• 百种中国杰出学术期刊
  • 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国高校精品科技期刊
  • 中国国际影响力优秀学术期刊
  • 中国科技核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

农药制剂研发的精细化、功能化与农业生产高效利用

马英剑 甄硕 孙喆 于萌 赵锐 郭鑫宇 徐勇 吴学民

马英剑, 甄硕, 孙喆, 于萌, 赵锐, 郭鑫宇, 徐勇, 吴学民. 农药制剂研发的精细化、功能化与农业生产高效利用[J]. 农药学学报, 2022, 24(5): 1080-1098. doi: 10.16801/j.issn.1008-7303.2022.0115
引用本文: 马英剑, 甄硕, 孙喆, 于萌, 赵锐, 郭鑫宇, 徐勇, 吴学民. 农药制剂研发的精细化、功能化与农业生产高效利用[J]. 农药学学报, 2022, 24(5): 1080-1098. doi: 10.16801/j.issn.1008-7303.2022.0115
MA Yingjian, ZHEN Shuo, SUN Zhe, YU Meng, ZHAO Rui, GUO Xinyu, XU Yong, WU Xuemin. Refinement and functionalization of pesticide formulation research and development and efficient utilization in agricultural production[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1080-1098. doi: 10.16801/j.issn.1008-7303.2022.0115
Citation: MA Yingjian, ZHEN Shuo, SUN Zhe, YU Meng, ZHAO Rui, GUO Xinyu, XU Yong, WU Xuemin. Refinement and functionalization of pesticide formulation research and development and efficient utilization in agricultural production[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 1080-1098. doi: 10.16801/j.issn.1008-7303.2022.0115

农药制剂研发的精细化、功能化与农业生产高效利用

doi: 10.16801/j.issn.1008-7303.2022.0115
详细信息
    作者简介:

    马英剑,mayingjian98@163.com

    通讯作者:

    徐勇,cauxy@cau.edu.cn

    吴学民,wuxuemin@cau.edu.cn

  • 中图分类号: TQ450.6

Refinement and functionalization of pesticide formulation research and development and efficient utilization in agricultural production

  • 摘要: 农药制剂作为农药的最终使用形式,其质量和性能对农药药效发挥和高效利用至关重要。近年来,随着人们环保意识和要求的提高以及科技水平的发展,伴随着有害生物种类和发生规律、种植结构、植保策略、土地集约化以及劳动力结构等因素的不断变化,推动了我国农药制剂的创新,一些新的理论、剂型、加工技术、表征手段和施药方式相继出现,农药制剂开发的精细化、功能化以及农药的高效利用成为主要发展方向。本文从农药制剂加工的精细化、功能化发展以及农业实际生产需求对农药制剂创新的推动等方面,对我国农药制剂的研究发展情况进行了较全面的介绍,并分析了其中有待解决的问题以及未来发展方向,旨在为绿色、高效的功能化农药制剂的研发提供参考。
  • 图  1  吡唑醚菌酯吸附分散剂550S前后的XPS全扫描测量谱图[7]

    注:a:吸附前;b:吸附后。

    Figure  1.  XPS full scan measurement spectrum of pyraclostrobin before and after adsorption dispersant 550S[7]

    Note:a: Before adsorption;b: After adsorption。

    图  2  采用多重光散射技术表征不同乳化剂制成的阿维菌素纳米乳状液的稳定性

    a:乳化剂EL-10;b:乳化剂EL-20;c:乳化剂EL-40;d:乳化剂EL-60。

    Figure  2.  Characterization of stability of avermectin nanoemulsion formed by different emulsifiers by multiple light scattering

    a: Emulsifier EL-10;b: Emulsifier EL-20;c: Emulsifier EL-40;d: Emulsifier EL-60.

    图  3  两种晶型吡唑醚菌酯颗粒吸附分散剂 2700 前后的扫描电镜照片[5]

    Figure  3.  SEM microscopic images of the two pyraclostrobin crystals before and after adsorption of dispersant 2700[5]

    图  4  液滴撞击叶片表面后的行为[23]

    Figure  4.  Behavior of a droplet after impacting the leaf surface[23]

    图  5  五种难润湿表面模型[28]

    A:Wenzel 态;B:Cassie 态;C:Wenzel-Cassie 态;D:“莲花”态;E:“壁虎”态以及自然界中难润湿的几种常见表面 (a:花瓣;b:蝴蝶;c:水黾;d:荷叶;e:壁虎)。

    Figure  5.  Five typical cases for anti-wetting surfaces[28]

    A: Wenzel state; B: Cassie state; C: Wenzel–Cassie state; D: "Lotus" state; E: "Gecko" state and several common surface for anti-wetting in nature(a: petal; b: butterfly; c: strider; d: lotus leaf; e: gecko).

    图  6  使用SERS监测噻菌灵对活罗勒叶的渗透的示意图[42]

    Figure  6.  Shematic illustration of monitoring of thiabendazole penetration on live basil leaves using the SERS mapping technique following the removal of thiabendazole surface residues by rinsing[42]

    图  7  不同粒径纳米颗粒在水稻根部的渗透吸收行为[39]

    A. CK;B. Cy5;C. 纳米颗粒,D50 = 97.87 nm;D. 纳米颗粒,D50 = 478.41 nm;E. 纳米颗粒,D50 = 2322.15 nm。

    Figure  7.  Permeation and absorption behavior of nanoparticles with different sizes in rice roots[39]

    A. CK; B. Cy5; C. nanoparticles with D50 97.87 nm; D. nanoparticles with D50 478.41 nm; E. nanoparticles with D50 2322.15 nm.

