90043-0
    [73] COAST G M, HOLMAN G M, NACHMAN R J. The diuretic activity of a series of cephalomyotropic neuropeptides, the achetakinins, on isolated Malpighian tubules of the house cricket, Acheta domesticus[J]. J Insect Physiol, 1990, 36(7): 481-488. doi: 10.1016/0022-1910(90)90098-Z
    [74] CORNELL M J, WILLIAMS T A, LAMANGO N S, et al. Cloning and expression of an evolutionary conserved single-domain angiotensin converting enzyme from Drosophila melanogaster[J]. J Biol Chem, 1995, 270(23): 13613-13619. doi: 10.1074/jbc.270.23.13613
    [75] ZUBRZAK P, WILLIAMS H, COAST G M, et al. Beta-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis[J]. Biopolymers, 2007, 88(1): 76-82. doi: 10.1002/bip.20638
    [76] NACHMAN R J, STREY A, ISAAC E, et al. Enhanced in vivo activity of peptidase-resistant analogs of the insect kinin neuropeptide family[J]. Peptides, 2002, 23(4): 735-745. doi: 10.1016/S0196-9781(01)00654-4
    [77] NACHMAN R J, ZABROCKI J, OLCZAK J, et al. Cis-peptide bond mimetic tetrazole analogs of the insect kinins identify the active conformation[J]. Peptides, 2002, 23(4): 709-716. doi: 10.1016/S0196-9781(01)00651-9
    [78] NACHMAN R J, HOLMAN G M, HADDON W F. Leads for insect neuropeptide mimetic development[J]. Arch Insect Biochem Physiol, 1993, 22(1-2): 181-197. doi: 10.1002/arch.940220115
    [79] NACHMAN R J, COAST G M, DOUAT C, et al. A C-terminal aldehyde insect kinin analog enhances inhibition of weight gain and induces significant mortality in Helicoverpa zea larvae[J]. Peptides, 2003, 24(10): 1615-1621. doi: 10.1016/j.peptides.2003.06.008
    [80] 黄云. 昆虫激肽硫代类似物: 合成、光致异构化以及构效关系研究[D]. 兰州: 兰州大学, 2008.

    HUANG Y. Thioxo analog of insect kinin: Synthesis, characterization, and conformation-activity correlation study[D]. Lanzhou: Lanzhou University, 2008.
    [81] 张波. 昆虫激肽伪脯氨酸类似物的合成及其构效关系的相关研究[D]. 兰州: 兰州大学, 2009.

    ZHANG B. The study of the pseudoproline(ΨPro) analogs of insect kinin in synthesis and structure-activity relationship[D]. Lanzhou: Lanzhou University, 2009.
    [82] 丛志远. 可光致异构化昆虫激肽的合成、活性及结构研究[D]. 兰州: 兰州大学, 2009.

    CONG Z Y. Synthesis, activity and conformation studies of the photoswitchable insect kinins[D]. Lanzhou: Lanzhou University, 2009.
    [83] SMAGGHE G, MAHDIAN K, ZUBRZAK P, et al. Antifeedant activity and high mortality in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae) induced by biostable insect kinin analogs[J]. Peptides, 2010, 31(3): 498-505. doi: 10.1016/j.peptides.2009.07.001
    [84] ZHANG C L, QU Y Y, WU X Q, et al. Eco-friendly insecticide discovery via peptidomimetics: design, synthesis, and aphicidal activity of novel insect kinin analogues[J]. J Agric Food Chem, 2015, 63(18): 4527-4532. doi: 10.1021/acs.jafc.5b01225
    [85] ZHANG C L, LI X L, SONG D L, et al. Synthesis, aphicidal activity and conformation of novel insect kinin analogues as potential eco-friendly insecticides[J]. Pest Manag Sci, 2020, 76(10): 3432-3439. doi: 10.1002/ps.5721
    [86] ZHOU Y L, ZHANG Y M, ZHANG Y H, et al. Insect kinin mimics act as potential control agents for aphids: structural modifications of Trp 4[J]. J Pept Sci, 2022: 2022Jul28;e3444.
    [87] ZHOU Y L, LI X L, ZHANG Y M, et al. A novel bee-friendly peptidomimetic insecticide: synthesis, aphicidal activity and 3D-QSAR study of insect kinin analogs at Phe 2 modification[J]. Pest Manag Sci, 2022, 78(7): 2952-2963. doi: 10.1002/ps.6920
    [88] CORZO G, ESCOUBAS P, STANKIEWICZ M, et al. Isolation, synthesis and pharmacological characterization of delta-palutoxins IT, novel insecticidal toxins from the spider Paracoelotes luctuosus (Amaurobiidae)[J]. Eur J Biochem, 2000, 267(18): 5783-5795. doi: 10.1046/j.1432-1327.2000.01653.x
    [89] CORZO G, GILLES N, SATAKE H, et al. Distinct primary structures of the major peptide toxins from the venom of the spider Macrothele gigas that bind to sites 3 and 4 in the sodium channel 1[J]. FEBS Lett, 2003, 547(1-3): 43-50. doi: 10.1016/S0014-5793(03)00666-5
    [90] TITAUX-DELGADO G, CARRILLO E, MENDOZA A, et al. Successful refolding and NMR structure of rMagi3: a disulfide-rich insecticidal spider toxin[J]. Protein Sci, 2018, 27(3): 692-701. doi: 10.1002/pro.3363
    [91] OLIVEIRA L C, DE LIMA M E, PIMENTA A M C, et al. PnTx4-3, a new insect toxin from Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction[J]. Toxicon, 2003, 42(7): 793-800. doi: 10.1016/j.toxicon.2003.10.009
    [92] RICHARDSON M, PIMENTA A M C, BEMQUERER M P, et al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2006, 142(3-4): 173-187. doi: 10.1016/j.cbpc.2005.09.010
    [93] WANG X, CONNOR M, SMITH R, et al. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge[J]. Nat Struct Biol, 2000, 7(6): 505-513. doi: 10.1038/75921
    [94] CHONG Y M, HAYES J L, SOLLOD B, et al. The Omega-atracotoxins: Selective blockers of insect M-LVA and HVA calcium channels[J]. Biochem Pharmacol, 2007, 74(4): 623-638. doi: 10.1016/j.bcp.2007.05.017
    [95] FIGUEIREDO S G, GARCIA M E, VALENTIM A C, et al. Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6-1) from the venom of the ‘armed’ spider Phoneutria nigriventer (Keys)[J]. Toxicon, 1995, 33(1): 83-93. doi: 10.1016/0041-0101(94)00130-Z
    [96] KUHN-NENTWIG L, FEDOROVA I M, LÜSCHER B P, et al. A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities[J]. J Biol Chem, 2012, 287(30): 25640-25649. doi: 10.1074/jbc.M112.339051
    [97] DENG M C, LUO X, MENG E, et al. Inhibition of insect calcium channels by huwentoxin-V, a neurotoxin from Chinese tarantula Ornithoctonus huwena venom[J]. Eur J Pharmacol, 2008, 582(1-3): 12-16. doi: 10.1016/j.ejphar.2007.12.014
    [98] CORZO G, BERNARD C, CLEMENT H, et al. Insecticidal peptides from the theraposid spider Brachypelma albiceps: an NMR-based model of Ba2[J]. Biochim Biophys Acta, 2009, 1794(8): 1190-1196. doi: 10.1016/j.bbapap.2009.04.004
    [99] VASSILEVSKI A A, FEDOROVA I M, MALEEVA E E, et al. Novel class of spider toxin: active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide[J]. J Biol Chem, 2010, 285(42): 32293-32302. doi: 10.1074/jbc.M110.104265
    [100] SACHKOVA M Y, SLAVOKHOTOVA A A, GRISHIN E V, et al. Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins[J]. Insect Mol Biol, 2014, 23(4): 527-538. doi: 10.1111/imb.12097
    [101] ZOBEL-THROPP P A, KERINS A E, BINFORD G J. Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin[J]. Toxicon, 2012, 60(3): 265-271. doi: 10.1016/j.toxicon.2012.04.350
    [102] WINDLEY M J, HERZIG V, DZIEMBOROWICZ S A, et al. Spider-venom peptides as bioinsecticides[J]. Toxins, 2012, 4(3): 191-227. doi: 10.3390/toxins4030191