    图  8  使用气吹式侧深施肥插秧机撒施缓释颗粒剂田间试验(左) 及缓释颗粒剂在土表散落状态(右) [97]

    Figure  8.  Field experiments for mechanical broadcasting of slow-release oxadiazon-fertilizer granule using improved multifunctional rice transplanter (left) and the scattered effect of the granules on the soil surface (right) [97]

    图  9  植保无人飞机应用中的多个环节[77]

    Figure  9.  Several aspects that need to be improved in unmanned aerial vehicles plant protection[77]

    图  10  2011至2020年每年药肥登记数量

    Figure  10.  Annual registration number of pesticide & fertilizer from 2011 to 2020

    图  11  登记药肥产品的主要有效成分

    Figure  11.  Main active ingredients of registered pesticide & fertilizer products

    表  1  微囊制剂主要品种

    Table  1.   The main varieties of microcapsules formulation

    农药类别  
    Pesticides type  
    产品个数
    Number of products
    比例
    Percentage/%
    主要品种
    The main varieties
    杀虫剂
    Insecticide
    177 57.8 高效氯氟氰菊酯、高效氯氰菊酯、毒死蜱、辛硫磷、阿维菌素、甲氨基阿维菌素苯甲酸盐、噻唑膦、噻虫啉、吡虫啉、丁硫克百威等
    lambda-cyhalothrin, beta-cypermethrin, chlorpyrifos, phoxim, abamectin, emamectin benzoate, fosthiazate, thiacloprid, imidacloprid, carbosulfan, etc.
    杀菌剂
    Fungicide
    45 14.7 吡唑醚菌酯、嘧菌酯、咪鲜胺、枯草芽孢杆菌、阿维菌素、噻唑膦、三唑磷、稻瘟酰胺等
    pyraclostrobin, azoxystrobin, prochloraz, Bacillus subtilis, abamectin, fosthiazate, triazophos, fenoxanil, etc.
    除草剂
    Herbicide
    38 12.4 二甲戊灵、甲草胺、乙草胺、丁草胺、异噁草松、野麦畏、2 甲 4 氯异辛酯、精异丙甲草胺、丙炔噁草酮等
    pendimethalin, alachlor, acetochlor, butachlor, clomazone, triallate, MCPA-isooctyl ester, S-metolachlor, oxadiargyl, etc.
    卫生杀虫剂
    Sanitary insecticide
    34 11.1 联苯菊酯、高效氯氟氰菊酯、高效氯氰菊酯、高效氟氯氰菊酯、右旋苯醚氰菊酯、氟氯氰菊酯、甲基嘧啶磷、S-烯虫酯等
    bifenthrin, lambda-cyhalothrin, beta-cypermethrin, beta-cyfluthrin, d-cyphenothrin, cyfluthrin, pirimiphos-methyl, S-methoprene, etc.
    植物生长调节剂
    Plant growth regulator
    8 2.6 1-甲基环丙烯、24-表芸苔素内酯等
    1-methylcyclopropene, 24-epibrassinolide, etc.
    种子处理剂
    Seed treatment agent
    4 1.3 辛硫磷、吡唑醚菌酯、高效氯氟氰菊酯
    phoxim, pyraclostrobin, lambda-cyhalothrin
    下载: 导出CSV

    表  2  用于加工农药微囊制剂的材料[47-48]

    Table  2.   Materials for processing pesticides microcapsules formulation [47-48]

    类别
    Type
    名称
    Name
    有机高分子材料
    Organic polymer materials
    天然高分子材料
    Natural polymer materials
    阿拉伯胶、明胶、海藻酸钠、淀粉、甲壳素、动植物磷脂质、玉米醇溶蛋白等
    Gum arabic, gelatin, sodium alginate, starch, chitin, animal and plant phospholipids, zein, etc.
    改性天然高分子材料
    Modified natural polymer materials
    甲基纤维素、乙基纤维素、羧甲基纤维素、邻苯二甲酸纤维素、琥珀酸醋酸纤维素、改性淀粉、壳聚糖、改性壳聚糖、改性木质素等
    Methyl cellulose, ethyl cellulose, carboxymethyl cellulose, cellulose phthalate, cellulose acetate succinate, modified starch, chitosan, modified chitosan, modified lignin, etc.
    人工合成高分子材料
    Synthetic polymer materials
    脲醛树脂、密胺树脂、聚氨酯、聚脲、聚乳酸、聚甲基丙烯酸酯、聚乙二醇、聚丙烯酸酯、聚苯乙烯等
    Urea-formaldehyde resins, mylamine resins, polyurethane, polyurea, polylactic acid, polymethacrylate, polyethylene glycol, polyacrylate, polystyrene, etc.
    无机材料
    Inorganic materials
    硅基、钙基材料
    Silica-based and calcium-based materials
    介孔二氧化硅、碳酸钙等
    Mesoporous silica, calcium carbonate, etc.
    矿物材料
    Mineral material
    蒙脱石、海泡石、坡缕石等
    Montmorillonite, seafoam, wollastonite, etc.
    有机无机掺杂
    Organic inorganic doping
    金属有机材料
    Metal organic materials
    金属有机框架、共价有机框架等
    Metal-organic frame, covalent organic frame, etc
    下载: 导出CSV
  • [1] 罗其友, 刘洋, 唐华俊, 等. 新时期我国农业结构调整战略研究[J]. 中国工程科学, 2018(5): 31-38.