    [103] WINDLEY M J, ESCOUBAS P, VALENZUELA S M, et al. A novel family of insect-selective peptide neurotoxins targeting insect large-conductance calcium-activated K+ channels isolated from the venom of the theraphosid spider Eucratoscelus constrictus[J]. Mol Pharmacol, 2011, 80(1): 1-13. doi: 10.1124/mol.110.070540
    [104] IKONOMOPOULOU M P, SMITH J J, HERZIG V, et al. Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix[J]. Toxicon, 2016, 123: 62-70. doi: 10.1016/j.toxicon.2016.10.013
    [105] CORZO G, VILLEGAS E, GÓMEZ-LAGUNAS F, et al. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins[J]. J Biol Chem, 2002, 277(26): 23627-23637. doi: 10.1074/jbc.M200511200
    [106] ZHONG Y H, SONG B, MO G X, et al. A novel neurotoxin from venom of the spider, Brachypelma albopilosum[J]. PLoS One, 2014, 9(10): e110221. doi: 10.1371/journal.pone.0110221
    [107] MIKOV A N, FEDOROVA I M, POTAPIEVA N N, et al. Ω-tbo-IT1-new inhibitor of insect calcium channels isolated from spider venom[J]. Sci Rep, 2015, 5: 17232. doi: 10.1038/srep17232
    [108] CLEMENT H, FLORES V, DIEGO-GARCIA E, et al. A comparison between the recombinant expression and chemical synthesis of a short cysteine-rich insecticidal spider peptide[J]. J Venom Anim Toxins Incl Trop Dis, 2015, 21: 19. doi: 10.1186/s40409-015-0018-7
    [109] LEI Q, YU H, PENG X Z, et al. Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs[J]. Toxins, 2015, 7(3): 886-899. doi: 10.3390/toxins7030886
    [110] BENDE N S, DZIEMBOROWICZ S, HERZIG V, et al. The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop[J]. FEBS J, 2015, 282(5): 904-920. doi: 10.1111/febs.13189
    [111] ESTRADA G, SILVA A O, VILLEGAS E, et al. Heterologous expression of five disulfide-bonded insecticidal spider peptides[J]. Toxicon, 2016, 119: 152-158. doi: 10.1016/j.toxicon.2016.06.001
    [112] VASSILEVSKI A A, SACHKOVA M Y, IGNATOVA A A, et al. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the Lynx spider Oxyopes takobius[J]. FEBS J, 2013, 280(23): 6247-6261. doi: 10.1111/febs.12547
    [113] HERZIG V, IKONOMOPOULOU M, SMITH J J, et al. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami[J]. Sci Rep, 2016, 6: 29538. doi: 10.1038/srep29538
    [114] JIN L, FANG M Q, CHEN M R, et al. An insecticidal toxin from Nephila clavata spider venom[J]. Amino Acids, 2017, 49(7): 1237-1245. doi: 10.1007/s00726-017-2425-2
    [115] SOUSA S R, WINGERD J S, BRUST A, et al. Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi[J]. PLoS One, 2017, 12(9): e0182848. doi: 10.1371/journal.pone.0182848
    [116] MATSUBARA F H, MEISSNER G O, HERZIG V, et al. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus[J]. Insect Mol Biol, 2017, 26(1): 25-34. doi: 10.1111/imb.12268
    [117] SMITH J J, HERZIG V, IKONOMOPOULOU M P, et al. Insect-active toxins with promiscuous pharmacology from the African theraphosid spider Monocentropus balfouri[J]. Toxins, 2017, 9(5): 155. doi: 10.3390/toxins9050155
    [118] XIAO Z, ZHANG Y X, ZENG J, et al. Purification and characterization of a novel insecticidal toxin, μ-sparatoxin-Hv2, from the venom of the spider Heteropoda venatoria[J]. Toxins, 2018, 10(6): 233. doi: 10.3390/toxins10060233
    [119] DE LIMA M E, MARTIN M F, DINIZ C R, et al. Tityus serrulatus toxin VII bears pharmacological properties of both beta-toxin and insect toxin from scorpion venoms[J]. Biochem Biophys Res Commun, 1986, 139(1): 296-302. doi: 10.1016/S0006-291X(86)80112-7
    [120] ZLOTKIN E, EITAN M, BINDOKAS V P, et al. Functional duality and structural uniqueness of depressant insect-selective neurotoxins[J]. Biochemistry, 1991, 30(19): 4814-4821. doi: 10.1021/bi00233a025
    [121] KOPEYAN C, MANSUELLE P, MARTIN-EAUCLAIRE M F, et al. Characterization of toxin III of the scorpion Leiurus quinquestriatus quinquestriatus: a new type of alpha-toxin highly toxic both to mammals and insects[J]. Nat Toxins, 1993, 1(5): 308-312. doi: 10.1002/nt.2620010510
    [122] BORCHANI L, STANKIEWICZ M, KOPEYAN C, et al. Purification, structure and activity of three insect toxins from Buthus occitanus tunetanus venom[J]. Toxicon, 1997, 35(3): 365-382. doi: 10.1016/S0041-0101(96)00173-0
    [123] BORCHANI L, MANSUELLE P, STANKIEWICZ M, et al. A new scorpion venom toxin paralytic to insects that affects Na+ channel activation. Purification, structure, antigenicity and mode of action[J]. Eur J Biochem, 1996, 241(2): 525-532. doi: 10.1111/j.1432-1033.1996.00525.x
    [124] MEJRI T, BORCHANI L, SRAIRI-ABID N, et al. BotIT6: a potent depressant insect toxin from Buthus occitanus tunetanus venom[J]. Toxicon, 2003, 41(2): 163-171. doi: 10.1016/S0041-0101(02)00246-5
    [125] ESCOUBAS P, STANKIEWICZ M, TAKAOKA T, et al. Sequence and electrophysiological characterization of two insect-selective excitatory toxins from the venom of the Chinese scorpion Buthus martensi[J]. FEBS Lett, 2000, 483(2-3): 175-180. doi: 10.1016/S0014-5793(00)02099-8
    [126] PIMENTA A M, MARTIN-EAUCLAIRE M, ROCHAT H, et al. Purification, amino-acid sequence and partial characterization of two toxins with anti-insect activity from the venom of the South American scorpion Tityus bahiensis (Buthidae)[J]. Toxicon, 2001, 39(7): 1009-1019. doi: 10.1016/S0041-0101(00)00240-3
    [127] ALI S A, STOEVA S, GROSSMANN J G, et al. Purification, characterization, and primary structure of four depressant insect-selective neurotoxin analogs from scorpion (Buthus sindicus) venom[J]. Arch Biochem Biophys, 2001, 391(2): 197-206. doi: 10.1006/abbi.2001.2363
    [128] XU C Q, BRÔNE B, WICHER D, et al. BmBKTx1, a novel Ca2 + -activated K+ channel blocker purified from the Asian scorpion Buthus martensi Karsch[J]. J Biol Chem, 2004, 279(33): 34562-34569. doi: 10.1074/jbc.M312798200
    [129] ARNON T, POTIKHA T, SHER D, et al. BjalphaIT: a novel scorpion alpha-toxin selective for insects: unique pharmacological tool[J]. Insect Biochem Mol Biol, 2005, 35(3): 187-195. doi: 10.1016/j.ibmb.2004.11.005
    [130] KOZMINSKY-ATIAS A, SOMECH E, ZILBERBERG N. Isolation of the first toxin from the scorpion Buthus occitanus israelis showing preference for Shaker potassium channels[J]. FEBS Lett, 2007, 581(13): 2478-2484. doi: 10.1016/j.febslet.2007.04.065
    [131] SMITH J J, HILL J M, LITTLE M J, et al. Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif[J]. Proc Natl Acad Sci USA, 2011, 108(26): 10478-10483. doi: 10.1073/pnas.1103501108
    [132] KRÄMER J, LÜDDECKE T, MARNER M, et al. Antimicrobial, insecticidal and cytotoxic activity of linear venom peptides from the pseudoscorpion Chelifer cancroides[J]. Toxins, 2022, 14(1): 58. doi: 10.3390/toxins14010058
    [133] JACOBSSON E, ANDERSSON H S, STRAND M, et al. Peptide ion channel toxins from the bootlace worm, the longest animal on Earth[J]. Sci Rep, 2018, 8(1): 4596. doi: 10.1038/s41598-018-22305-w
    [134] SIEGERT K J. Locust corpora cardiaca contain an inactive adipokinetic hormone[J]. FEBS Lett, 1999, 447(2-3): 237-240. doi: 10.1016/S0014-5793(99)00299-9