    LUO Q Y, LIU Y, TANG H J, et al. Strategic study on agricultural structure adjustment in China in the new era[J]. Eng Sci, 2018(5): 31-38.
    [2] 程雪健, 郑丽, 曹立冬, 等. 农药缓释颗粒剂载体材料类型及应用研究进展[J]. 农药学学报, 2022, 24(1): 1-12. doi: 10.16801/j.issn.1008-7303.2021.0168

    CHENG X J, ZHENG L, CAO L D, et al. Types of carrier materials and application research progress of pesticide controlled-release granules[J]. Chin J Pestic Sci, 2022, 24(1): 1-12. doi: 10.16801/j.issn.1008-7303.2021.0168
    [3] 闵海燕, 朱俊朋. 农药制剂加工厂的规划建设要点及过程管控[J]. 化工管理, 2022(4): 161-163. doi: 10.19900/j.cnki.ISSN1008-4800.2022.04.044

    MIN H Y, ZHU J P. Key points of planning construction and process control of pesticide preparation processing plant[J]. Chem Enterp Manag, 2022(4): 161-163. doi: 10.19900/j.cnki.ISSN1008-4800.2022.04.044
    [4] 陈维韬. 嘧菌酯、噻虫嗪悬浮剂配方筛选与形成机制研究[D]. 北京: 中国农业大学, 2016.

    CHEN W T. Study on formulation screening and formation mechanism of azoxystrobin and thiamethoxam suspending agents [D]. Beijing: China Agricultural University, 2016.
    [5] WANG L Y, GAO C, FENG J G, et al. Adsorption properties of comb-shaped polycarboxylate dispersant onto different crystal pyraclostrobin particle surfaces[J]. Molecules, 2020, 25(23): E5637. doi: 10.3390/molecules25235637
    [6] 王丽颖, 姜震东, 徐勇, 等. 萘磺酸盐分散剂在不同晶型吡唑醚菌酯颗粒表面吸附性能[J]. 化工学报, 2018(6): 2540-2550.

    WANG L Y, JIANG Z D, XU Y, et al. Adsorption properties of naphthalenesulfonate dispersant onto different crystal pyraclostrobin particle surfaces[J]. Ciesc J, 2018(6): 2540-2550.
    [7] 王丽颖. 两种农药非均相固液分散体系稳定性机理研究[D]. 北京: 中国农业大学, 2018.

    WANG L Y. Study on stability mechanism of two pesticides in heterogeneous solid-liquid dispersion[D]. Beijing: China Agricultural University, 2018.
    [8] WINZELER H B, VOGEL R, DUDLER A, et al. 流变学测试应用于胶悬剂开发和质量控制[J]. 农药工业译丛, 1980, 6: 1-6.

    WINZELER H B, VOGEL R, DUDLER A, et al. Rheology testing for gel suspension development and quality control[J]. Pestic Ind Transl Ser, 1980, 6: 1-6.
    [9] 何林, 慕立义. 农药悬浮剂物理稳定性的预测和评价[J]. 农药科学与管理, 2001(5): 10-12. doi: 10.3969/j.issn.1002-5480.2001.05.004

    HE L, MU L Y. Forecast and evaluation about physical stability of suspension concentrate[J]. Pestic Sci Adm, 2001(5): 10-12. doi: 10.3969/j.issn.1002-5480.2001.05.004
    [10] 吴刚. 材料结构表征与应用[M]. 北京: 化学工业出版社, 2002.

    WU G. Material structure characterization and application[M]. Beijing: Chemical Industry Press, 2002.
    [11] BRIGGS D. X 射线与紫外光电子能谱[M]. 北京: 北京大学出版社, 1984.

    BRIGGS D. X-ray and ultraviolet photoelectron spectroscopy[M]. Beijing: Peking University Press, 1984.
    [12] 冯建国, 张小军, 何羽薇, 等. 多重光散射技术及其在农药制剂稳定性研究中的应用[J]. 农药科学与管理, 2014(12): 56-59. doi: 10.3969/j.issn.1002-5480.2014.12.013

    FENG J G, ZHANG X J, HE Y W, et al. Multiple light scattering technology and its application in study on pesticide formulation stability[J]. Pestic Sci Adm, 2014(12): 56-59. doi: 10.3969/j.issn.1002-5480.2014.12.013
    [13] FENG J G, CHEN W, LIU Q, et al. Development of abamectin-loaded nanoemulsion and its insecticidal activity and cytotoxicity[J]. Pest Manag Sci, 2020, 76(12): 4192-4201. doi: 10.1002/ps.5976
    [14] 周召路. 农药助剂调控雾滴在典型作物上的蒸发、沉积及弹跳行为研究[D]. 北京: 中国农业科学院, 2018.

    ZHOU Z L. Study on pesticide additives controlling the evaporation, deposition and bouncing behavior of droplets on typical crops[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018.
    [15] DONG X, ZHU H, YANG X. Characterization of droplet impact and deposit formation on leaf surfaces[J]. Pest Manag Sci, 2015, 71(2): 302-308. doi: 10.1002/ps.3806
    [16] NAIRN J J, FORSTER W A, VAN LEEUWEN R M. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion[J]. Pest Manag Sci, 2011, 67(12): 1562-1570. doi: 10.1002/ps.2213
    [17] 宋玉莹, 曹冲, 徐博, 等. 农药雾滴在植物叶面的弹跳行为及调控技术研究进展[J]. 农药学学报, 2019(5): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110

    SONG Y Y, CAO C, XU B, et al. Research progress on bouncing behavior and control technology of pesticide droplets at plant leaf surface[J]. Chin J Pestic Sci, 2019(5): 895-907. doi: 10.16801/j.issn.1008-7303.2019.0110
    [18] ANDRADE R, SKURTYS O, OSORIO F. Experimental study of drop impacts and spreading on epicarps: effect of fluid properties[J]. J Food Eng, 2012, 109(3): 430-437. doi: 10.1016/j.jfoodeng.2011.10.038
    [19] 钟香梅. 典型靶标作物叶表面对农药液滴吸附特性的研究[D]. 长春: 吉林大学, 2015.