    [135] EIGENHEER R A, NICOLSON S W, SCHEGG K M, et al. Identification of a potent antidiuretic factor acting on beetle Malpighian tubules[J]. Proc Natl Acad Sci USA, 2002, 99(1): 84-89. doi: 10.1073/pnas.012436199
    [136] KATAOKA H, TOSCHI A, LI J P, et al. Identification of an allatotropin from adult Manduca sexta[J]. Science, 1989, 243(4897): 1481-1483. doi: 10.1126/science.243.4897.1481
    [137] BROWN M R, CRIM J W, ARATA R C, et al. Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family[J]. Peptides, 1999, 20(9): 1035-1042. doi: 10.1016/S0196-9781(99)00097-2
    [138] BAGGERMAN G, CERSTIAENS A, DE LOOF A, et al. Peptidomics of the larval Drosophila melanogaster central nervous system[J]. J Biol Chem, 2002, 277(43): 40368-40374. doi: 10.1074/jbc.M206257200
    [139] JIANG H B, LKHAGVA A, DAUBNEROVÁ I, et al. Natalisin, a tachykinin-like signaling system, regulates sexual activity and fecundity in insects[J]. Proc Natl Acad Sci USA, 2013, 110(37): E3526-E3534.
    [140] NÄSSEL D R, WEGENER C. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling?[J]. Peptides, 2011, 32(6): 1335-1355. doi: 10.1016/j.peptides.2011.03.013
    [141] LUO C W, DEWEY E M, SUDO S, et al. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2[J]. Proc Natl Acad Sci USA, 2005, 102(8): 2820-2825. doi: 10.1073/pnas.0409916102
    [142] MENDIVE F M, VAN LOY T, CLAEYSEN S, et al. Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2[J]. FEBS Lett, 2005, 579(10): 2171-2176. doi: 10.1016/j.febslet.2005.03.006
    [143] SUDO S, KUWABARA Y, PARK J I, et al. Heterodimeric fly glycoprotein hormone-α2 (GPA2) and glycoprotein hormone-β5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5[J]. Endocrinology, 2005, 146(8): 3596-3604. doi: 10.1210/en.2005-0317
    [144] HSU S Y, NAKABAYASHI K, BHALLA A. Evolution of glycoprotein hormone subunit genes in bilateral Metazoa: identification of two novel human glycoprotein hormone subunit family genes, GPA2 and GPB5[J]. Mol Endocrinol, 2002, 16(7): 1538-1551. doi: 10.1210/mend.16.7.0871
    [145] IDA T, TAKAHASHI T, TOMINAGA H, et al. Identification of the endogenous cysteine-rich peptide trissin, a ligand for an orphan G protein-coupled receptor in Drosophila[J]. Biochem Biophys Res Commun, 2011, 414(1): 44-48. doi: 10.1016/j.bbrc.2011.09.018
    [146] JUNG S H, LEE J H, CHAE H S, et al. Identification of a novel insect neuropeptide, CNMa and its receptor[J]. FEBS Lett, 2014, 588(12): 2037-2041. doi: 10.1016/j.febslet.2014.04.028
    [147] HAUSER F, NEUPERT S, WILLIAMSON M, et al. Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis[J]. J Proteome Res, 2010, 9(10): 5296-5310. doi: 10.1021/pr100570j
    [148] ROLLER L, YAMANAKA N, WATANABE K, et al. The unique evolution of neuropeptide genes in the silkworm Bombyx mori[J]. Insect Biochem Mol Biol, 2008, 38(12): 1147-1157. doi: 10.1016/j.ibmb.2008.04.009
    [149] YAMANAKA N, ROLLER L, ZITŇAN D, et al. Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis[J]. J Comp Neurol, 2011, 519(2): 238-246. doi: 10.1002/cne.22517
    [150] NACHMAN R J, HOLMAN G M, HADDON W F, et al. Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin[J]. Science, 1986, 234(4772): 71-73. doi: 10.1126/science.3749893
    [151] FURUYA K, MILCHAK R J, SCHEGG K M, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects[J]. PNAS, 2000, 97(12): 6469-6474. doi: 10.1073/pnas.97.12.6469
    [152] WOODHEAD A P, STAY B, SEIDEL S L, et al. Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis[J]. PNAS, 1989, 86(15): 5997-6001. doi: 10.1073/pnas.86.15.5997