    ZHONG X M. Study on the adsorption characteristics of pesticide droplets on the leaf surface of typical target crops[D]. Changchun: Jilin University, 2015.
    [20] WIRTH W, STORP S, JACOBSEN W. Mechanisms controlling leaf retention of agricultural spray dolutions[J]. Pestic Sci, 1991, 33: 411-420. doi: 10.1002/ps.2780330403
    [21] SONG M, JU J, LUO S, et al. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant[J]. Sci Adv, 2017, 3(3): e1602188. doi: 10.1126/sciadv.1602188
    [22] BUTLER E M C, TUCK C R, MILLER P C H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application[J]. Colloid Surface A, 2001, 180: 267-276. doi: 10.1016/S0927-7757(00)00776-7
    [23] MERCER G, SWEATMAN W, FORSTER W A. A model for spray froplet adhesion, bounce or shatter at a crop leaf surface[C]// Progress in Industrial Mathematics at ECMI 2008. Springer Berlin Heidelberg, 2010: 945-951
    [24] GRUNDKE K, PÖSCHEL K, SYNYTSKA A, et al. Experimental studies of contact angle hysteresis phenomena on polymer surfaces-toward the understanding and control of wettability for different applications[J]. Adv Colloid Interface Sci, 2015, 222: 350-376. doi: 10.1016/j.cis.2014.10.012
    [25] KOVALCHUK N M, TRYBALA A, STAROV V, et al. Fluoro- vs hydrocarbon surfactants: why do they differ in wetting performance?[J]. Adv Colloid Interface Sci, 2014, 210: 65-71. doi: 10.1016/j.cis.2014.04.003
    [26] 张晨辉, 马悦, 杜凤沛. 表面活性剂调控农药药液对靶润湿沉积研究进展[J]. 农药学学报, 2019(5): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100

    ZHANG C H, MA Y, DU F P. Research progress on the wetting and deposition behaviors of pesticide droplet on target surfaces with the addition of surfactants[J]. Chin J Pestic Sci, 2019(5): 883-894. doi: 10.16801/j.issn.1008-7303.2019.0100
    [27] ZHANG C H, ZHAO X, LEI J M, et al. The wetting behavior of aqueous surfactant solutions on wheat (Triticum aestivum) leaf surfaces[J]. Soft Matter, 2017, 13(2): 503-513. doi: 10.1039/C6SM02387H
    [28] LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. J Mater Chem A, 2017, 5(1): 31-55. doi: 10.1039/C6TA07984A
    [29] QIU J, CHEN G, XU J, et al. In vivo tracing of organochloride and organophosphorus pesticides in different organs of hydroponically grown malabar spinach (Basella alba L.)[J]. J Hazard Mater, 2016, 316: 52-59. doi: 10.1016/j.jhazmat.2016.05.024
    [30] 姚安庆, 杨健. 农药在植物体内的传导方式和农药传导生物学[J]. 中国植保导刊, 2012(10): 14-18,22. doi: 10.3969/j.issn.1672-6820.2012.10.003

    YAO A Q, YANG J. Conduction mode of pesticides in plant and pesticide-conduction biology[J]. China Plant Prot, 2012(10): 14-18,22. doi: 10.3969/j.issn.1672-6820.2012.10.003
    [31] CHRISPEELS M J, CRAWFORD N M, SCHROEDER J I. Proteins for transport of water and mineral nutrients across the membranes of plant cells[J]. Plant Cell, 1999, 11(4): 661-675. doi: 10.1105/tpc.11.4.661
    [32] 范添乐, 宋玥颐, 陈小军, 等. 农药内吸性的研究现状与改善策略[J]. 农药学学报, 2020(4): 579-585. doi: 10.16801/j.issn.1008-7303.2020.0080

    FAN T L, SONG Y Y, CHEN X J, et al. Recent advances and improvement strategies for pesticide uptake ability[J]. Chin J Pestic Sci, 2020(4): 579-585. doi: 10.16801/j.issn.1008-7303.2020.0080
    [33] TAIRA S, TOKAI M, KANEKO D, et al. Mass spectrometry imaging analysis of location of procymidone in cucumber samples[J]. J Agric Food Chem, 2015, 63(27): 6109-6112. doi: 10.1021/acs.jafc.5b00957
    [34] FAN T, CHEN X, XU Z, et al. Uptake and translocation of triflumezopyrim in rice plants[J]. J Agric Food Chem, 2020, 68(27): 7086-7092. doi: 10.1021/acs.jafc.9b07868
    [35] 冯雪雯. 三环唑和丙环唑在水稻植株内的吸收, 传导和分布研究 [D]. 南京: 南京农业大学, 2013.

    FENG X W. Uptake, translocation and distrbution of the fungicides tricyclazole and propiconazole in rice plants[D]. Nanjing: Nanjing Agricultural University, 2013.
    [36] ZHAO P, YUAN W, XU C, et al. Enhancement of spirotetramat transfer in cucumber plant using mesoporous silica nanoparticles as carriers[J]. J Agric Food Chem, 2018, 66(44): 11592-11600. doi: 10.1021/acs.jafc.8b04415
    [37] 王锋, 李宝笃. 碳标记甲霜灵在黄瓜植株体内的吸收, 分布, 传导以及种衣剂缓释作用的研究[J]. 植物病理学报, 1995, 25(2): 167-171.