    [153] LORENZ M W, KELLNER R, HOFFMANN K H. A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus[J]. J Biol Chem, 1995, 270(36): 21103-21108. doi: 10.1074/jbc.270.36.21103
    [154] KRAMER S J, TOSCHI A, MILLER C A, et al. Identification of an allatostatin from the tobacco hornworm Manduca sexta[J]. Proc Natl Acad Sci USA, 1991, 88(21): 9458-9462. doi: 10.1073/pnas.88.21.9458
    [155] GRUBER C W, CEMAZAR M, ANDERSON M A, et al. Insecticidal plant cyclotides and related cystine knot toxins[J]. Toxicon, 2007, 49(4): 561-575. doi: 10.1016/j.toxicon.2006.11.018
    [156] COLGRAVE M L, CRAIK D J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot[J]. Biochemistry, 2004, 43(20): 5965-5975. doi: 10.1021/bi049711q
    [157] CRAIK D J. Discovery and applications of the plant cyclotides[J]. Toxicon, 2010, 56(7): 1092-1102. doi: 10.1016/j.toxicon.2010.02.021
    [158] GROVER T, MISHRA R, BUSHRA, et al. An insight into biological activities of native cyclotides for potential applications in agriculture and pharmaceutics[J]. Peptides, 2021, 135: 170430. doi: 10.1016/j.peptides.2020.170430
    [159] OGUIS G K, GILDING E K, JACKSON M A, et al. Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine[J]. Front Plant Sci, 2019, 10: 645. doi: 10.3389/fpls.2019.00645
    [160] JENNINGS C, WEST J, WAINE C, et al. Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis[J]. Proc Natl Acad Sci USA, 2001, 98(19): 10614-10619. doi: 10.1073/pnas.191366898
    [161] JENNINGS C V, ROSENGREN K J, DALY N L, et al. Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do möbius strips exist in nature?[J]. Biochemistry, 2005, 44(3): 851-860. doi: 10.1021/bi047837h
    [162] POTH A G, COLGRAVE M L, LYONS R E, et al. Discovery of an unusual biosynthetic origin for circular proteins in legumes[J]. Proc Natl Acad Sci USA, 2011, 108(25): 10127-10132. doi: 10.1073/pnas.1103660108
    [163] PLAN M R R, SASKA I, CAGAUAN A G, et al. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail)[J]. J Agric Food Chem, 2008, 56(13): 5237-5241. doi: 10.1021/jf800302f
    [164] COLGRAVE M L, KOTZE A C, KOPP S, et al. Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms[J]. Acta Trop, 2009, 109(2): 163-166. doi: 10.1016/j.actatropica.2008.11.003
    [165] PINTO M F S, FENSTERSEIFER I C M, MIGLIOLO L, et al. Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane[J]. J Biol Chem, 2012, 287(1): 134-147. doi: 10.1074/jbc.M111.294009
    [166] DANCEWICZ K, SLAZAK B, KIEŁKIEWICZ M, et al. Behavioral and physiological effects of Viola spp. cyclotides on Myzus persicae (Sulz.)[J]. J Insect Physiol, 2020, 122: 104025. doi: 10.1016/j.jinsphys.2020.104025
    [167] HENRIQUES S T, HUANG Y H, CHAOUSIS S, et al. The prototypic cyclotide kalata B1 has a unique mechanism of entering cells[J]. Chem Biol, 2015, 22(8): 1087-1097. doi: 10.1016/j.chembiol.2015.07.012
    [168] BARBETA B L, MARSHALL A T, GILLON A D, et al. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae[J]. Proc Natl Acad Sci USA, 2008, 105(4): 1221-1225. doi: 10.1073/pnas.0710338104
    [169] SLAZAK B, JĘDRZEJSKA A, BADYRA B, et al. The involvement of cyclotides in mutual interactions of violets and the two-spotted spider mite[J]. Sci Rep, 2022, 12(1): 1914. doi: 10.1038/s41598-022-05461-y
    [170] COLGRAVE M L, KOTZE A C, HUANG Y H, et al. Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep[J]. Biochemistry, 2008, 47(20): 5581-5589. doi: 10.1021/bi800223y
    [171] 王建和. 生物活性肽PA1b分布及作用机理研究[D]. 武汉: 华中科技大学, 2006.