    WANG F, LI B D. The uptake, distribution and translocation of 14c-metalaxyl in cucumber plants and the slowly releasing effect of seed coating formulation[J]. Acta Phytopathol Sin, 1995, 25(2): 167-171.
    [38] 李晶, 郭亮, 崔海信, 等. 纳米农药在植物中的吸收转运研究进展[J]. 植物学报, 2020(4): 513-528. doi: 10.11983/CBB20008

    LI J, GUO L, CUI H X, et al. Research progress on uptake and transport of nanopesticides in plants[J]. Chin Bull Bot, 2020(4): 513-528. doi: 10.11983/CBB20008
    [39] TONG Y, WU Y, ZHAO C, et al. Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants[J]. J Agric Food Chem, 2017, 65(34): 7371-7378. doi: 10.1021/acs.jafc.7b02197
    [40] 戴建昌, 张兴. 杀虫剂在木本植物体内传导理论研究进展[J]. 西北农林科技大学学报(自然科学版), 2001(4): 128-134. doi: 10.13207/j.cnki.jnwafu.2001.04.032

    DAI J C, ZHANG X. The review of transmission and translocation of pesticide in wood plant[J]. J Northwest A&F Univ (Nat Sci Ed), 2001(4): 128-134. doi: 10.13207/j.cnki.jnwafu.2001.04.032
    [41] YANG T, ZHANG Z, ZHAO B, et al. Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping[J]. Anal Chem, 2016, 88(10): 5243-5250. doi: 10.1021/acs.analchem.6b00320
    [42] YANG T X, ZHAO B, KINCHLA A J, et al. Investigation of pesticide penetration and persistence on harvested and live basil leaves using surface-enhanced Raman scattering mapping[J]. J Agric Food Chem, 2017, 65(17): 3541-3550. doi: 10.1021/acs.jafc.7b00548
    [43] 王随家, 季小培, 袁帅. 在工业4.0背景下如何快速建设高质量的智能农药制剂车间[J]. 中国农药, 2018, 14(8): 3.

    WANG S J, JI X P, YUAN S. How to quickly build a high-quality intelligent pesticide preparation workshop in the context of Industry 4.0[J]. J China Agrochem, 2018, 14(8): 3.
    [44] LI N, SUN C, JIANG J, et al. Advances in controlled-release pesticide formulations with improved efficacy and targetability[J]. J Agric Food Chem, 2021, 69(43): 12579-12597. doi: 10.1021/acs.jafc.0c05431
    [45] 唐伟, 张建萍, 杨永杰, 等. 机插秧同步施用噁草酮-复合肥缓释颗粒剂的研制及其田间应用[J]. 农药学学报, 2021(3): 515-522. doi: 10.16801/j.issn.1008-7303.2021.0029

    TANG W, ZHANG J P, YANG Y J, et al. Development and application of oxadiazon-fertilizer slow-release granule for synchronous application in mechanical transplanting rice[J]. Chin J Pestic Sci, 2021(3): 515-522. doi: 10.16801/j.issn.1008-7303.2021.0029
    [46] 康峰, 吴潇逸, 王亚雄, 等. 农药雾滴沉积特性研究进展与展望[J]. 农业工程学报, 2021(20): 1-14. doi: 10.11975/j.issn.1002-6819.2021.20.001

    KANG F, WU X Y, WANG Y X, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Trans Chin Soc Agric Eng, 2021(20): 1-14. doi: 10.11975/j.issn.1002-6819.2021.20.001
    [47] 徐勇. 新型农药载体材料及微胶囊制备与性能研究[D]. 北京: 中国农业大学, 2017

    XU Y. Study on preparation and properties of new pesticide carrier materials and microcapsules[D]. Beijing: China Agricultural University, 2017.
    [48] LI T, TENG D, MAO R, et al. Recent progress in preparation and agricultural application of microcapsules[J]. J Biomed Mater Res A, 2019, 107(10): 2371-2385. doi: 10.1002/jbm.a.36739
    [49] BAH M G, BILAL H M, WANG J. Fabrication and application of complex microcapsules: a review[J]. Soft Matter, 2020, 16(3): 570-590. doi: 10.1039/C9SM01634A
    [50] COPAD C N, JULIO L M, DIEHL B W K, et al. Multilayer microencapsulation of chia seed oil by spray-drying using electrostatic deposition technology[J]. LWT-Food Sci Technol, 2021, 152: 112602.
    [51] RICHARDSON J J, TENG D, BJÖRNMALM M, et al. Fluidized bed layer-by-layer microcapsule formation[J]. Langmuir, 2014, 30(33): 10028-10034. doi: 10.1021/la502176g
    [52] LENGYEL M, KALLAI-SZABO N, ANTAL V, et al. Microparticles, microspheres, and microcapsules for advanced drug delivery[J]. Sci. Pharm, 2019, 87(3): 20. doi: 10.3390/scipharm87030020
    [53] POSHADRI A, KUNA A. Microencapsulation technology: a review[J]. J Res Angrau, 2010, 38(1): 86-102.
    [54] VANDEGAER J E. Microencapsulation: processes and applications[M]. Springer Science & Business Media, 2012.
    [55] 李北兴, 张大侠, 张灿光, 等. 微囊化技术研究进展及其在农药领域的应用[J]. 农药学学报, 2014(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01