    WANG J H. Investigation distribution and action mechanism of the bioactive peptide PA1b[D]. Wuhan: Huazhong University of Science and Technology, 2006.
    [172] EYRAUD V, BALMAND S, KARAKI L, et al. The interaction of the bioinsecticide PA1b (Pea Albumin 1 subunit b) with the insect V-ATPase triggers apoptosis[J]. Sci Rep, 2017, 7(1): 4902. doi: 10.1038/s41598-017-05315-y
    [173] EYRAUD V, KARAKI L, RAHIOUI I, et al. Expression and biological activity of the cystine knot bioinsecticide PA1b (Pea Albumin 1 Subunit b)[J]. PLoS One, 2013, 8(12): e81619. doi: 10.1371/journal.pone.0081619
    [174] GRESSENT F, DUPORT G, RAHIOUI I, et al. Biological activity and binding site characteristics of the PA1b Entomotoxin on insects from different orders[J]. J Insect Sci, 2007, 7: 1-10.
    [175] CHOUABE C, EYRAUD V, DA SILVA P, et al. New mode of action for a knottin protein bioinsecticide: Pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase[J]. J Biol Chem, 2011, 286(42): 36291-36296. doi: 10.1074/jbc.M111.281055
    [176] COTTER K, STRANSKY L, MCGUIRE C, et al. Recent insights into the structure, regulation, and function of the V-ATPases[J]. Trends Biochem Sci, 2015, 40(10): 611-622. doi: 10.1016/j.tibs.2015.08.005
    [177] WIECZOREK H, BEYENBACH K W, HUSS M, et al. Vacuolar-type proton pumps in insect epithelia[J]. J Exp Biol, 2009, 212(Pt 11): 1611-1619.
    [178] MUENCH S P, RAWSON S, EYRAUD V, et al. PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism[J]. J Biol Chem, 2014, 289(23): 16399-16408. doi: 10.1074/jbc.M113.541250
    [179] DA SILVA P, RAHIOUI I, LAUGIER C, et al. Molecular requirements for the insecticidal activity of the plant peptide pea albumin 1 subunit b (PA1b)[J]. J Biol Chem, 2010, 285(43): 32689-32694. doi: 10.1074/jbc.M110.147199
    [180] RAHIOUI I, EYRAUD V, KARAKI L, et al. Host range of the potential biopesticide Pea Albumin 1b (PA1b) is limited to insects[J]. Toxicon, 2014, 89: 67-76. doi: 10.1016/j.toxicon.2014.07.004
    [181] LIU Y J, CHENG C S, LAI S M, et al. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids[J]. Proteins Struct Funct Bioinform, 2006, 63(4): 777-786. doi: 10.1002/prot.20962
    [182] CHEN K C, LIN C Y, KUAN C C, et al. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid[J]. J Agric Food Chem, 2002, 50(25): 7258-7263. doi: 10.1021/jf020527q
    [183] CHOI M S, KIM Y H, PARK H M, et al. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices[J]. Mol Cells, 2009, 28(2): 131-137. doi: 10.1007/s10059-009-0117-9
    [184] CARLINI C R, GROSSI-DE-SÁ M F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides[J]. Toxicon, 2002, 40(11): 1515-1539. doi: 10.1016/S0041-0101(02)00240-4
    [185] MULINARI F, STANISÇUASKI F, BERTHOLDO-VARGAS L R, et al. Jaburetox-2Ec: an insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis[J]. Peptides, 2007, 28(10): 2042-2050. doi: 10.1016/j.peptides.2007.08.009
    [186] DUBOS R J. Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent. Its activity in vitro[J]. J Exp Med, 1939, 70(1): 1-10. doi: 10.1084/jem.70.1.1
    [187] 胡琼波, 任顺祥. 绿僵菌素的研究进展[J]. 中国生物防治, 2004, 20(4): 234-242.