    LI B X, ZHANG D X, ZHANG C G, et al. Research advances and application prospects of microencapsulation techniques in pesticide[J]. Chin J Pestic Sci, 2014(5): 483-496. doi: 10.3969/j.issn.1008-7303.2014.05.01
    [56] ZHANG Z Q, GAO Q, YANG J M, et al. Fabrication and release behavior of nitrapyrin microcapsules: using modified melamine-formaldehyde resin as shell material[J]. Sci Total Environ, 2020, 704: 135394. doi: 10.1016/j.scitotenv.2019.135394
    [57] CEN J, LI L H, HUANG L L, et al. Construction of a photothermal controlled-release microcapsule pesticide delivery system[J]. RSC Adv, 2022, 12(36): 23387-23395. doi: 10.1039/D2RA04672E
    [58] CAO H C, CHEN Y, ZHANG D X, et al. Octaphenyl polyoxyethylene regulates the flexibility of pyraclostrobin-loaded soft microcapsules by interfacial polymerization for better foliar adhesion and pesticide utilization[J]. Chem Eng J, 2022, 439: 135805. doi: 10.1016/j.cej.2022.135805
    [59] MARZIA S, ANTONION S, CLAUDIA L, et al. Silica-microencapsulated orange oil for sustainable pest control[J]. Adv Sustain Syst, 2021, 5(4): 2000280. doi: 10.1002/adsu.202000280
    [60] ROJAS A, TORRES A, JOSÉ GALOTTO M, et al. Supercritical impregnation for food applications: a review of the effect of the operational variables on the active compound loading[J]. Crit Rev Food Sci Nutr, 2020, 60(8): 1290-1301. doi: 10.1080/10408398.2019.1567459
    [61] QIN Y, LU X, QUE H, et al. Preparation and characterization of pendimethalin microcapsules based on microfluidic technology[J]. ACS Omega, 2021, 6(49): 34160-34172. doi: 10.1021/acsomega.1c05903
    [62] ZHENG T, CHEN K, CHEN W Y, et al. Preparation and characterisation of polylactic acid modified polyurethane microcapsules for controlled-release of chlorpyrifos[J]. J Microencapsul, 2019, 36(1): 62-71. doi: 10.1080/02652048.2019.1599075
    [63] QIAN J Q, CHEN Y, WANG Q, et al. Preparation and antimicrobial activity of pectin-chitosan embedding nisin microcapsules[J]. Eur Polym J, 2021, 157: 110676. doi: 10.1016/j.eurpolymj.2021.110676
    [64] HE J, TONG X, ZHAO Y. Photoresponsive nanogels based on photocontrollable cross-links[J]. Macromolecules, 2009, 42(13): 4845-4852. doi: 10.1021/ma900665v
    [65] JIANG J Q, TONG X, MORRIS D, et al. Toward photocontrolled release using light-dissociable block copolymer micelles[J]. Macromolecules, 2006, 39(13): 4633-4640. doi: 10.1021/ma060142z
    [66] HILL M R, MACKRELL E J, FORSTHOEFEL C P, et al. Biodegradable and pH-responsive nanoparticles designed for site-specific delivery in agriculture[J]. Biomacromolecules, 2015, 16(4): 1276-1282. doi: 10.1021/acs.biomac.5b00069
    [67] MA Y J, ZHAO R, SHANG H Y, et al. pH-responsive ZIF-8-based metal–organic-framework nanoparticles for termite control[J]. ACS Appl Nano Mater, 2022, 5(8): 11864-11875. doi: 10.1021/acsanm.2c02856
    [68] WEBER C, HOOGENBOOM R, SCHUBERT U S. Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly (2-oxazoline) s[J]. Prog Polym Sci, 2012, 37(5): 686-714. doi: 10.1016/j.progpolymsci.2011.10.002
    [69] ABDELRAHMAN T M, QIN X Y, LI D L, et al. Pectinase-responsive carriers based on mesoporous silica nanoparticles for improving the translocation and fungicidal activity of prochloraz in rice plants[J]. Chem Eng J, 2021, 404: 126440. doi: 10.1016/j.cej.2020.126440
    [70] SHANG H Y, ZHOU Z, WU X M, et al. Sunlight-induced synthesis of non-target biosafety silver nanoparticles for the control of rice bacterial diseases[J]. Nanomaterials (Basel), 2020, 10(10): E2007. doi: 10.3390/nano10102007
    [71] SHANG H Y, ZHANG H Y, ZHAO R, et al. Selenium nanoparticles are effective in penetrating pine and causing high oxidative damage to Bursaphelenchus xylophilus in pine wilt disease control[J]. Pest Manag Sci, 2022, 78(8): 3704-3716. doi: 10.1002/ps.7013
    [72] FENG J G, MA Y J, CHEN Z Y, et al. Development and characterization of pyriproxyfen-loaded nanoemulsion for housefly control: improving activity, reducing toxicity, and protecting ecological environment[J]. ACS Sustain Chem Eng, 2021, 9(14): 4988-4999. doi: 10.1021/acssuschemeng.0c08105
    [73] CUI B, LV Y, GAO F, et al. Improving abamectin bioavailability via nanosuspension constructed by wet milling technique[J]. Pest Manag Sci, 2019, 75(10): 2756-2764. doi: 10.1002/ps.5386
    [74] WANG C, CUI B, ZHAO X, et al. Optimization and characterization of lambda-cyhalothrin solid nanodispersion by self-dispersing method[J]. Pest Manag Sci, 2019, 75(2): 380-389. doi: 10.1002/ps.5122
    [75] GAO Y H, LIANG Y, DONG H Q, et al. A bioresponsive system based on mesoporous organosilica nanoparticles for smart delivery of fungicide in response to pathogen presence [J]. ACS Sustain Chem Eng, 8(14): 5716-5723.
    [76] LIANG Y, GAO Y, WANG W, et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. J Hazard Mater, 2020, 389: 122075. doi: 10.1016/j.jhazmat.2020.122075
    [77] WU X Z, QIN R, WU H X, et al. Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants[J]. Nano Res, 2020, 13(3): 611-620. doi: 10.1007/s12274-020-2700-5
    [78] TONG Y, SHAO L, LI X, et al. Adhesive and stimulus-responsive polydopamine-coated graphene oxide system for pesticide-loss control[J]. J Agric Food Chem, 2018, 66(11): 2616-2622. doi: 10.1021/acs.jafc.7b05500
    [79] ZHAO L, LU L, WANG A, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance[J]. J Agric Food Chem, 2020, 68(7): 1935-1947. doi: 10.1021/acs.jafc.9b06615
    [80] ZOU W C, ZHAO Y Q, DENG Y Q, et al. Preparation of layered beta-cypermethrin-carrying microcapsules from pickering emulsion of hollow mesoporous silica nanoparticles[J]. Mater Today Commun, 2022, 31: 103695. doi: 10.1016/j.mtcomm.2022.103695
    [81] XIAO D X, LIANG W L, XIE Z G, et al. A temperature-responsive release cellulose-based microcapsule loaded with chlorpyrifos for sustainable pest control[J]. J Hazard Mater, 2021, 403: 123654. doi: 10.1016/j.jhazmat.2020.123654
    [82] RICO C M, MAJUMDAR S, DUARTE-GARDEA M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain[J]. J Agric Food Chem, 2011, 59(8): 3485-3498. doi: 10.1021/jf104517j
    [83] MA X, GEISLER-LEE J, DENG Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation[J]. Sci Total Environ, 2010, 408(16): 3053-3061. doi: 10.1016/j.scitotenv.2010.03.031
    [84] PRASAD A, ASTETE C E, BODOKI A E, et al. Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants[J]. J Agr Food Chem, 2018, 66(26): 6544-6551. doi: 10.1021/acs.jafc.7b02487
    [85] SANZARI I, LEONE A, AMBROSONE A. Nanotechnology in plant science: to make a long story short[J]. Front Bioeng Biotechnol, 2019, 7: 120. doi: 10.3389/fbioe.2019.00120
    [86] KUREPA J, PAUNESKU T, VOGT S, et al. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Lett, 2010, 10(7): 2296-2302. doi: 10.1021/nl903518f
    [87] LIU X X, HE B C, XU Z J, et al. A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control[J]. Nanoscale, 2015, 7(2): 445-449. doi: 10.1039/C4NR05733C
    [88] CARPITA N C, GIBEAUT D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth[J]. Plant J, 1993, 3(1): 1-30. doi: 10.1111/j.1365-313X.1993.tb00007.x
    [89] DENG Y Q, WHITE J C, XING B S. Interactions between engineered nanomaterials and agricultural crops: implications for food safety[J]. J Zhejiang Univ-Sci A, 2014, 15: 552-572. doi: 10.1631/jzus.A1400165
    [90] EICHERT T, GOLDBACH H E. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces: further evidence for a stomatal pathway[J]. Physiol Plant, 2008, 132(4): 491-502. doi: 10.1111/j.1399-3054.2007.01023.x
    [91] 陈朗, 姜辉, 周艳明, 等. 纳米农药的环境安全性浅析[J]. 农药科学与管理, 2018(5): 30-38. doi: 10.3969/j.issn.1002-5480.2018.05.009