    HU Q B, REN S X. Review of destruxins of Metarhizium anisopliae sorokin[J]. Chin J Biol Control, 2004, 20(4): 234-242.
    [188] MOCHIZUKI K, OHMORI K, TAMURA H, et al. The structures of bioactive cyclodepsipeptides, beauveriolides I and II, metabolites of entomopathogenic Fungi Beauveria sp.[J]. Bull Chem Soc Jpn, 1993, 66(10): 3041-3046. doi: 10.1246/bcsj.66.3041
    [189] DU F Y, LI X M, ZHANG P, et al. Cyclodepsipeptides and other O-containing heterocyclic metabolites from Beauveria felina EN-135, a marine-derived entomopathogenic fungus[J]. Mar Drugs, 2014, 12(5): 2816-2826. doi: 10.3390/md12052816
    [190] WANG X H, LI Y Y, ZHANG X P, et al. Structural diversity and biological activities of the cyclodipeptides from fungi[J]. Molecules, 2017, 22(12): 2026. doi: 10.3390/molecules22122026
    [191] WANG X H, GONG X, LI P, et al. Structural diversity and biological activities of cyclic depsipeptides from fungi[J]. Molecules, 2018, 23(1): 169. doi: 10.3390/molecules23010169
    [192] MOHAMED-BENKADA M, FRANÇOIS POUCHUS Y, VÉRITÉ P, et al. Identification and biological activities of long-chain peptaibols produced by a marine-derived strain of Trichoderma longibrachiatum[J]. Chem Biodivers, 2016, 13(5): 521-530. doi: 10.1002/cbdv.201500159
    [193] XU L J, LIANG K K, DUAN B S, et al. A novel insecticidal peptide SLP1 produced by Streptomyces laindensis H008 against Lipaphis erysimi[J]. Molecules, 2016, 21(8): 1101. doi: 10.3390/molecules21081101
    [194] MOREIRA E A, REZENDE-TEIXEIRA P, ALBERNAZ L C, et al. Marine bacteria from the southeast coast of Brazil as a source of insecticidal compounds[J]. Revista Brasileira De Farmacognosia, 2022: 1-10.
    [195] NOBEL PRIZES: Merrifield wins chemistry award[J]. Chem Eng News Archive, 1984, 62(43): 6-7.
    [196] NARAYANI M, BABU R, CHADHA A, et al. Production of bioactive cyclotides: a comprehensive overview[J]. Phytochem Rev, 2020, 19(4): 787-825. doi: 10.1007/s11101-020-09682-9
    [197] 曲朋, 宋利, 赵好冬, 等. 多肽合成研究进展[J]. 中国现代中药, 2015, 17(3): 285-289. doi: 10.13313/j.issn.1673-4890.2015.3.023

    QU P, SONG L, ZHAO H D, et al. Research progress of peptide synthesis[J]. Mod Chin Med, 2015, 17(3): 285-289. doi: 10.13313/j.issn.1673-4890.2015.3.023
    [198] 谭海军, 童益利. 新型多肽类生物杀虫剂GS-ω/κ-HXTX-Hv1a的研究开发与应用进展[J]. 世界农药, 2022, 44(7): 29-40. doi: 10.16201/j.cnki.cn10-1660/tq.2022.07.04

    TAN H J, TONG Y L. Progress of research, development and application on GS-Omega/kappa-HXTX-Hv1a, a new polypeptide biological insecticide[J]. World Pestic, 2022, 44(7): 29-40. doi: 10.16201/j.cnki.cn10-1660/tq.2022.07.04
    [199] NAKASU E Y T, EDWARDS M G, FITCHES E, et al. Transgenic plants expressing ω-ACTX-Hv1a and snowdrop lectin (GNA) fusion protein show enhanced resistance to aphids[J]. Front Plant Sci, 2014, 5: 673.
    [200] HERZIG V, BENDE N S, ALAM Md S, et al. Chapter Eight - Methods for deployment of spider venom peptides as bioinsecticides[M]//DHADIALLA T S, GILL S S. Advances in Insect Physiology: Vol. 47. Academic Press, 2014: 389-411.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  16
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-24
  • 录用日期:  2022-09-23
  • 网络出版日期:  2022-09-27
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回