    CHEN L, JIANG H, ZHOU Y M, et al. A brief analysis on the environmental safety of nano-enabled pesticides[J]. Pestic Sci Adm, 2018(5): 30-38. doi: 10.3969/j.issn.1002-5480.2018.05.009
    [92] YADAV R K, SINGH N, SINGH A, et al. Expanding the horizons of nanotechnology in agriculture: recent advances, challenges and future perspectives[J]. Vegetos, 2020, 33(2): 203-21. doi: 10.1007/s42535-019-00090-9
    [93] 程永, 张杰, 苗建强. 农药省力化剂型的研究进展[J]. 农业工程, 2011(2): 12-16.

    CHENG Y, ZHANG J, MIAO J Q. Research progress of labor-saving formulation pesticides[J]. Agric Eng, 2011(2): 12-16.
    [94] 尚兴朴, 邓庭伟, 曾燕, 等. 我国中药材种衣剂的研究进展[J]. 中国现代中药, 2019, 21(11): 1587-1591. doi: 10.13313/j.issn.1673-4890.20190113002

    SHANG X P, DENG T W, ZENG Y, et al. Research progress of Chinese herbal medicine seed coating agent[J]. Mod Chin Med, 2019, 21(11): 1587-1591. doi: 10.13313/j.issn.1673-4890.20190113002
    [95] 周邱林. 西诺农化8%噻嗪酮展膜油剂获正式登记[J]. 营销界(农资与市场), 2014(11): 22.

    ZHOU Q L. Xino Agrochemicals 8% thiazinone film spreading oil agent was officially registered[J]. Marketing, 2014(11): 22.
    [96] 刘江钰. 两类水田省力化制剂制备及作用机理研究[D]. 北京: 中国农业大学, 2021.

    LIU J Y. Study on the preparation and mechanism of two types of paddy field labor-saving formulations[D]. Beijing: China Agricultural University, 2021.
    [97] YAN X, YUAN H, CHEN Y, et al. Broadcasting of tiny granules by drone to mimic liquid spraying for the control of fall armyworm (Spodoptera frugiperda)[J]. Pest Manag Sci, 2022, 78(1): 43-51. doi: 10.1002/ps.6604
    [98] 马英剑, 徐勇, 孙利, 等. 我国航空植保的发展现状及展望[J]. 农药, 2022(7): 469-477. doi: 10.16820/j.nyzz.2022.1003

    MA Y J, XU Y, SUN L, et al. Development status and prospect of aviation plant protection in China[J]. Agrochemicals, 2022(7): 469-477. doi: 10.16820/j.nyzz.2022.1003
    [99] KOCH K, BHUSHAN B, BARTHLOTT W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943-1963. doi: 10.1039/b804854a
    [100] 张宗俭, 张春华, 李小龙. 桶混助剂的研发应用与发展趋势[J]. 现代农药, 2021, 20(1): 19-25. doi: 10.3969/j.issn.1671-5284.2021.01.004

    ZHANG Z J, ZHANG C H, LI X L. Research, application and development trend of tank-mixing adjuvant in China[J]. Mod Agrochem, 2021, 20(1): 19-25. doi: 10.3969/j.issn.1671-5284.2021.01.004
    [101] 宋睿, 沈国清, 张永涛, 等. 植保无人机飞防助剂的筛选及其性能评价[J]. 江苏农业学报, 2021(2): 333-339. doi: 10.3969/j.issn.1000-4440.2021.02.008

    SONG R, SHEN G Q, ZHANG Y T, et al. Selection and performance evaluation of spray adjuvant based on unmanned aerial vehicle (UAV) for plant protection[J]. Jiangsu J Agric Sci, 2021(2): 333-339. doi: 10.3969/j.issn.1000-4440.2021.02.008
    [102] LI X P, CHEN L P, TANG Q, et al. Characteristics on the spatial distribution of droplet size and velocity with difference adjuvant in nozzle spraying[J]. Agronomy, 2022, 12(8): 1960. doi: 10.3390/agronomy12081960
    [103] ZHAO R, YU M, SUN Z, et al. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat[J]. Pest Manag Sci, 2022, 78(6): 2512-2522. doi: 10.1002/ps.6879
    [104] 刘晓慧, 郭建, 侯秋强, 等. 植保无人飞机施药防治烟草棉铃虫的可行性和添加助剂倍达通的作用[J]. 农药学学报, 2022, 24(3): 530-535. doi: 10.16801/j.issn.1008-7303.2021.0169

    LIU X H, GUO J, HOU Q Q, et al. Feasibility of the plant protection unmanned aerial vehicle for controlling tobacco bollworm (Helicoverpa armigera) and the effect of adjuvant Beidatong[J]. Chin J Pestic Sci, 2022, 24(3): 530-535. doi: 10.16801/j.issn.1008-7303.2021.0169
    [105] 谢吉先, 冯梦诗, 丁彬, 等. 0.1% 噻虫胺药肥用量对花生生育及蛴螬防治效果的影响[J]. 江苏农业科学, 2021(13): 93-97.

    XIE J X, FENG M S, DING B, et al. Effects of 0.1% clothianidin fertilizer on peanut growth and grub control effect[J]. Jiangsu Agric Sci, 2021(13): 93-97.
    [106] 任如佳, 鞠晓朋, 周爽, 等. 我国药肥产业现状与发展趋势分析[J]. 磷肥与复肥, 2016, 31(9): 15-19. doi: 10.3969/j.issn.1007-6220.2016.09.006

    REN R J, JU X P, ZHOU S, et al. Analysis of the current situation and development trend of China's pharmaceutical fertilizer industry[J]. Phosphate Compd Fert, 2016, 31(9): 15-19. doi: 10.3969/j.issn.1007-6220.2016.09.006
    [107] 朱峰, 何永福, 陈才俊, 等. 防治地下害虫缓控释药肥颗粒剂及其制备方法和应用: CN 113004096A[P]. 2021-06-22.

    ZHU F, HE Y F, CHEN C J, et al. Preparation and application of slow and controlled release drug fertilizer granules for underground pest control: CN 113004096A[P]. 2021-06-22.
    [108] 赵萍, 朱琳, 石葡萄, 等. 有效防治地下害虫的药肥颗粒剂: CN 109452305A[P]. 2019-03-12.

    ZHAO P, ZHU L, SHI P T, et al. Effective control of underground pests of fertilizer granule: CN 109452305A[P]. 2019-03-12.
    [109] 廖炎. 日本复合肥料的应用现状及发展趋势[J]. 江苏作物通讯, 1998(6): 16.

    LIAO Y. Application status and development trend of compound fertilizer in Japan[J]. Jiangsu Crop Commun, 1998(6): 16.
    [110] 本谷耕一. 五氯苯酚 (PCP) 的利用研究[J]. 土壤译从, 1969(3-4): 16-99.

    HONTANI K. Study on utilization of pentachlorophenol (PCP)[J]. Soil Transl From, 1969(3-4): 16-99.
    [111] SALAM M A. Nitrogenous activity of the rhizosphere treated with granular insecticides, urea and zinc[J]. Indian J Microbiol, 1988: 243-246.
    [112] 王西锐, 张静, 乔璐曼, 等. 猕猴桃园全年药肥应用建议[J]. 西北园艺(果树), 2022(3): 33-35.

    WANG X R, ZHANG J, QIAO L M, et al. Suggestions on application of medicinal fertilizer in macaque peach orchard throughout the year[J]. Northwest Hortic, 2022(3): 33-35.
    [113] 张硕佳, 赵鹏跃, 王超杰, 等. 农药根部缓控释施药技术研究进展[J]. 现代农药, 2022, 21(3): 11-19. doi: 10.3969/j.issn.1671-5284.2022.03.003

    ZHANG S J, ZHAO P Y, WANG C J, et al. Research progress on slow and controlled release application technology of pesticide roots[J]. Mod Agrochemicals, 2022, 21(3): 11-19. doi: 10.3969/j.issn.1671-5284.2022.03.003
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  21
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 录用日期:  2022-09-22
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2022-10-10

目录

    /

    返回文章
    返回